
Service AvailabilityTM Forum
Application Interface Specification

Availability Management Framework SAI-AIS-AMF-B.04.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-AMF-B.04.01 3

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Legal Notice

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-AMF-B.04.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Legal Notice

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Availability Management Framework

1 Document Introduction . 19
 1.1 Document Purpose . 19
 1.2 AIS Documents Organization . 19
 1.3 History . 19
 1.3.1 New Topics .20
 1.3.2 Clarifications .23
 1.3.3 Deleted Topics .24
 1.3.4 Other Changes .24
 1.3.5 Superseded and Superseding Functions .28
 1.3.6 Changes in Return Values of API and Administrative Functions .30
 1.4 References . 31
 1.5 How to Provide Feedback on the Specification . 31
 1.6 How to Join the Service Availability™ Forum . 32
 1.7 Additional Information . 32
 1.7.1 Member Companies .32
 1.7.2 Press Materials .32

2 Overview . 33
 2.1 Overview of the Availability Management Framework . 33

3 System Description and System Model . 35
 3.1 Logical Entities . 37
 3.1.1 Cluster and Nodes .38
 3.1.1.1 AMF Nodes .38
 3.1.1.2 AMF Cluster .39
 3.1.2 Components .41
 3.1.2.1 SA-Aware Components .43
 3.1.2.1.1 Container and Contained Components .44
 3.1.2.2 Non-SA-Aware Components .46
 3.1.2.2.1 External Components .46
 3.1.2.2.2 Non-Proxied, Non-SA-Aware Components .46
 3.1.2.2.3 Integration and Usage of Non-SA-Aware Local Components .47
 3.1.2.3 Proxy and Proxied Components .48
 3.1.2.4 Component Life Cycle .49
 3.1.2.5 Component Type .50
 3.1.3 Component Service Instance .50
 3.1.3.1 Component Service Type .52
 3.1.4 Service Unit .52
 3.1.4.1 Service Unit Type .53
 3.1.5 Service Instances .54
 3.1.5.1 Service Type .55
 3.1.6 Service Groups .55
AIS Specification SAI-AIS-AMF-B.04.01 5

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.1.6.1 Service Group Type .55
 3.1.7 Application .56
 3.1.7.1 Application Type .56
 3.1.8 Protection Groups .56
 3.1.9 Mapping of Service Units to Nodes .57
 3.1.10 Service Unit Instantiation .58
 3.1.11 Illustration of Logical Entities .59
 3.2 State Models . 61
 3.2.1 Service Unit States .61
 3.2.1.1 Presence State .61
 3.2.1.2 Administrative State .63
 3.2.1.3 Operational State .63
 3.2.1.4 Readiness State .64
 3.2.1.5 HA State of a Service Unit for a Service Instance .67
 3.2.1.6 HA Readiness State of a Service Unit per Service Instance .69
 3.2.2 Component States .71
 3.2.2.1 Presence State .71
 3.2.2.2 Operational State .75
 3.2.2.3 Readiness State .76
 3.2.2.4 HA State of a Component per Component Service Instance .77
 3.2.2.5 HA Readiness State of a Component for a Component Service Instance .84
 3.2.3 Service Instance States .87
 3.2.3.1 Administrative State .87
 3.2.3.2 Assignment State .88
 3.2.4 Component Service Instance States .89
 3.2.5 Service Group States .89
 3.2.6 Node States .90
 3.2.6.1 Administrative State .90
 3.2.6.2 Operational State .91
 3.2.7 Application States .92
 3.2.8 Cluster States .93
 3.2.9 Summary of States Supported for the Logical Entities .94
 3.3 Fail-Over and Switch-Over . 96
 3.4 Possible Combinations of States for Service Units . 98
 3.4.1 Combined States for Pre-Instantiable Service Units .98
 3.4.2 Combined States for Non-Pre-Instantiable Service Units .103
 3.5 Component Capability Model . 107
 3.6 Service Group Redundancy Model . 109
 3.6.1 Common Characteristics .110
 3.6.1.1 Common Definitions .110
 3.6.1.2 Initiation of the Auto-Adjust Procedure for a Service Group .113
 3.6.1.3 AMF Node Capacity Limitation .114
 3.6.1.3.1 Examples .117
 3.6.1.4 Considerations when Configuring Redundancy .120
 3.6.2 2N Redundancy Model .122
 3.6.2.1 Basics .122
 3.6.2.2 Configuration .122
6 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.6.2.3 SI Assignments and Failure Handling .123
 3.6.2.3.1 Failure of the Active Service Unit .123
 3.6.2.3.2 Failure of the Standby Service Unit .123
 3.6.2.3.3 Auto-Adjust Procedure .123
 3.6.2.3.4 Cluster Startup .124
 3.6.2.3.5 Role of the List of Ordered Service Units in Assignments and Instantiations 124
 3.6.2.4 Examples .125
 3.6.2.5 UML Diagram of the 2N Redundancy Model .131
 3.6.3 N+M Redundancy Model .132
 3.6.3.1 Basics .132
 3.6.3.2 Examples .133
 3.6.3.3 Configuration .135
 3.6.3.4 SI Assignments .137
 3.6.3.4.1 Reduction Procedure .139
 3.6.3.5 Examples for Service Unit Fail-Over .144
 3.6.3.5.1 Handling of a Node Failure when Spare Service Units Exist .144
 3.6.3.5.2 Handling of a Node Failure when no Spare Service Units Exist .145
 3.6.3.6 Example of Auto-Adjust .146
 3.6.3.7 UML Diagram of the N+M Redundancy Model .148
 3.6.4 N-Way Redundancy Model .149
 3.6.4.1 Basics .149
 3.6.4.2 Example .150
 3.6.4.3 Configuration .151
 3.6.4.4 SI Assignments .152
 3.6.4.4.1 Reduction Procedure .154
 3.6.4.5 Failure Handling .156
 3.6.4.6 Example of Auto-Adjust .158
 3.6.4.7 UML Diagram of the N-Way Redundancy Model .159
 3.6.5 N-Way Active Redundancy Model .160
 3.6.5.1 Basics .160
 3.6.5.2 Example .161
 3.6.5.3 Configuration .162
 3.6.5.4 SI Assignments .163
 3.6.5.4.1 Reduction Procedure .165
 3.6.5.5 Failure Handling .168
 3.6.5.5.1 Example for Failure Recovery .168
 3.6.5.6 Example of Auto-Adjust .172
 3.6.5.7 UML Diagram of the N-Way Active Redundancy Model .174
 3.6.6 No-Redundancy Redundancy Model .175
 3.6.6.1 Basics .175
 3.6.6.2 Example .176
 3.6.6.3 Configuration .177
 3.6.6.4 SI Assignments .177
 3.6.6.4.1 Reduction Procedure .178
 3.6.6.5 Failure Handling .179
 3.6.6.6 Example of Auto-Adjust .180
 3.6.6.7 UML Diagram of the No-Redundancy Redundancy Model .181
 3.6.7 The Effect of Administrative Operations on Service Instance Assignments 182
 3.6.7.1 Locking a Service Unit or a Node .182
AIS Specification SAI-AIS-AMF-B.04.01 7

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.6.7.2 Unlocking a Service Unit, a Service Group, or a Node .183
 3.7 Component Capability Model and Service Group Redundancy Model . 184
 3.8 Dependencies Among SIs, Component Service Instances, and Components 185
 3.8.1 Dependencies Among Service Instances and Component Service Instances185
 3.8.1.1 Dependencies Among SIs when Assigning a Service Unit Active for a Service Instance185
 3.8.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances .186
 3.8.1.3 Dependencies Among Component Service Instances of the same Service Instance 186
 3.8.2 Dependencies Among Components .187
 3.9 Approaches for Integrating Legacy Software or Hardware Entities . 189
 3.10 Component Monitoring . 190
 3.11 Error Detection, Recovery, Repair, and Escalation Policy . 191
 3.11.1 Basic Notions .191
 3.11.1.1 Error Detection .191
 3.11.1.2 Restart .191
 3.11.1.3 Recovery .192
 3.11.1.3.1 Restart Recovery Action .193
 3.11.1.3.2 Fail-Over Recovery Action .194
 3.11.1.3.3 Application Restart Recovery Action .197
 3.11.1.3.4 Cluster Reset Recovery Action .197
 3.11.1.4 Repair .197
 3.11.1.4.1 Recovery and Associated Repair Policies .199
 3.11.1.4.2 Restrictions to Auto-Repair .200
 3.11.1.5 Recovery Escalation .201
 3.11.2 Recovery Escalation Policy of the Availability Management Framework .201
 3.11.2.1 Recommended Recovery Action .201
 3.11.2.2 Escalations of Levels 1 and 2 .202
 3.11.2.3 Escalation of Level 3 .205

4 Local Component Life Cycle Management Interfaces . 207
 4.1 Common Characteristics . 207
 4.2 Configuring the Pathname of CLC-CLI Commands . 208
 4.3 CLC-CLI Environment Variables . 209
 4.4 Configuring CLC-CLI Arguments . 210
 4.5 Exit Status . 210
 4.6 INSTANTIATE Command . 211
 4.7 TERMINATE Command . 213
 4.8 CLEANUP Command . 214
 4.9 AM_START Command . 215
 4.10 AM_STOP Command . 215
 4.11 Usage of CLC-CLI Commands Based on the Component Category . 216

5 Proxied Components Management . 217

 5.1 Properties of Proxy and Proxied Components . 217
 5.2 Life Cycle Management of Proxied Components . 218
 5.3 Proxy Component Failure Handling . 219
8 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
6 Contained Components Management . 221
 6.1 Overview of Container and Contained Components . 221
 6.1.1 Definitions .221
 6.1.2 Component Category .221
 6.1.3 Multiple Components per Process .221
 6.1.4 Life Cycle Management of Contained Components .221
 6.1.5 Container and Contained Components in Service Units and Service Groups 221
 6.1.6 Redundancy Models .222
 6.1.7 Administrative Operations and Container and Contained Components .223
 6.1.8 Failure Handling .223
 6.2 Life Cycle Management of Contained Components . 224
 6.2.1 Container CSI and Its Configuration .224
 6.2.2 Assignment of the Container CSI .224
 6.2.3 Life Cycle Callbacks .225
 6.3 Failure Handling for Container and Contained Components . 226
 6.4 Proxied and Contained Components: Similarities and Differences . 227

7 Availability Management Framework API . 229
 7.1 Availability Management Framework Model for the APIs . 230
 7.1.1 Callback Semantics and Component Registration and Unregistration .230
 7.1.2 Component Healthcheck Monitoring .232
 7.1.2.1 Overview .232
 7.1.2.2 Variants of Healthchecks .233
 7.1.2.3 Starting and Stopping Healthchecks .233
 7.1.2.4 Healthcheck Configuration Issues .233
 7.1.2.4.1 Role of Period and Maximum-Duration in Framework-Invoked Healthchecks235
 7.1.2.4.2 Role of Period in Component-Invoked Healthchecks .236
 7.1.2.4.3 Modification of Healthcheck Parameters .237
 7.1.3 Component Service Instance Management .237
 7.1.4 Component Life Cycle Management .238
 7.1.5 Protection Group Management .238
 7.1.6 Error Reporting .238
 7.1.7 Correlation of Notifications .239
 7.1.8 Component Response to Framework Requests .239
 7.1.9 API Usage Illustrations .240
 7.2 Unavailability of the AMF API on a Non-Member Node . 243
 7.2.1 A Member Node Leaves or Rejoins the Cluster Membership .243
 7.2.2 Guidelines for Availability Management Framework Implementers .244
 7.3 Include File and Library Names . 245
 7.4 Type Definitions . 245
 7.4.1 SaAmfHandleT .245
 7.4.2 Component Process Monitoring .245
 7.4.2.1 SaAmfPmErrorsT Type .246
 7.4.2.2 SaAmfPmStopQualifierT Type .246
 7.4.3 Component Healthcheck Monitoring .246
AIS Specification SAI-AIS-AMF-B.04.01 9

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 7.4.3.1 SaAmfHealthcheckInvocationT .246
 7.4.3.2 SaAmfHealthcheckKeyT .247
 7.4.4 Types for State Management .247
 7.4.4.1 HA State .247
 7.4.4.2 Readiness State .247
 7.4.4.3 Presence State .248
 7.4.4.4 Operational State .248
 7.4.4.5 Administrative State .248
 7.4.4.6 Assignment State .249
 7.4.4.7 HA Readiness State .249
 7.4.4.8 Proxy Status .249
 7.4.4.9 All Defined States .250
 7.4.5 Component Service Types .250
 7.4.5.1 SaAmfCSIFlagsT .250
 7.4.5.2 SaAmfCSITransitionDescriptorT .251
 7.4.5.3 SaAmfCSIStateDescriptorT .252
 7.4.5.4 SaAmfCSIAttributeListT .253
 7.4.5.5 SaAmfCSIDescriptorT .254
 7.4.6 Types for Protection Group Management .255
 7.4.6.1 SaAmfProtectionGroupMemberT_4 .255
 7.4.6.2 SaAmfProtectionGroupChangesT .255
 7.4.6.3 SaAmfProtectionGroupNotificationT_4 .256
 7.4.6.4 SaAmfProtectionGroupNotificationBufferT_4 .256
 7.4.7 SaAmfRecommendedRecoveryT .257
 7.4.8 SaAmfCompCategoryT .258
 7.4.9 SaAmfRedundancyModelT .260
 7.4.10 SaAmfCompCapabilityModelT .260
 7.4.11 Notifications-Related Types .261
 7.4.11.1 SaAmfNotificationMinorIdT .261
 7.4.11.2 SaAmfAdditionalInfoIdT .262
 7.4.12 SaAmfCallbacksT_4 .263
 7.5 Library Life Cycle . 264
 7.5.1 saAmfInitialize_4() .264
 7.5.2 saAmfSelectionObjectGet() .267
 7.5.3 saAmfDispatch() .268
 7.5.4 saAmfFinalize() .270
 7.6 Component Registration . 272
 7.6.1 saAmfComponentRegister() .272
 7.6.2 saAmfComponentNameGet() .276
 7.7 Passive Monitoring of Processes of a Component . 278
 7.7.1 saAmfPmStart_3() .278
 7.7.2 saAmfPmStop() .280
 7.8 Component Health Monitoring . 283
 7.8.1 saAmfHealthcheckStart() .283
 7.8.2 SaAmfHealthcheckCallbackT .286
 7.8.3 saAmfHealthcheckConfirm() .288
 7.8.4 saAmfHealthcheckStop() .291
10 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 7.9 Component Service Instance Management . 293
 7.9.1 saAmfHAStateGet() .293
 7.9.2 SaAmfCSISetCallbackT .295
 7.9.3 SaAmfCSIRemoveCallbackT .298
 7.9.4 saAmfCSIQuiescingComplete() .300
 7.9.5 saAmfHAReadinessStateSet() .303
 7.10 Component Life Cycle . 307
 7.10.1 SaAmfComponentTerminateCallbackT .307
 7.10.2 SaAmfProxiedComponentInstantiateCallbackT .309
 7.10.3 SaAmfProxiedComponentCleanupCallbackT .311
 7.10.4 SaAmfContainedComponentInstantiateCallbackT .312
 7.10.5 SaAmfContainedComponentCleanupCallbackT .314
 7.11 Protection Group Management . 316
 7.11.1 saAmfProtectionGroupTrack_4() .316
 7.11.2 SaAmfProtectionGroupTrackCallbackT_4 .319
 7.11.3 saAmfProtectionGroupTrackStop() .322
 7.11.4 saAmfProtectionGroupNotificationFree_4() .323
 7.12 Error Reporting . 325
 7.12.1 saAmfComponentErrorReport_4() .325
 7.12.2 saAmfComponentErrorClear_4() .327
 7.12.3 saAmfCorrelationIdsGet() .330
 7.13 Component Response to Framework Requests . 333
 7.13.1 saAmfResponse_4() .333

8 AMF UML Information Model . 337

 8.1 Use of Entity Types in the AMF UML Information Model . 338
 8.2 Notes on the Conventions Used in UML Diagrams . 338
 8.3 DN Formats for Availability Management Framework UML Classes . 339
 8.4 AMF Cluster . 341
 8.5 Availability Management Framework Instances and Types View . 342
 8.6 Availability Management Framework Instances View . 343
 8.7 AMF Cluster, Node, and Node-Related Classes . 344
 8.8 Application Classes Diagram . 346
 8.9 Service Group Class Diagram . 348
 8.10 Service Unit Class Diagram . 350
 8.11 Service Instance Class Diagram . 353
 8.12 Component Service Instance Diagram . 356
 8.13 Component and Component Types Class Diagrams . 358
 8.13.1 Component Type Class Diagram .358
 8.13.2 Component Classes Diagram .360
 8.14 AMF Global Component Attributes and Healthcheck Classes . 362

9 Administration API . 365
AIS Specification SAI-AIS-AMF-B.04.01 11

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 9.1 Availability Management Framework Administration API Model . 365
 9.2 Include File and Library Name . 367
 9.3 Type Definitions . 367
 9.3.1 SaAmfAdminOperationIdT .367
 9.4 Availability Management Framework Administration API . 368
 9.4.1 Administrative State Modification Operations .368
 9.4.2 SA_AMF_ADMIN_UNLOCK .370
 9.4.3 SA_AMF_ADMIN_LOCK .372
 9.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION .375
 9.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION .378
 9.4.6 SA_AMF_ADMIN_SHUTDOWN .380
 9.4.7 SA_AMF_ADMIN_RESTART .383
 9.4.8 SA_AMF_ADMIN_SI_SWAP .386
 9.4.9 SA_AMF_ADMIN_SG_ADJUST .389
 9.4.10 SA_AMF_ADMIN_REPAIRED .391
 9.4.11 SA_AMF_ADMIN_EAM_START .393
 9.4.12 SA_AMF_ADMIN_EAM_STOP .395
 9.5 Summary of Administrative Operation Support . 397

10 Basic Operational Scenarios . 399
 10.1 Administrative Shutdown of a Service Instance in a 2N Case . 399
 10.2 Administrative Shutdown of a Service Unit in a 2N Case . 401
 10.3 Administrative Shutdown of a Service Unit for the N-Way Model . 402
 10.4 Administrative Lock of a Service Instance . 404
 10.5 Administrative Lock of a Service Unit . 405
 10.6 A Simple Fail-Over . 406
 10.7 Administrative Shutdown of an SI Having a Container CSI . 407
 10.8 Administrative Lock of an SI Having a Container CSI . 410
 10.9 Administrative Lock of a Service Unit with a Container Component . 411
 10.10 Restart of a Container Component . 414

11 Alarms and Notifications . 417
 11.1 Setting Common Attributes . 417
 11.2 Availability Management Framework Notifications . 419
 11.2.1 Availability Management Framework Alarms .419
 11.2.1.1 Component Instantiation Failed .419
 11.2.1.2 Component Cleanup Failed .421
 11.2.1.3 Cluster Reset Triggered by a Component Failure .423
 11.2.1.4 Service Instance Unassigned .425
 11.2.1.5 Proxy Status of a Component Changed to Unproxied .427
 11.2.2 Availability Management Framework State Change Notifications .428
 11.2.2.1 Administrative State Change Notify .428
 11.2.2.2 Operational State Change Notify .429
 11.2.2.3 Presence State Change Notify .430
12 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 11.2.2.4 HA State Change Notify .431
 11.2.2.5 HA Readiness State Change Notify .432
 11.2.2.6 SI Assignment State Change Notify .433
 11.2.2.7 Proxy Status of a Component Changed to Proxied .434
 11.2.3 Availability Management Framework Notifications of Miscellaneous Type435
 11.2.3.1 Error Report Notification .435
 11.2.3.2 Error Clear Notification .437

Appendix A Implementation of CLC Interfaces . 439

Appendix B API Functions and Registered Processes . 441

Appendix C Example for Proxy/Proxied Association . 443

Appendix D Interaction with CLM . 445

Index of Definitions . 447
AIS Specification SAI-AIS-AMF-B.04.01 13

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Interface Specification
List of Figures
List of Figures
Figure 1: Availability Management Framework Logical Entities and Their Relations 37
Figure 2: Elements of the System Model . 60
Figure 3: State Diagram of the HA State of an SA-Aware Component for a CSI 83
Figure 4: State Transitions for Pre-Instantiable Service Units . 102
Figure 5: State Transitions for Non-Pre-Instantiable Service Units . 106
Figure 6: Example 1 for Node Capacity Limitation . 118
Figure 7: Example 2 for Node Capacity Limitation . 119
Figure 8: Example of the 2N Redundancy Model: Two Service Units on Different Nodes 125
Figure 9: Example of the 2N RM. Two SUs on Different Nodes, Fault Has Occurred 126
Figure 10: Example of the 2N Redundancy Model: Two Service Units on the Same Node 127
Figure 11: Example of the 2N RM: Two SUs on the Same Node, Fault Has Occurred 128
Figure 12: Example of the 2N RM: One Node Provides Standby SUs for Several Service Groups . . . 129
Figure 13: Example of the 2N RM: Each Node Has an Active and a Standby Service Unit 130
Figure 14: UML Diagram for the 2N Redundancy Model . 131
Figure 15: Example of the N+1 Redundancy Model . 134
Figure 16: Example of the N+M Redundancy Model, Where N = 3 and M = 2 135
Figure 17: UML Diagram of the N+M Redundancy Model . 148
Figure 18: Example of the N-Way Redundancy Model . 150
Figure 19: UML Diagram of the N-Way Redundancy Model . 159
Figure 20: Example of the N-Way Active Redundancy Model . 161
Figure 21: UML Diagram of the N-Way Active Redundancy Model . 174
Figure 22: Example of the No-Redundancy Redundancy Model . 176
Figure 23: UML Diagram of the No-Redundancy Redundancy Model . 181
Figure 24: SA-Aware Component Consisting of a Single Process . 240
Figure 25: SA-Aware Component Consisting of Multiple Processes . 241
Figure 26: A Single-Process Proxy Component and Two Proxied Components 242
Figure 27: 3- Cluster View . 341
Figure 28: 3.1- AMF Instances and Types View . 342
Figure 29: 3.2- AMF Instances View . 343
Figure 30: 3.3- AMF Cluster, Node, and Node-Related Classes . 345
Figure 31: 3.4- AMF Application Classes . 347
Figure 32: 3.5- AMF SG Classes . 349
Figure 33: 3.6- AMF SU Classes . 352
Figure 34: 3.7- AMF SI Classes . 355
Figure 35: 3.8- AMF CSI Classes . 357
Figure 36: 3.9b- AMF Component Type Classes . 359
Figure 37: 3.9a- AMF Component Classes . 361
Figure 38: 3.9c- AMF Global Component Attributes and Healthcheck Classes 363
Figure 39: Administrative States and Related Operations for AMF Entities . 369
Figure 40: Administrative Shutdown of a Service Instance for the 2N Case . 400
Figure 41: Administrative Shutdown of a Service Unit for the 2N Case . 401
AIS Specification SAI-AIS-AMF-B.04.01 15

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Interface Specification
List of Figures
Figure 42: Administrative Shutdown of a Service Unit for the N-Way Case . 403
Figure 43: Administrative Lock of a Service Instance for the 2N Case . 404
Figure 44: Administrative Lock of a Service Unit for the 2N Case . 405
Figure 45: Fail-Over Scenario for a Service Group with the 2N Redundancy Model 406
Figure 46: Scenario for Shutting Down a Service Instance Having a Container CSI 408
Figure 47: Administrative Shutdown of a Service Instance Having a Container CSI 409
Figure 48: Administrative Lock of a Service Instance Having a Container CSI 410
Figure 49: Scenario for Locking a Service Unit Containing a Container Component 412
Figure 50: Administrative Lock of a Service Unit Containing a Container Component 413
Figure 51: Restart of a Container Component . 415
16 SAI-AIS-AMF-B.04.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Interface Specification
List of Tables
List of Tables
Table 1: Superseded Functions and Type Definitions in Version B.04.01. 29
Table 2: Changes in Return Values of API and Administrative Functions . 30
Table 3: Component Categories . 50
Table 4: Service Unit’s Readiness State . 67
Table 5: Presence State of Components of a Service Unit . 74
Table 6: Component’s Readiness State . 77
Table 7: HA State of Component/Component Service Instance . 79
Table 8: Application Developer View for Pre-Instantiable Components. 84
Table 9: Application Developer View for Non-Pre-Instantiable Components. 84
Table 10: Combinations of States for a Component. 87
Table 11: Preferred Number of Active and Standby Assignments. 88
Table 12: Summary of States Supported for the Logical Entities . 94
Table 13: Combined Administrative States for the Service Unit . 98
Table 14: Combined States for Pre-Instantiable Service Units . 99
Table 15: Combined States for Non-Pre-Instantiable Service Units . 104
Table 16: Component Capability Model and Service Group Redundancy Model 184
Table 17: Recovery and Associated Automatic Repair Policies . 200
Table 18: Levels of Escalation . 202
Table 19: Usage of CLC-CLI Commands Based on the Component Category 216
Table 20: Possible Combinations of Values in SaAmfCompCategoryT . 259
Table 21: DN Formats . 339
Table 22: Summary: Applicability of Administrative Operations . 397
Table 23: Component Instantiation Failed Alarm . 420
Table 24: Component Cleanup Failed Alarm . 422
Table 25: Cluster Reset Triggered by a Component Failure Alarm . 424
Table 26: Service Instance Unassigned Alarm . 426
Table 27: Proxy Status of a Component Changed to Unproxied Alarm . 427
Table 28: Administrative State Change Notification . 428
Table 29: Operational State Change Notification. 429
Table 30: Presence State Change Notification . 430
Table 31: HA State Change Notification . 431
Table 32: HA Readiness State Change Notification. 432
Table 33: SI Assignment State Change Notification . 433
Table 34: Proxy Status of a Component Changed to Proxied Notification . 434
Table 35: Error Report Notification . 436
Table 36: Error Clear Notification . 437
Table 37: Implementation of CLC Operations for Each Component Category 439
Table 38: API Functions and Registered Processes . 441
AIS Specification SAI-AIS-AMF-B.04.01 17

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Availability Management Framework of the Application
Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is
intended for use by implementers of the Application Interface Specification and by
application developers who would use the Application Interface Specification to
develop applications that must be highly available. The AIS is defined in the C pro-
gramming language and requires substantial knowledge of the C programming lan-
guage.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Platform
Interface Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document [1].

1.3 History
Previous releases of the Availability Management Framework specification:

(1) SAI-AIS-AMF-A.01.01
(2) SAI-AIS-AMF-B.01.01
(3) SAI-AIS-AMF-B.02.01
(4) SAI-AIS-AMF-B.03.01

This section presents the changes of the current release, SAI-AIS-AMF-B.04.01, with
respect to the SAI-AIS-AMF-B.03.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 1 19

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.1 New Topics
⇒ The HA readiness state of a service unit for a service instance and the HA readi-

ness state of a component for a component service instance have been intro-
duced. The main changes to the specification due to this topic are:
• The HA readiness state of a service unit for a service instance and the HA

readiness state of a component for a component service instance have been
introduced in Section 3.2.1.6 and Section 3.2.2.5, respectively. Due to the lat-
ter change, Section 3.2.2.4 has been adapted to explain that a component
can reject a CSI assignment. Table 12 in Section 3.2.9 has also been updated
accordingly.

• The SaAmfHaReadinessStateT type has been introduced in
Section 7.4.4.7, and this extension induced a change to Section 7.4.4.9.

• As the HA readiness state of a component for a component service instance
is reflected in the protection group track functions, the structures defined in
Section 7.4.6.1, Section 7.4.6.2 (only the description), Section 7.4.6.3, and
Section 7.4.6.4 have also been affected. As a consequence, superseding
structures SaAmfProtectionGroupMemberT_4 (Section 7.4.6.1),
SaAmfProtectionGroupNotificationT_4 (Section 7.4.6.3), and
SaAmfProtectionGroupNotificationBufferT_4 (Section 7.4.6.4)
have been introduced.
As a consequence of the previous changes, superseding functions
SaAmfProtectionGroupTrack_4(),
SaAmfProtectionGroupTrackCallbackT_4, and
saAmfProtectionGroupNotificationFree_4(), which are described
in Section 7.11.1, Section 7.11.2, and Section 7.11.4, respectively, have also
been introduced.

• The SaAmfCSISetCallbackT function (see Section 7.9.2) has been
extended, so that the component can return the new value
SA_AIS_ERR_NOT_READY in the error parameter when replying to the call-
back to indicate that the component cannot assume the HA state specified by
haState for the given component service instance.

• The sentence “SA_AMF_TARGET_ALL is always set for components that sup-
port only the “x_active_or_y_standby” capability model” has been removed
from the description of the SaAmfCSIRemoveCallbackT function of the
B.03.01 version (this section is now Section 7.9.2).

• The saAmfHAReadinessStateSet() function (see Section 7.9.5) has
been introduced to enable a component to set its HA readiness state for com-
ponent service instances.
20 SAI-AIS-AMF-B.04.01 Section 1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• Two minor changes have been made to the
saAmfProtectionGroupTrack_4() function (see Section 7.11.1) to track
changes of the HA readiness state.

• The runtime attributes saAmfSISUHAReadinessState and
saAmfCSICompHAReadinessState have been added to the object classes
SaAmfSIAssignment (see FIGURE 34 in Section 8.11) and
SaAmfCSIAssignment (see FIGURE 35 in Section 8.12), respectively. The
definitions of these two object classes have been updated accordingly.

• A new notification has been introduced; it is issued when the HA readiness
state of a service unit for an assigned service instance changes. Refer to the
new Section 11.2.2.5.

⇒ Active or standby assignments of service instances to service units hosted by an
AMF node impose a certain load on the AMF node in terms of resources like
memory or computing power. In certain cases, AMF nodes having limited capac-
ity for these resources can be overloaded due to these assignments. The Avail-
ability Management Framework specification has been extended to provide
configuration attributes to help the Availability Management Framework avoiding
to overload an AMF node with more service instance assignments that the AMF
node can handle. The main changes induced by this topic to the specification
are:
• The description of the “ordered list of SIs” in Section 3.6.1.1 has been

changed to state that the rank of an SI is now global to the cluster.
• Section 3.6.1.3 has been introduced; it contains the main changes and pro-

vides examples.
• Section 3.6.1.4 has been introduced to provide some guidelines for a system

architect to configure redundancy by using the different options provided by
the Availability Management Framework.

• The saAmfNodeCapacity configuration attribute has been added to the
SaAmfNode object class (see FIGURE 30 in Section 8.7).

• The configuration attributes saAmfSIActiveWeight and
saAmfSIStandbyWeight have been added to the SaAmfSI object class
(see FIGURE 34 in Section 8.11). Default values for the latter two attributes
have been defined by the saAmfSvcDefActiveWeight and
saAmfSvcDefStandbyWeight attributes in the SaAmfSvcType object
class, shown also in FIGURE 34.
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.3.1 21

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ To support correlation Ids, the following main changes have been made:
• An overview of the Availability Management Framework’s handling of correla-

tion ids is presented in the new Section 7.1.7 on page 239.
• The SA_AMF_AI_RECOMMENDED_RECOVERY and

SA_AMF_AI_APPLIED_RECOVERY values have been added to the
SaAmfAdditionalInfoIdT enum (see Section 7.4.11.2 on page 262).

• The correlationIds parameter has been added to the superseding func-
tions saAmfComponentErrorReport_4(),
saAmfComponentErrorClear_4(), and saAmfResponse_4(), which
are described in Section 7.12.1 on page 325, Section 7.12.2 on page 327,
and on Section 7.13.1 on page 333, respectively.

• The saAmfCorrelationIdsGet() function has been defined (see
Section 7.12.3 on page 330).

• New notifications have been specified. Refer to Section 11.2.3 on page 435.
⇒ To align the Availability Management Framework specification with the Platform

Management Service (abbreviated as PLM, see [5]), the following modifications
have been made:
• The notion of physical node has been replaced by the notion of PLM execu-

tion environment. This replacement induced adaptations in the definition of
AMF node and AMF Cluster, see Section 3.1.1.1 on page 38 and
Section 3.1.1.2 on page 39, respectively. Additionally, the definitions of local
and external resources as well as the definitions of local and external compo-
nents have been adapted (see Section 3.1.2).

• The description of the “node failfast” recovery action in Section 3.11.1.3.2 has
been adapted.

• The interactions between the Availability Management Framework and the
Cluster Membership Service have been described in the new
Appendix D on page 445, which also contains references to PLM.

⇒ The SaAmfNotificationMinorIdT type (see Section 7.4.11.1 on page 261)
has been introduced to define the minorId field of notifications produced by the
Availability Management Framework. The descriptions of the notifications in
Section 11.2 refer to this type.
22 SAI-AIS-AMF-B.04.01 Section 1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.2 Clarifications
⇒ In Section 3.2.1.4, it is clarified that pre-instantiable service units may be instan-

tiated while they are out-of-service.
⇒ Section 3.2.2.2 adds one more case to the list of component failures detected by

the Availability Management Framework, namely when
saAmfProxiedComponentInstantiateCallback() or
saAmfContainedComponentInstantiateCallback() function returns
with an error.

⇒ Text has been added to Section 3.2.9 to clarify the interdependency between the
states of components and the states of their containing service unit.

⇒ The role of the ordered list of service units in assignments and instantiations has
been clarified (see Section 3.6.2.3.5).

⇒ The description of repair in the B.03.01 version of the Availability Management
Framework concentrated mainly on the SA_AMF_ADMIN_REPAIRED administra-
tive operation, and the usage of the saAmfComponentErrorClear() function
as a possible way to perform a repair action was not always mentioned. The
B.04.01 version of the specification extends the description of repair to appropri-
ately refer to the saAmfComponentErrorClear_4() function as follows:
• References to the saAmfComponentErrorClear_4() function have been

added to Section 3.4.1 and to Section 3.11.1.4 (repair).
• References to the extended Section 3.11.1.4 have been added to Section 4.6

(INSTANTIATE command) and Section 4.8 (CLEANUP command).
• The description section of the saAmfComponentErrorClear_4() function

in Section 7.12.2 has been extended.
⇒ In Section 6.3, it is clarified that if a contained component fails, it is the task of

the container component to report an error on the failed component.
⇒ This version of the Availability Management Framework specification clarifies

that the registered process for a proxied component may differ from the regis-
tered process for the proxy component. This clarification affects Section 7.1.1,
Section 7.6.1, Section 7.10.2, and Section 7.10.3.

⇒ The interpretation of the SA_AMF_CSI_STILL_ACTIVE value in
Section 7.4.5.2 has been clarified.

⇒ In the description of the saAmfInitialize_4() function in
Section 7.5.1 on page 264, it is clarified that the handle amfHandle is finalized
when the Availability Management Framework detects the death of the invoking
process.

⇒ Section 9.4.2 up to Section 9.4.6 specify the administrative states that the logical
entities must have as a precondition to apply the corresponding administrative
operations.
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.3.2 23

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Deleted Topics
⇒ The saAmfComponentUnregister() function has been removed, as the

unregistration of a component is now implicitly done by the Availability Manage-
ment Framework. The term “unregistered process” has also been removed.
These deletions implied several changes to the document. In particular, it is
stated now that if a proxied component fails, it is the task of its proxy to report an
error on the failed component.

⇒ According to SA Forum directives, AIS Services and Frameworks shall only gen-
erate alarms for situations that require an explicit intervention by an external
agent or operator, provided that the corrective measures to be taken are well
defined. Based on these directives, it was decided to remove the "service
impaired” alarm from the Availability Management Framework B.04.01 version.
SA Forum does not mandate that Availability Management Framework imple-
mentations which also support the B.03.01 version must generate the "service
impaired” alarm for the B.03.01 version.

1.3.4 Other Changes
⇒ The definition of the term regular SA-aware component was changed to apply

only to those components that only have the SA_AWARE flag set, that is, a regu-
lar SA-aware component cannot be a proxy component. For this purpose, the
definition of this term in Section 3.1.2.1 was changed. Additionally, Table 3 and
Table 20 were adapted, and the term regular SA-aware component was used
accordingly in Chapter 10.

⇒ In Section 3.1.2.1.1, it is stated that a process of a contained component must
also belong to its associated container component.

⇒ The definition of instantiable service unit has been extended, and the description
of the reduction procedure has been clarified. See Section 3.6.1.1.

⇒ In Section 3.6.6.1 on the no-redundancy redundancy model, it is explained that
the Availability Management Framework can recover from faults by failing over
the active assignment to a spare service unit.

⇒ As the saAmfSGNumPrefAssignedSUs attribute is not defined for the no-
redundancy redundancy model, the sentence “Note that the preferred number of
assigned service units is equal to the number of configured SIs plus one spare
service unit." on the configuration of this redundancy model has been removed
(the corresponding section in this version is Section 3.6.6.3).
24 SAI-AIS-AMF-B.04.01 Section 1.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ In Section 7.2.1, it is explained that when the Availability Management Frame-
work detects that a CLM node has unexpectedly left the cluster, the Availability
Management Framework abruptly terminates the components hosted by the
AMF node that is mapped to this CLM node. This modification led also to a
change in the explanation contained in Appendix A regarding when to invoke the
saAmfProxiedComponentCleanupCallback() callback or to execute the
CLEANUP command.

⇒ The one by one assignment of component service instances to a component and
the one by one removal of such assignments from a component with an
x_active_or_y_standby capability model are now allowed. Modifications have
been made to the description of the SA_AMF_CSI_TARGET_ALL flag in
Section 7.4.5.1 and to the description of the SaAmfCSIRemoveCallbackT
function in Section 7.9.3.

⇒ In Section 7.4.8, a typo in the name of the saAmfCompCategoryT type defini-
tion has been corrected, as it should be SaAmfCompCategoryT. Similar
changes were made for SaAmfRedundancyModelT in Section 7.4.9 and for
SaAmfCompCapabilityModelT in Section 7.4.10. Additonally, in
Section 7.4.9, the SA_AMF_N-WAY_REDUNDANCY-MODEL name has been cor-
rected to SA_AMF_N_WAY_REDUNDANCY_MODEL.

⇒ Also in Section 7.4.8, a value for SA_AMF_COMP_PROXIED_NPI was introduced as
a category value for proxied, non-pre-instantiable components. This addition
implied modifications in Table 20 in the same section. A clarification was also
included to explain the possible category values for pre-instantiable and non-
pre-instantiable components.

A further clarification regarding pre-instantiable and non-pre-instantiable compo-
nents has been added to Section 8.13.1 on the SaAmfCtCsType association
class.

⇒ The sentence “On return from the saAmfResponse() function, the Availability
Management Framework removes all service instances associated with the
component and the component terminates.” was removed from the description
of the SaAmfComponentTerminateCallbackT function (see Section 7.10.1
in this document), as this sentence is not always true.

⇒ Version B.03.01 of this specification stated in the description of the
SaAmfProxiedComponentInstantiateCallbackT callback function that
the invoked proxy component must have previously registered the proxied com-
ponent with the Availability Management Framework. This statement is not true;
the correct sequence of operations was already described in the example for
pre-instantiable components in Appendix C.
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.3.4 25

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
The pertinent correction applies to the
SaAmfProxiedComponentInstantiateCallbackT function
(see Section 7.10.2) and to the SaAmfCSISetCallbackT function
(see Section 7.9.2). The description of the latter callback function clarifies that
the invoked process must register a non-pre-instantiable proxied component
before it responds to this callback request.

In the process of making these changes, the descriptions of several functions
involving proxied or contained components have been extended to specify for
which errors and for which component (proxy or proxied, container or contained)
the recovery policy applies.

• saAmfHealthcheckStart() (see Section 7.8.1).
• SaAmfHealthcheckCallbackT (see Section 7.8.2).
• saAmfHealthcheckConfirm() (see Section 7.8.3).
• SaAmfCSISetCallbackT (see Section 7.9.2).
• SaAmfCSIRemovedCallbackT (see Section 7.9.3).
• SaAmfComponentTerminateCallbackT (see Section 7.10.1).
• SaAmfProxiedComponentInstantiateCallbackT (see Section 7.10.2).
• SaAmfProxiedComponentCleanupCallbackT (see Section 7.10.3).
• SaAmfContainedComponentInstantiateCallbackT (see

Section 7.10.4).
• SaAmfContainedComponentCleanupCallbackT (see Section 7.10.5).

This correction induced also the following modifications:

• The descriptions of several functions called by a component have been
extended such that the sentences also apply when a proxy or container com-
ponent performs the particular actions on itself and on the proxied or con-
tained components, respectively. Similar changes were made also for
callback functions.

• Textual modifications have also been made in the description of several func-
tions to use the text “the registered process” instead of “a registered process”,
as at most one registered process exists for a component.

• The last paragraph in Section 4.8 on the CLEANUP command has been
extended to clarify that the explanation also applies to all contained compo-
nents if the affected component is a container component.

• A paragraph in Section 5.2 has been extended to clarify the type of the
affected proxied component (pre-instantiable or non-pre-instantiable).
26 SAI-AIS-AMF-B.04.01 Section 1.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• A paragraph in Section 5.3 clarifies that an already instantiated proxied com-
ponent need not be reinstantiated if the a new proxy takes over the task of
controlling the proxied component.

• The description of the saAmfComponentRegister() function in
Section 7.6.1 specifies additional cases when this function is called.

• Section 7.8.1 on the saAmfHealthcheckStart() function clarifies to which
component the invoking process must belong and when the Availability Man-
agement Framework automatically stops a healthcheck. Additionally, this sec-
tion clarifies the conditions to start a healthcheck for a proxied component.

• Section 7.8.2 on the SaAmfHealthcheckCallbackT function clarifies that
this callback is called on the same process that started the healthcheck oper-
ation by invoking the saAmfHealthcheckStart() function.

• Section 7.8.3 on the saAmfHealthcheckConfirm() function clarifies that
the invoking process must be the same process that started the healthcheck
operation by invoking the saAmfHealthcheckStart() function.

• Section 7.9.4 on the saAmfCSIQuiescingComplete() function clarifies
that the component that was requested to quiesce was the component identi-
fied by the name referred to by the compName parameter in the corresponding
invocation of the saAmfCSISetCallback() callback function. If the error
parameter is set to SA_AIS_ERR_FAILED_OPERATION, the Availability Man-
agement Framework must engage the configured recovery policy for the com-
ponent referred to by the compName parameter in the corresponding
saAmfCSISetCallback() callback function.

⇒ The following typos have been corrected in Table 21 on DN formats:
• Object class SaAmfSGType: safSgType instead of SafSgType.
• Object class SaAmfSU: safSg instead of safSG.
• Object class SaAmfSutCompType: safSuType instead of SafSuType.
• Object class SaAmfSUType: safSuType instead of SafSuType.

⇒ The DN format for the SaAmfCSType object class in Table 21 has been cor-
rected.

⇒ The configuration attributes saAmfAppType, saAmfSGType, saAmfSUType,
saAmfSvcType, saAmfCSType, and saAmfCompType, shown in the UML dia-
grams in Chapter 8, have been made writable.
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.3.4 27

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ In FIGURE 28 in Section 8.5, to align with other similar associations like the one
between the SaAmfSUType and SaAmfCompType classes, the shared aggrega-
tions between the SaAmfAppType and SaAmfSGType classes and between the
SaAmfSGType and SaAmfSUType classes have been changed to associations
that are navigable only in one direction.
Additionally, the multiplicity between the SaAmfHealthcheck and
SaAmfHealthcheckType classes (at the latter end) has been changed to 1.

⇒ In the SaAmfComp class, which is described in Section 8.13.2 on page 360, the
following changes have been made:
• to correct typos in the preceding version, the term 'Comp' has been dropped

from the default values of the following attributes, as they refer to the appro-
priate attributes of the SaAmfCompGlobalAttributes class, described in
Section 8.14 on page 362:
• saAmfCompNumMaxInstantiateWithoutDelay,
• saAmfCompNumMaxInstantiateWithDelay,
• saAmfCompNumMaxAmStartAttempts, and
• saAmfCompNumMaxAmStopAttempts;

• to align the terminate operation with the cleanup and instantiate operations,
which have just one timeout attribute, regardless of whether the operation is
invoked by a CLC-CLI or by a callback call, the
saAmfCompTerminateCallbackTimeout attribute has been dropped. The
saAmfCompTerminateTimeout attribute applies now to both ways of invok-
ing the operation, and the name of its default value has been changed to
saAmfCtDefCallbackTimeout to reflect that components are typically ter-
minated by invoking the callback call. Note also that a typo in this latter name
(“TimeOut” instead of “Timeout”) has been corrected in the component type
class diagram in Section 8.13.1 on page 358.

⇒ In Section 9.3.1, a typo in the name of the saAmfAdminOperationIdT type
definition has been corrected, as it should be SaAmfAdminOperationIdT.

⇒ In Section 9.4.6 and Section 9.5, a typo has been corrected: operationId is
SA_AMF_ADMIN_SHUTDOWN and not SA_AMF_ADMIN_SHUT_DOWN.

⇒ The SaAmfProtectionGroupNotificationFree_4() function has been
included in Table 38 in Appendix B.

1.3.5 Superseded and Superseding Functions

The Availability Management Framework defines for the version B.04.01 new func-
tions and new type definitions to replace functions and type definitions of the version
B.03.01. The list of replaced functions and type definitions in alphabetic order is pre-
sented in Table 1.
28 SAI-AIS-AMF-B.04.01 Section 1.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
The superseded functions and type definitions are no longer supported in version
B.04.01, and no description is provided for them in this document. The names of the
superseding functions and type definitions are obtained by adding “_4” to the respec-
tive names of the B.03.01 version or by replacing “_n” (where n is a number < =3) by
“_4” if the superseded functions or type definitions had already “_n” at the end of their
names. Regarding the support of backward compatibility in SA Forum AIS,
refer to [2].

Table 1 Superseded Functions and Type Definitions in Version B.04.01

Functions and Type Definitions of Version B.03.01 no
Longer Supported in B.04.01

SaAmfCallbacksT_3

saAmfComponentErrorClear()

saAmfComponentErrorReport()

saAmfComponentUnregister1()

1. As an exception, this function has not been superseded; instead, it has
been only removed, as the unregistration is implicitly done by the Avail-
ability Management Framework.

saAmfInitialize_3()

SaAmfProtectionGroupMemberT

SaAmfProtectionGroupNotificationBufferT

SaAmfProtectionGroupNotificationFree()

SaAmfProtectionGroupNotificationT

SaAmfProtectionGroupTrack()

SaAmfProtectionGroupTrackCallbackT

SaAmfResponse()
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.3.5 29

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.6 Changes in Return Values of API and Administrative Functions

The following table applies only to functions that have not been superseded.

Table 2 Changes in Return Values of API and Administrative Functions

Function Return Value Change
Type

All administrative operations described in Chapter 9 SA_AIS_ERR_TIMEOUT

SA_AIS_ERR_NO_MEMORY

new

SA_AMF_ADMIN_SI_SWAP administrative operation SA_AIS_ERR_BAD_OPERATION extended

saAmfComponentRegister() SA_AIS_ERR_INIT changed

SaAmfContainedComponentInstantiate
CallbackT1

SA_AIS_ERR_TRY_AGAIN

SA_AIS_OK

extended

saAmfCSIQuiescingComplete() SA_AIS_ERR_NOT_EXIST new

SaAmfCSISetCallbackT1

1. Actually, this callback function does not return any value. The value shown in the second column is the value set
in the error parameter when the invoked process responds to the callback function by invoking the
saAmfResponse_4() function.

SA_AIS_ERR_NOT_READY new

saAmfHealthcheckStart() SA_AIS_ERR_NOT_EXIST extended

saAmfPmStart_3()2

2. This return value should have been added in the Availability Management Framework B.03.01 specification to this
function.

SA_AIS_ERR_VERSION new

SaAmfProxiedComponentInstantiate
CallbackT1

SA_AIS_ERR_TRY_AGAIN extended
30 SAI-AIS-AMF-B.04.01 Section 1.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.4 References
The following documents contain information that is relevant to specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.05.01

[2] Service AvailabilityTM Forum, Service Availability Interface, C Programming
Model, SAI-AIS-CPROG-B.05.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.03.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.04.01

[5] Service AvailabilityTM Forum, Application Interface Specification, Platform Man-
agement Service, SAI-AIS-PLM-A.01.01

[6] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.03.01

[7] Service AvailabilityTM Forum, Information Model in XML Metadata Interchange
(XMI) v2.1 format, SAI-IM-XMI-A.04.01.xml.zip

[8] Service AvailabilityTM Forum, Application Interface Specification, Software Man-
agement Service, SAI-AIS-SMF-A.01.01

[9] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
[10] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[11] IETF RFC 2253 (http://www.ietf.org/rfc/rfc2253.txt).
[12] IETF RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum Web site (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.
AIS Specification SAI-AIS-AMF-B.04.01 Section 1.4 31

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the SA Forum Web site (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the SA Forum
Web site (http://www.saforum.org).
32 SAI-AIS-AMF-B.04.01 Section 1.6 AIS Specification

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Availability Management Framework within the Applica-
tion Interface Specification (AIS).

2.1 Overview of the Availability Management Framework
The Availability Management Framework (sometimes also called the AM Framework
or simply the Framework) is the software entity that enables service availability by
coordinating other software entities within a cluster.

The Availability Management Framework provides a view of one logical cluster that
consists of a number of cluster nodes. These nodes host various resources in a dis-
tributed computing environment.

The Availability Management Framework provides a set of APIs to enable highly
available applications. In addition to component registration and life cycle manage-
ment, it includes functions for error reporting and health monitoring. The Availability
Management Framework also assigns active or standby workloads to the compo-
nents of an application as a function of component state and system configuration.
The Availability Management Framework configuration allows prioritization of
resources and provides for a variety of redundancy models. The Availability Manage-
ment Framework also provides APIs for components to track the assignment of work
or so-called component service instances among the set of components protecting
the same component service instance.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 2 33

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3 System Description and System Model
This chapter presents the system description and the system model used by the SA
Forum Application Interface Specification (AIS) of the Availability Management
Framework (AMF).

An application that is managed by the Availability Management Framework to provide
high levels of service availability must be structured into logical entities according to
the model expected by the Framework. Furthermore, it must implement the state
models and callback interfaces that allow the Framework to drive workload manage-
ment, availability, and state management.

The following list shows the subjects treated in this chapter and the sections where
they are described:

• Logical entities managed by the Availability Management Framework
(Section 3.1)

• States and state models applicable to the relevant logical entities (Section 3.2
and Section 3.4)

• Fail-over and switch-over of service instances (Section 3.3)
• Component capability model (Section 3.5)
• Redundancy models supported by the Availability Management Framework

(Section 3.6)
• Interactions between the component capability model and the redundancy mod-

els (Section 3.7)
• Dependencies among different entities (Section 3.8)
• Approaches for integrating legacy software and hardware entities in the frame-

work (Section 3.9)
• Component monitoring (Section 3.10)
• Error detection, recovery, repair, and escalation policy (Section 3.11)
Note: The description of the Availability Management Framework configuration pro-

vides the pertinent attribute names, the names of object classes containing
these attributes, and the sections containing the respective UML diagrams.
Additional details on type, multiplicity, and values of these attributes are given
in Chapter 8 and [7].
It is recommended to first read the entire Chapter 3 to fully understand the
Availability Management Framework configuration described in these refer-
ences.
Most entities of the Availability Management Specification have types, which
are used to facilitate the configuration and for software management pur-
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 3 35

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
poses. These types are shortly described in a subsection of the sections
describing the corresponding entities. Additional details are provided in
Chapter 8 and [7].
36 SAI-AIS-AMF-B.04.01 Chapter 3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1 Logical Entities
The Availability Management Framework uses an abstract system model to represent
the resources under its control. This abstract model consists of various logical enti-
ties that are depicted in the UML diagram shown in FIGURE 1.

FIGURE 1 Availability Management Framework Logical Entities and Their Relations

Proxy Component

ComponentService Instance

SA-aware ComponentNon_SA-aware Component

Service Instance

Container Component

Contained Component

External Component

External Service UnitLocal Service Unit

Local Component

CLM Cluster

Component

AMF Node

AMF
 Cluster

Service Group

Service Unit

CLM Node

Application

{incomplete, overlapping}

ProxiesExternal

0..*

1

Protects

0..*

0..1

0..* Assigned to 0..*

Assigned to0..* 0..*

0..*

1

Proxies

0..*

0..1

Hosted on

0..*

1

0..*

1
0..*

1

0..*

1

0..*

1

0..*

1

0..*

1
Maps on

1 0..1

Maps on
0..1 0..1 0..*1

Contains

0..*

1

0..*

1

AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1 37

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Aggregation relationships in FIGURE 1 have multiplicities of '0..*' to account for situa-
tions in which the cluster configuration is being modified and some aggregations are
temporarily empty.

Each logical entity of the system model is identified by a unique name.

All logical entities, their attributes, relationships, and mapping to the resources they
represent are typically preconfigured and stored in a configuration repository.
Dynamic modification of the system model is not precluded. The modeling and orga-
nization of this configuration information is described in Chapter 8. The access and
modification of this configuration repository is provided by the Object Management
interface of the IMM Service ([6]). It is assumed that the Availability Management
Framework obtains the cluster configuration from the configuration repository and is
notified of any changes.

The Availability Management Framework provides no API function to notify compo-
nents about changes in the configuration repository.

3.1.1 Cluster and Nodes
Note:In the remainder of this document, the terms “CLM node”, “CLM cluster”, “AMF

node”, and “AMF cluster” will be used as synonyms to Cluster Membership
node and cluster and Availability Management Framework node and cluster,
respectively.

3.1.1.1 AMF Nodes

The AMF node is a logical entity that represents a complete inventory of all Availabil-
ity Management Framework entities on a CLM node (which is defined in [4]).

As shown in the UML diagram in Section 8.4, a CLM node can host at most one AMF
node, and a PLM Execution Environment (abbreviated as EE, see the Platform Man-
agement Service specification [5]) can host at most one CLM node. These one-to-
one relationships between an AMF node, its CLM node, and the CLM node’s PLM
execution environment are administratively configured.

The configuration of an AMF node is valid even if

(a) no CLM node is mapped to the AMF node, or
(b) a CLM node is mapped to the AMF node, but the mapped CLM node is not in

the cluster membership.
38 SAI-AIS-AMF-B.04.01 Section 3.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
However, in both cases (a) and (b), the AMF node cannot be used to provide service,
and none of the Availability Management Framework logical entities configured to be
hosted by the AMF node can be instantiated.

An AMF node is also a logical entity whose various states are managed by the Avail-
ability Management Framework. Availability Management Framework administrative
operations are defined for such nodes.

For a complete list of the attributes that are configured for an AMF node, refer to the
description of the SaAmfNode UML class in Section 8.7 on page 344.

As there is a one-to-one association between an AMF node, its CLM node, and the
PLM execution environment that hosts the CLM node, some notations have been
adopted to make this specification more readable:

• Throughout the specification, when the word "node" is used without an explicit
qualification, it means "AMF node".

• If "node” is used in the context of "joining the cluster", and "leaving the cluster", it
actually means "the hosting CLM node". For example, the sentence fragment
“when a node joins the cluster” should be interpreted as “when the CLM node
hosting the AMF node joins the cluster”.

• The reference to “the PLM execution environment that hosts an AMF node” actu-
ally means “the PLM execution environment that hosts the CLM node hosting
the AMF node.

• The term "node reboot" should be interpreted as "a restart administrative opera-
tion on the PLM execution environment that hosts the CLM node hosting the
AMF node”.

3.1.1.2 AMF Cluster

The complete set of AMF nodes in the Availability Management Framework configu-
ration defines the AMF cluster. For the relationship between the entities AMF cluster
and CLM cluster, refer to the UML diagram in Section 8.4. Note that though the AMF
cluster and the CLM cluster (defined in [4]) have a close relationship, they are not
the same:

• It is possible that some AMF nodes may be mapped to some CLM nodes by con-
figuration (see the saAmfNodeClmNode attribute of the SaAmfNode object
class, shown in Section 8.7), whereas other AMF nodes are not mapped to con-
figured CLM nodes, and thus do not provide service.

• During the life-span of the cluster, modifications may be made to the mapping of
the AMF node to the CLM node.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.1.2 39

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• There may be nodes in the CLM cluster that are not meant to run software con-
trolled by the Availability Management Framework. Thus, in a fully configured
system, the CLM cluster may contain more nodes than the AMF cluster; in this
case, the AMF cluster will be a proper subset of the CLM cluster.

The administrator is responsible for specifying the configuration for mapping AMF
nodes to CLM nodes.

The AMF cluster is one of the entities that are under the Availability Management
Framework’s control, and its administrative state is managed by the Availability Man-
agement Framework (see Section 3.2.8). The Availability Management Framework
defines certain administrative operations for the AMF cluster.

The Availability Management Framework knows the association of its nodes to the
hosting PLM execution environments and shall use this association to initiate opera-
tions such as restarting the hosting PLM execution environment during recovery
operations.

If a CLM node hosting an AMF node leaves the cluster membership, the CLM node is
cleaned by the Availability Management Framework in the sense that no process
belonging to AMF logical entities is left over on that node (see also Section 7.2.1 and
Appendix D). Only persistent Availability Management Framework information will be
available again when the node rejoins the cluster membership.

The Availability Management Framework can force a node to reboot while engaging
certain recovery and repair mechanisms. During the reboot, the node leaves the clus-
ter membership and rejoins it after successful initialization.

In contrast, the restart of an AMF node (see also Section 9.4.7) will only stop and
start entities under the Availability Management Framework’s control, without any
impact on the cluster membership. The restart of the AMF cluster (see also
Section 9.4.7) will restart all AMF nodes and will not affect the cluster membership.
On the other hand, a cluster reset (see Section 7.4.7) restarts all PLM execution
environments associated with all AMF nodes of the cluster, whereby the correspond-
ing PLM execution environments are first terminated before any AMF node is instan-
tiated again.

In the remainder of this specification, cluster start or startup is synonymous to the
start of Availability Management Framework. The cluster start creates and instanti-
ates the Availability Management Framework logical entities based on the Availability
Management Framework configuration.
40 SAI-AIS-AMF-B.04.01 Section 3.1.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Applications to be made highly available are supposed to be configured in the Avail-
ability Management Framework configuration. Each application is configured to be
hosted in one or more AMF nodes within the AMF cluster.

As there is a one-to-one association between an AMF cluster and its CLM cluster,
some notations have been adopted to make the specification more readable:

• Throughout the specification, when the word "cluster" is used without an explicit
qualification, it means "AMF cluster".

• If "cluster” is used in the context of "joining the cluster", and "leaving the cluster",
it actually means "the associated CLM cluster". For example, the sentence frag-
ment “when a node joins the cluster” should be interpreted as “when the CLM
node associated with the AMF node joins the CLM cluster”.

3.1.2 Components

A component is the logical entity that represents a set of resources to the Availability
Management Framework. The resources represented by the component encapsulate
specific application functionality. This set of resources can include hardware
resources, software resources, or a combination of the two.

A component is the smallest logical entity on which the Availability Management
Framework performs error detection and isolation, recovery, and repair. When decid-
ing what is to be included in a component, the following two rules should be taken into
account:

• The scope of a component must be small enough, so that a failure of the compo-
nent has as little impact as possible on the services provided by the cluster.

• The component should include all functions that cannot be clearly separated for
error containment or isolation purposes.

The Availability Management Framework associates the following states to a compo-
nent: presence, operational, readiness, and HA. For more information on component
states, refer to Section 3.2.2.

Resources that are contained—from a fault containment perspective—within the
PLM execution environment hosting an AMF node are called local resources. This
means that if the PLM execution environment fails, all of its local resources become
inoperable. Local resources can be either software abstractions implemented by pro-
grams running within the PLM execution environment, or hardware equipment exclu-
sively associated with the PLM execution environment (such as I/O devices).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.2 41

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
All other resources are called external resources. For example, an intelligent I/O
board in a blade chassis that is not dependent on a particular PLM execution environ-
ment to operate can be modeled as an external resource. A resource that is con-
tained within a PLM execution environment hosting no AMF node is also modeled as
an external resource, regardless of whether the execution environment hosts a CLM
node.

The Availability Management Framework was primarily designed to manage local
resources but it can also manage external resources. Unlike the case of local
resources, the Availability Management Framework has little direct control over exter-
nal resources. This difference justifies the distinction between two broad categories
of components:

• Local component: a local component represents a subset of the local
resources contained within the PLM execution environment hosting the AMF
node.

• External component: an external component represents a set of external
resources.

Section 3.1.2.1 up to Section 3.1.2.5 describe how the Availability Management
Framework manages local and external components. The information provided
includes:

• the notion of component category to distinguish components with different
properties and different behavior. Two main categories of components are
defined: Service Availability (SA)-aware (see Section 3.1.2.1) and non-SA-aware
components (see Section 3.1.2.2);

• the notion of container and contained SA-aware components
(see Section 3.1.2.1.1);

• the concepts of SA-aware proxy and non-SA-aware proxied components (see
Section 3.1.2.3);

• the description of the component life cycle (see Section 3.1.2.4);
• the notion of component type (see Section 3.1.2.5).
42 SAI-AIS-AMF-B.04.01 Section 3.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.2.1 SA-Aware Components

High levels of service availability can only be attained if errors are detected and iso-
lated, a recovery is performed, and failed entities repaired efficiently. Faster error
recovery is possible if components have been chosen or are written such that they
can register and interact with the Availability Management Framework to implement
specific workload assignments and recovery policies. Such components must be so
designed that the Availability Management Framework can dynamically assign them
workloads and choose the role in which the component will operate for each specific
workload.

Only local components that are under the direct control of the Availability Manage-
ment Framework can have such a high level of integration with this framework. Such
components are termed SA-aware components.

Each SA-aware component includes at least one process that is linked to the Avail-
ability Management Framework library. One of these processes registers the compo-
nent with the Availability Management Framework by invoking the
saAmfComponentRegister() API function. This process, called the registered
process for the component (for its definition, see Section 7.1.1) provides to the Avail-
ability Management Framework references to the availability control functions it
implements. These control functions are implemented as callbacks.

Throughout the life of the component, the Availability Management Framework uses
these control functions to direct the component execution by, for example:

• assigning workloads to the component,
• removing workloads from the component,
• and assigning the HA state to the component for each workload.

The registered process for a component executes the availability management
requests it receives from these control functions and conveys such requests to other
processes and to the hardware equipment of the local component, where necessary.

The registered process for a component may also provide the Availability Manage-
ment Framework with feedback on its readiness to take an assignment for a particu-
lar workload.

Most control functions of the component can only be provided by the registered pro-
cess; however, some control functions, such as healthcheck control functions, can be
provided by any process of the component. The description of each API function pre-
sented in Chapter 7 explicitly mentions when the function is restricted to a registered
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.2.1 43

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
process for a component. Additionally, Appendix B contains a table showing which
API or callback is restricted to registered processes for a component.

An SA-aware component has the following properties:

• its life cycle is directly controlled by the Availability Management Framework;
• each of its processes must exclusively belong to the component.

Note that container and contained components (which are discussed in
Section 3.1.2.1.1) do not share all of the preceding properties.

When the context does not make the distinction apparent, the term regular SA-aware
component is used to refer to an SA-aware component that is not contained in
another component and does not implement any management function for assisting
the Availability Management Framework in handling other components (such as
proxy, container).

Legacy software, which runs on a node, and which was not initially designed as an
SA-aware component can be converted to be SA-aware by adding a new process.
This process acts as the registered process for the component, receives all manage-
ment requests from the Availability Management Framework and converts them into
specific actions on the legacy software using existing administration interfaces spe-
cific to the legacy software.

3.1.2.1.1 Container and Contained Components

This section describes the particular properties of container and contained compo-
nents. As other features of container and contained components are described in
other sections of this and other chapters, Chapter 6 summarizes the corresponding
information and also provides additional information.

Purpose

The concept of container and contained components allows the Availability Man-
agement Framework to integrate components that are not executed directly by the
operating system, but rather in a controlled environment running on top of the operat-
ing system. Widespread environments are runtime environments, virtual machines,
or component frameworks.
44 SAI-AIS-AMF-B.04.01 Section 3.1.2.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Properties of Container Components

• The main task of the container component is to cooperate with the Availability
Management Framework to handle the life cycle of contained components. The
following definitions are used in this explanation and throughout this document:
⇒ The container component that handles the life cycle of a contained compo-

nent in cooperation with the Availability Management Framework is termed
the associated container component to the contained component.

⇒ Conversely, a contained component whose life cycle is handled by a con-
tainer component in cooperation with the Availability Management Framework
is termed an associated contained component to the container component.

⇒ For ease of expression when referring to a contained component, the term
collocated contained component is used to refer to a contained component
that has the same associated container component.

Which actions are performed by the associated container component and by the
Availability Management Framework for handling the life cycle of a contained
component is explained in detail in Section 6.2.
The interactions between contained components and the associated container
to implement the life cycle of the contained components are not defined by the
Availability Management Framework specification.

• A single container component can be the associated container component of
various contained components.

• A container component and all its associated contained components must reside
on the same AMF node.

• The life cycle of a container component is directly controlled by the Availability
Management Framework.

• The termination of a container component (for instance, in case of a failure of the
component) implies the termination of all associated contained components (see
also Section 6.3). In this sense, a container component “contains” the associ-
ated contained component.

• A process belonging to a container component can also belong to its associated
contained components.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.2.1.1 45

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Properties of Contained Components

• The life cycle of contained components is handled by the Availability Manage-
ment Framework in cooperation with the associated container component (see
also Section 6.2).

• The termination of a contained component does not imply the termination of
either the associated container component or of the collocated contained com-
ponents (see also Section 6.3).

• A process belonging to a contained component belongs also to its associated
container component and may also belong to some of its collocated contained
components.

3.1.2.2 Non-SA-Aware Components

Components that do not register directly with the Availability Management Frame-
work are called non-SA-aware components. However, such components may have
processes linked with the Availability Management Framework Library.

Typically, non-SA-aware components are registered with the Availability Manage-
ment Framework by dedicated SA-aware components that act as proxies between
the Availability Management Framework and the non-SA-aware components. These
dedicated SA-aware components are called proxy components. The components
for which a proxy component mediates are called proxied components. Proxy and
proxied components are explained in more detail in Section 3.1.2.3.

3.1.2.2.1 External Components

To keep maximum flexibility in the way external resources interact with nodes, which
is often device-dependent or proprietary, the Availability Management Framework
does not interact directly with external components and manages external compo-
nents always as proxied components.

3.1.2.2.2 Non-Proxied, Non-SA-Aware Components

The Availability Management Framework supports both proxied and non-proxied,
non-SA-aware local components. For non-proxied, non-SA-aware local components,
the role of the Availability Management Framework is limited to the management of
the component life cycle. The Availability Management Framework instantiates a
non-proxied, non-SA-aware component when the component needs to provide a ser-
vice and terminates this component when the component must stop providing the
service. Processes of a local non-SA-Aware component must exclusively belong to
that component.
46 SAI-AIS-AMF-B.04.01 Section 3.1.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.2.2.3 Integration and Usage of Non-SA-Aware Local Components

Application developers are encouraged to design applications that will run on nodes
as a set of SA-aware components registered directly with the Availability Manage-
ment Framework; however, non-SA-aware local components may be used instead for
the following reasons:

• Some system resources such as networking resources or storage resources are
implemented by the operating environment, and their activation or deactivation is
usually performed by running administrative command line interfaces. No actual
process is needed to implement these resources, and requiring the implementa-
tion of a registering process for such resources adds unnecessary complexity.

• For components representing only local hardware resources, making these com-
ponents SA-aware components with a registering process adds unnecessary
complexity.

• Existing clustering products support looser execution models than the execution
model of SA-aware components. For these products, the integration between
the applications and the clustering middleware is minimal: the clustering middle-
ware is only responsible for starting, stopping, and monitoring applications, but
does not expose APIs for finer-grained control of the application in terms of
workload and availability management.
It is important to facilitate the migration of third party products from these existing
clustering products to products providing the Availability Management Frame-
work interfaces without requiring the transformation of these third party products
into SA-aware components.

• Some complex applications such as databases or application servers already
provide their own availability management for their various building blocks.
When moving these applications under the Availability Management Frame-
work’s control, different functions can be modeled as separate components;
however, some controlling entity within the application might still be interposed
between the Availability Management Framework and the individual compo-
nents. The concept of the proxy component can be used in this case as an inter-
position layer between the Availability Management Framework and all other
components of the application.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.2.2.3 47

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.2.3 Proxy and Proxied Components

The Availability Management Framework uses the availability control functions regis-
tered by a proxy component to control the proxy component and the proxied compo-
nents for which the proxy component mediates.

The proxy component is an SA-aware component that is responsible for conveying
requests made by the Availability Management Framework to its proxied compo-
nents. A contained component must not be a proxy component.
The interactions between proxied components and their proxy component are private
and not defined by this specification.

The Availability Management Framework determines the proxied components for
which a proxy component is responsible when the proxy component registers with the
framework, based on configuration and other factors like availability of components in
the cluster. The Availability Management Framework conveys this decision to the
proxy component by assigning it a workload in the form of a component service
instance (for the definition of component service instance, see Section 3.1.3).

The proxy component registers proxied components with the Availability Manage-
ment Framework; however, the proxied components are independent components as
far as the Availability Management Framework is concerned. As such, if a proxy com-
ponent fails, or an entity containing it is prevented by the administrator from providing
service, another component (usually the component acting as standby to the failed
proxy component) can register the proxied component again. This new proxy compo-
nent assumes then the mediation for the failed component without affecting the ser-
vice provided by the proxied component. If no proxy component is available to take
over the mediation service for the proxied component, the Availability Management
Framework loses control of the proxied component and becomes unaware of whether
the proxied component is providing service.

As various other features of proxy and proxied components are described in various
sections of this and other chapters, Chapter 5 summarizes the information on all
these features and also provides additional information. However, for convenience of
the reader, the following notes list some key features:

• A single proxy component can mediate between the Availability Management
Framework and multiple proxied components.

• The redundancy model (for a discussion of this notion, refer to Section 3.6) of
the proxy component can be different from that of its proxied components.
48 SAI-AIS-AMF-B.04.01 Section 3.1.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• The Availability Management Framework does not consider the failure of the
proxied component to be the failure of the proxy component. Similarly, the failure
of the proxy component does not indicate a failure of the proxied components
(see Section 5.3).

• No process of a proxied component registers with the Availability Management
Framework. A proxied component is registered by a process of the proxy com-
ponent ’proxying’ this proxied component.

• The process of the proxy component registered for a proxied component medi-
ates all the interactions between the Availability Management Framework and
the proxied component it is registered for.

• One process of a proxy component registers the proxy component itself. The
same or another process of the proxy component may register a proxied compo-
nent whenever the proxy component is ’proxying’ this proxied component.

3.1.2.4 Component Life Cycle

The Availability Management Framework directly controls the life cycle of non-prox-
ied, local components through a set of command line interfaces that must be pro-
vided by each component.

The Availability Management Framework indirectly controls the life cycle of proxied
components through their proxies. However, command line interfaces may also be
used by the Availability Management Framework to control some aspects of the life
cycle of local proxied components.

For information about command line interfaces for the local component life cycle
management, refer to Chapter 4.

The Availability Management Framework distinguishes between two categories of
components in its life cycle management:

• pre-instantiable components: such components have the ability to stay idle
when they get instantiated by the Availability Management Framework. They
start to provide a particular service only when instructed to do so (directly or indi-
rectly) by the Availability Management Framework. The Availability Management
Framework can speed up recovery and repair actions by keeping a certain num-
ber of pre-instantiated components, which can then take over faster the work of
failed components. All SA-aware components are pre-instantiable components.

• non-pre-instantiable components: such components provide service as soon
as they are instantiated. Hence, the Availability Management Framework cannot
instantiate them in advance as spare entities. All non-proxied, non-SA-aware
components are non-pre-instantiable components.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.2.4 49

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following table shows the various component categories and subcategories.

3.1.2.5 Component Type

The Availability Management Framework supports the notion of a component type.
A component type represents a particular version of the software or hardware imple-
mentation which is used to construct components. All components of the same type
share the attribute values defined in the component type configuration. Some of the
attribute values may be overridden, and some of them may be extended in the com-
ponent configuration.
Details on the configuration of a component type and of a component are provided in
Section 8.13 on page 358 and in [7].

3.1.3 Component Service Instance

A component service instance (CSI) represents the workload that the Availability
Management Framework can dynamically assign to a component. High availability
(HA) states are assigned to a component on behalf of its component service
instances. The Availability Management Framework chooses the HA state of a com-
ponent for each particular component service instance, as described in
Section 3.2.2.4. To help AMF to make this choice more comprehensive, some com-
ponents may provide information on their readiness to assume a particular compo-
nent service instance (see Section 3.2.2.5).

Table 3 Component Categories

Locality HA Awareness Proxy Property Life Cycle Management

local regular SA-aware non-proxy pre-instantiable

local (SA-aware) proxy proxy pre-instantiable

local (SA-aware) container proxy or non-proxy pre-instantiable

local (SA-aware) contained non-proxy pre-instantiable

local non-SA-aware non-proxied non-pre-instantiable

local non-SA-aware proxied pre-instantiable or
non-pre-instantiable

external non-SA-aware proxied pre-instantiable or
non-pre-instantiable
50 SAI-AIS-AMF-B.04.01 Section 3.1.2.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Each component service instance has a set of attributes (name/value pairs), which
characterize the workload assigned to the component. Several attributes with the
same name may appear in the set of attributes of a component service instance, thus
providing support for multivalued attributes. These attributes are not used by the
Availability Management Framework and are just passed to the components.

The Availability Management Framework supports the notion of proxy CSI. A proxy
CSI represents the special workload of ’proxying’ a proxied component.
A proxied component must be configured with the proxy CSI that provides ’proxying’.
The Availability Management Framework configuration specifies to which proxy com-
ponents this proxy CSI can be assigned.
Note that a proxy component can be configured to have multiple CSI assignments,
one or more for handling proxied components and others for providing other services.
In terms of functionality, there is no difference between a proxy CSI corresponding to
the workload of ’proxying’ proxied components and CSI assignments corresponding
to the workload of other services.

The Availability Management Framework supports the notion of container CSI. A
container CSI represents the special workload of managing the life cycle of contained
components.
A contained component must be configured with the container CSI. The Availability
Management Framework determines, based on its configuration, the container com-
ponents to which this container CSI is assigned. Which of these container compo-
nents will become the associated container is explained in detail in Section 6.2.

The container CSI can contain information to be passed by the associated container
component to the corresponding contained component. How this information is
passed is a private interface between container and contained components.

Note that a container component can be configured to have multiple CSI assign-
ments, one or more for handling contained components, and others for providing
other services. In terms of functionality and syntax, there is no difference between a
container CSI used to determine the associated container component and other CSIs
corresponding to the workload of other services.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.3 51

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.3.1 Component Service Type

The Availability Management Framework supports the notion of component service
type.
The component service type is the generalization of similar component service
instances (that is, similar workloads) that are seen by the Availability Management
Framework as equivalent and handled in the same manner. The configuration of a
component indicates which component service types the component supports. These
component service types must be chosen from the set of component service types
supported by the component type to which the component belongs.
The component service type defines the list of the attribute names for all component
service instances belonging to the type.
Details on the configuration of a component service type and of a component service
instance are provided in Section 8.12 on page 356 and in [7].

3.1.4 Service Unit

A service unit (SU) is a logical entity that aggregates a set of components combining
their individual functionalities to provide a higher level service. Aggregating compo-
nents into a logical entity managed by the Availability Management Framework as a
single unit provides system administrators with a simplified, coarser-grained view.
Most administrative operations apply to service units as opposed to individual compo-
nents.

A service unit can contain any number of components, but a particular component
can be configured in only one service unit. The components that constitute a service
unit can be developed in isolation, and a component developer might be unaware of
which components constitute a service unit. The service units are defined at deploy-
ment time.

As a component is always enclosed in a service unit, from the Availability Manage-
ment Framework's perspective, the service unit is the unit of redundancy in the sense
that it is the smallest logical entity that can be instantiated in a redundant manner
(that is, more than once).

The Availability Management Framework associates presence, administrative, opera-
tional, readiness, and HA states to service units (latter on behalf of service
instances). Each of these states, with the exception of the administrative state, repre-
sents an aggregated view of the corresponding state of each component within the
service unit. The rules applied to obtain these aggregated states are specific to each
state and are described in Section 3.2.
52 SAI-AIS-AMF-B.04.01 Section 3.1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Local components and external components cannot be mixed within a service unit.
The Availability Management Framework distinguishes between local service units
and external service units. Local service units can contain only local components
(they are collocated on the same node). External service units can contain only exter-
nal components. The external components represent resources that are external to
the cluster.

A proxy component and its non-pre-instantiable proxied component can reside in the
same or in different service units; however, a proxy component and its pre-instantia-
ble proxied component must not reside in the same service unit in order to prevent
cyclic dependencies during the instantiation of the service unit. If the proxy and prox-
ied local components are hosted in different service units, these service units may
reside on different nodes.

In a service unit, contained components must not be mixed with components of other
categories. The rationale for this decision is explained in Section 6.1.5.

All contained components in a service unit must have the same associated container
component, and this association is achieved by the usage of a single container CSI
(see also Section 6.2).

A service unit that contains at least one pre-instantiable component is called a pre-
instantiable service unit; otherwise, it is called a non-pre-instantiable service
unit.

3.1.4.1 Service Unit Type

The Availability Management Framework supports the notion of a service unit type.
The service unit type defines a list of component types and, for each component type,
the number of components that a service unit of this type may accommodate. A ser-
vice unit of a given type may only consist of components of the component types from
that list, and the number of these components must be within the range specified for
the component type. All service units of the same type share the attribute values
defined in the service unit type configuration. Some of the attribute values may be
overridden in the service unit configuration.
All service units of the same type can be assigned service instances derived from the
same set of service types.
Details on the configuration of a service unit type and of a service unit are provided in
Section 8.10 on page 350 and in [7].
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.4.1 53

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.5 Service Instances

In the same way as components are aggregated into service units, the Availability
Management Framework supports the aggregation of component service instances
into a logical entity called a service instance (SI). A service instance aggregates all
component service instances to be assigned to the individual components of the ser-
vice unit in order for the service unit to provide a particular service.

A service instance can contain multiple component service instances, but a particular
component service instance can be configured in only one service instance.

A service instance represents a single workload assigned to the entire service unit.

When a service unit is available to provide service (in-service readiness state, see
Section 3.2.1.4), the Availability Management Framework can assign HA states to the
service unit for one or more service instances. When a service unit becomes unavail-
able to provide service (out-of-service readiness state), the Availability Management
Framework removes all service instances from the service unit. A service unit might
be available to provide service but not have any assigned service instance.

The Availability Management Framework assigns a service instance to a service unit
programmatically by assigning each individual component service instance of the ser-
vice instance to a specific component within the service unit.

The assignment of the component service instances of a service instance to the com-
ponents of a service unit takes into account the type of component service instance
supported by each component. A component service instance can be assigned to a
given component only if the component configuration indicates that the component
supports this particular type of component service instance, the component configu-
ration permits the assignment of at least one more component service instance of this
type, and the component is ready to assume (it did not indicate otherwise) the work-
load associated with the component service instance. When a service instance con-
tains several component service instances of the same type, this specification does
not dictate how, within the service unit, the Availability Management Framework
assigns them to the components that support this particular type. This choice is
implementation-defined.

The number of component service instances aggregated into a service instance may
differ from the number of components aggregated into the service unit to which the
service instance is assigned. Some components may be left without any component
service instance assignment whereas other components may have several compo-
nent service instances assigned to them.
54 SAI-AIS-AMF-B.04.01 Section 3.1.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.5.1 Service Type

The Availability Management Framework supports the notion of a service type.
The service type defines a list of component service types of which a service instance
may be composed. The service type also defines for each component service type
the number of component service instances that a service instance of the given type
may aggregate. All service instances of the same type share the attribute values
defined in the service type configuration.
Details on the configuration of a service type and of a service instance are provided in
Section 8.11 on page 353 and in [7].

3.1.6 Service Groups

To ensure service availability in case of component failures, the Availability Manage-
ment Framework manages redundant service units.
A service group (SG) is a logical entity that groups one or more service units in order
to provide service availability for a particular set of service instances. Any service unit
of the service group must be able to take an assignment for any service instance of
this set. Furthermore, to participate in a service group, all components in the service
unit must support the capabilities required for the redundancy model defined for the
service group.
The redundancy model defines how the service units in the service group are used to
provide service availability. For details about service group redundancy models, refer
to Section 3.6.

Note: For readability purposes, and if the context permits, this document uses
expressions like “the components of a service group“ to mean “the compo-
nents of service units participating in the service group”.

3.1.6.1 Service Group Type

The Availability Management Framework supports the notion of a service group
type.
The service group type is a generalization of similar service groups that follow the
same redundancy model, provide similar availability, and are composed of units of
the same service unit types. All service unit types defined in the service group type
must be capable of supporting a common set of service types. All service groups of
the same type share the attribute values defined in the service group type configura-
tion. Some of the attribute values may be overridden in the service group configura-
tion.
Details on the configuration of a service group type and of a service group are pro-
vided in Section 8.9 on page 348 and in [7].
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.5.1 55

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.7 Application

An application is a logical entity that contains one or more service groups. An appli-
cation combines the individual functionalities of the constituent service groups to pro-
vide a higher level service.

This aggregation provides the Availability Management Framework with a further
scope for fault isolation and fault recovery.

From a software administration point of view, this grouping into application reflects
the set of service units and their components, which are delivered as a consistent set
of software packages, which results in tighter dependency with respect to their
upgrade.

An application can contain any number of service groups, but a given service group
can be configured in only one application.

Dependencies amongst service instances (described in Section 3.8.1 on page 185)
are more common amongst service instances belonging to the application than
amongst service instances of different applications.

3.1.7.1 Application Type

The Availability Management Framework supports the notion of an application type.
An application type defines a list of service group types, which implies that an appli-
cation of the given type must be composed of service groups of types from that list.
All applications of the same type share the attribute values defined in the application
type configuration.

Details on the configuration of an application type and of an application are provided
in Section 8.8 on page 346 and in [7].

3.1.8 Protection Groups

A protection group for a specific component service instance is the group of compo-
nents to which the component service instance has been assigned. The name of a
protection group is the name of the component service instance that it protects.

A protection group is a dynamic entity, which changes when component service
instances are assigned to components or removed from components.
56 SAI-AIS-AMF-B.04.01 Section 3.1.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.9 Mapping of Service Units to Nodes

Service groups and service units have an optional node group configuration
attribute. A node group just contains a list of nodes.

Service units have an optional configuration attribute
(saAmfSUHostNodeOrNodeGroup in the SaAmfSU object class, shown in
Section 8.10), which can either represent a node or a node group. The service unit
can only be instantiated on the node (if a node is specified) or on one of the nodes of
the node group (if a node group is configured).

The Availability Management Framework maps each service unit onto a node at the
time the service unit is introduced to the cluster (that is, at cluster startup or when the
service unit is added to the configuration), and this mapping persists until the service
unit is removed from the configuration, or the cluster is restarted. In other words, the
node group does not provide an additional level of protection against node failures.

When the Availability Management Framework decides to instantiate a local service
unit in accordance with the pertinent redundancy model, it performs the following
checks:

1. If a node is configured for the service unit, the service unit will be instantiated on
this node.

2. If instead a node group is configured for the service unit, the Availability Manage-
ment Framework selects a node from the node group using an implementation-
specific policy to instantiate the service unit on this node.

3. If no node or node group is configured for the service unit, the Availability Man-
agement Framework checks whether a node group is configured for the service
group (saAmfSGSuHostNodeGroup attribute in the SaAmfSG object class,
shown in Section 8.9).

4. If a node group is configured for the service group, the Availability Management
Framework selects a node from the node group using an implementation-specific
policy to instantiate the service unit on this node.

5. If no node group is configured for the service group, the Availability Management
Framework selects any node using an implementation-specific policy to instanti-
ate the service unit on it.

If node groups are configured for both the service units of a service group and the
service group, the nodes contained in the node group for the service unit can only be
a subset of the nodes contained in the node group for the service group. If a node is
configured for a service unit, it must be a member of the node group for the service
group, if configured.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.9 57

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
It is an error to define the saAmfSUHostNodeOrNodeGroup attribute for an external
service unit. It is also an error to define the saAmfSGSuHostNodeGroup attribute if a
service group contains only external service units.

Section 6.1.5 provides additional rules on the configuration of node and node groups
for service units containing contained components and for the service groups contain-
ing these service units, so that this configuration aligns with the configuration of
nodes and node groups for service units containing container components and for the
service groups containing these service units.

3.1.10 Service Unit Instantiation

When the Availability Management Framework instantiates a pre-instantiable service
unit, it:

• runs the INSTANTIATE command (see Section 4.6) for SA-aware components
(excluding contained components),

• invokes the saAmfContainedComponentInstantiateCallback() call-
back (see Section 7.10.4) of the associated container component for each con-
tained component of the service unit,

• invokes the saAmfProxiedComponentInstantiateCallback() callback
(see Section 7.10.2) of the proxies of all pre-instantiable proxied components of
the service unit,

• and performs no action for non-pre-instantiable components. Such components
are instantiated during the assignment of service instances to the service unit
(see Section 3.2.2.4 on page 77).

When the Availability Management Framework instantiates a non-pre-instantiable
service unit, it:

• invokes the saAmfCSISetCallback() callback (see Section 7.9.2) of the
proxies of all proxied components of the service unit and

• runs the INSTANTIATE command (see Section 4.6) for all non-proxied compo-
nents.

Note that this processing creates an implicit inter-service unit dependency, as the
Availability Management Framework needs to instantiate the service units containing
proxy components (and sometimes even assign them an active HA state for a service
instance) before the instantiation of service units containing proxied components can
be successfully completed.
58 SAI-AIS-AMF-B.04.01 Section 3.1.10 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.1.11 Illustration of Logical Entities

The example in FIGURE 2 shows two service groups, SG1 and SG2. SG1 supports a
single service instance (A) and SG2 supports two service instances (B and C).

On behalf of service instance A, service unit S1 is assigned the active HA state and
service unit S2 the standby HA state.

Each of the service units S1 and S2 contains two components. The component ser-
vice instance A1 is assigned to the components C1 and C3, and the component ser-
vice instance A2 is assigned to the components C2 and C4. Two protection groups
A1 and A2 are created, with protection group A1 containing components C1 and C3
and protection group A2 containing components C2 and C4. Note that the name of
the protection group is the same as the name of the component service instance.
Thus, protection group A1 contains the components that support component service
instance A1.

On behalf of service instance B, service unit S3 is assigned the active HA state and
service unit S5 the standby HA state. Similarly, on behalf of service instance C, ser-
vice unit S4 is assigned the active HA state and service unit S5 the standby HA state.
Each of these service units contains a single component (C5, C6, C7). Thus, while
components C5 and C6 are assigned the active HA state for only single component
service instances (B1 and C1, respectively), component C7 is assigned the standby
HA state for two component service instances (B1 and C1). Two protection groups
(B1 and C1) are created, with protection group B1 containing components C5 and C7
and protection group C1 containing components C6 and C7.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.1.11 59

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 2 Elements of the System Model

Node W

Service Unit S3

C5

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

CSI A1

CSI A2
Service

Instance A

CSI B1

Service
Instance B

CSI C1

Service
Instance C

PG A1

PG A2

PG B1

PG C1

active
active active

standby

standby
standby

Service Group SG1

Service Unit S4

C6

Service Unit S5

C7

Service Group SG2
60 SAI-AIS-AMF-B.04.01 Section 3.1.11 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2 State Models
The following sections describe the different states associated with service units,
components, service instances, component service instances, service groups, appli-
cations, and nodes. The Availability Management Framework API provides state
management only for components and component service instances by using a sub-
set of the states described in the following subsections. The other states included in
the state model are relevant for System Management as well as for a clear definition
and extension of this specification.

3.2.1 Service Unit States

In some cases when describing the properties and states of service units, references
are made to properties and states of a node or cluster containing it. For readability
reasons, it is not always mentioned that these references, obviously, only apply to
local service units and are to be ignored for external service units.

3.2.1.1 Presence State

The presence state is supported at the service unit and component levels and
reflects the component life cycle. It takes one of the following values:

• uninstantiated
• instantiating
• instantiated
• terminating
• restarting
• instantiation-failed
• termination-failed

First, the presence state of a non-pre-instantiable service unit is considered:

Note that the presence state of a service unit is described in this section in terms of
the presence state of its constituent components, which is explained in detail in
Section 3.2.2.1.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2 61

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
When all components are uninstantiated, the service unit is uninstantiated. When
the first component moves to instantiating, the service unit also becomes instantiat-
ing.

When all pre-instantiable components of a service unit enter the instantiated state,
the service unit becomes instantiated.
A non-pre-instantiable service unit is instantiated if it has successfully been assigned
the active HA state on behalf of a service instance (see Section 3.2.1.5). Note that a
non-pre-instantiable service unit may be assigned one and only one service instance.
If, after all possible retries, a component cannot be instantiated, the presence state of
the component is set to instantiation-failed, and the presence state of the service unit
is also set to instantiation-failed. If some components are already instantiated when
the service unit enters the instantiation-failed state, the Availability Management
Framework terminates them. These components will enter either the uninstantiated
state if they are successfully terminated or the termination-failed state if the Availabil-
ity Management Framework was unable to terminate them correctly (refer also to
Section 4.7 and Section 4.8).

When the first component of an already instantiated service unit becomes terminat-
ing, the service unit becomes terminating. If the Availability Management Frame-
work fails to terminate a component, the presence state of the component is set to
termination-failed and the presence state of the service unit is also set to termina-
tion-failed.

When all components enter the restarting state, the service unit become restarting.
However, if only some components are restarting, the service unit is still instantiated.

The management of the presence state of a pre-instantiable service unit is very simi-
lar to what was previously described for a non-pre-instantiable service unit, except
that a pre-instantiable service unit becomes instantiated or terminating based only on
the presence state of its pre-instantiable components; when all pre-instantiable com-
ponents within a pre-instantiable service unit are instantiated, the service unit
becomes instantiated. If any errors occur when instantiating any of the constituent
components of the service unit, the presence state of the service unit becomes
instantiation-failed. Similarly, if errors occur when terminating any of the constituent
components of the service unit, its presence state becomes termination-failed.
62 SAI-AIS-AMF-B.04.01 Section 3.2.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.1.2 Administrative State

The administrative state of a service unit is an extension of the administrative state
proposed by the ITU X.731 state management model ([9]). The administrative state of
a service unit can be set by the system administrator.
The administrative state of a service unit as well as the administrative states of the
service group (see Section 3.2.5), the node (see Section 3.2.6.1), the application
containing it (see Section 3.2.7), and the cluster (see Section 3.2.8) enable the Avail-
ability Management Framework to determine whether the service unit is administra-
tively allowed to provide service.

Valid values for the administrative state of a service unit are:

• unlocked: the service unit has not been directly prohibited from taking service
instance assignments by the administrator.

• locked: the administrator has prevented the service unit from taking service
instance assignments.

• locked-instantiation: the administrator has prevented the service unit from
being instantiated by the Availability Management Framework; the service unit is
then not instantiable.

• shutting-down: the administrator has prevented the service unit from taking
new service instance assignments and requested that existing service instance
assignments be gracefully removed. When all service instances assigned to the
service unit have finally been removed, its administrative state becomes locked.

The administrative state of a service unit is one of the states that determine the readi-
ness state (see Section 3.2.1.4) of that service unit.

The administrative state of a service unit is persistent even when all nodes within the
cluster are rebooted.

The administrative state of a service unit is not directly exposed to components by the
Availability Management Framework, but rather only indirectly, as the readiness state
has an impact on component service instance assignments.

3.2.1.3 Operational State

The operational state of the service unit reflects its error status. Valid values for the
operational state of a service unit are:

• enabled: the operational state of a service unit transitions from disabled to
enabled when a successful repair action has been performed on the service unit
(see Section 3.11.1.4).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.1.2 63

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• disabled: the operational state of a service unit transitions to disabled if a com-
ponent of the service unit has transitioned to the disabled state and the Availabil-
ity Management Framework has taken a recovery action at the level of the entire
service unit.

It is the Availability Management Framework that determines the value for the opera-
tional state of a service unit.

A service unit is enabled when the node containing this service unit joins the cluster
for the first time. It is set to disabled when a fail-over recovery is executed within its
scope, or if its presence state is set to instantiation-failed or termination-failed. After a
successful repair, it is set again to enabled by the entity performing the repair (Avail-
ability Management Framework or other entity). An administrative operation is pro-
vided to clear the disabled state of a service unit, so that an entity other than the
Availability Management Framework can perform the repair and declare the service
unit repaired. When a restart recovery is executed in the scope of a service unit, the
restart is considered as an instantaneous, combined recovery and repair action;
therefore, the operational state of the service unit remains enabled in such cases.
The operational state of the service unit is also re-evaluated whenever the opera-
tional state of one of its components transitions from disabled to enabled as a result
of clearing an error condition (see Section 7.12.2).

3.2.1.4 Readiness State

The operational, administrative, and presence states of a service unit, the operational
state of its containing node, and the administrative states of its containing node, ser-
vice group, application, and the cluster are combined into another state, called the
readiness state of a service unit. This state indicates if a service unit is eligible to
take service instance assignments from an administrative and health status view-
point. This state is used by Availability Management Framework to decide whether a
service unit is eligible to receive service instance assignments.

The readiness state of a service unit is not directly exposed to components by the
Availability Management Framework, but rather only indirectly, as the readiness state
has an impact on component service instance assignments.
64 SAI-AIS-AMF-B.04.01 Section 3.2.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Valid values for the readiness state of a service unit are:

⇒ out-of-service

The readiness state of a non-pre-instantiable service unit is out-of-service if
one or more of the following conditions are met:

• its operational state or the operational state of its containing node is dis-
abled;

• its administrative state or the administrative state of its containing service
group, AMF node, application, or the cluster is either locked or locked-
instantiation;

• the CLM node to which the containing AMF node is mapped is not a mem-
ber.

The readiness state of a pre-instantiable service unit is out-of-service if

• any of the preceding conditions that cause a non-pre-instantiable service
unit to become out-of-service is true,

• or its presence state is neither instantiated nor restarting,
• or the service unit contains contained components, and their configured

container CSI is not assigned active or quiescing to any container compo-
nent on the node that contains the service unit.

When the readiness state of a service unit is out-of-service, no new service
instance can be assigned to it. If service instances are already assigned to the
service unit at the time when the service unit enters the out-of-service state, they
are transferred to other service units (if possible) and removed.
Note that in some cases, pre-instantiable service units may be instantiated while
they are out-of-service. However, non-pre-instantiable service units are termi-
nated when they transition to the out-of-service readiness state.

⇒ in-service

The readiness state of a non-pre-instantiable service unit is in-service if all of
the following conditions are met:

• its operational state and the operational state of its containing node is
enabled;

• its administrative state and the administrative states of its containing ser-
vice group, AMF node, application, and the cluster are unlocked;

• the CLM node to which the containing AMF node is mapped is a member
node.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.1.4 65

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The readiness state of a pre-instantiable service unit is in-service if

• all of the preceding conditions that cause a non-pre-instantiable service
unit to become in-service are true,

• and its presence state is either instantiated or restarting,
• and the configured container CSI of all contained components of the ser-

vice unit is assigned active to at least one container component on the
node that contains the service unit.

When a service unit is in the in-service readiness state, it is eligible for service
instance assignments; however, it is possible that it has not yet been assigned
any service instance.

⇒ stopping

The readiness state of a service unit is stopping if all of the following conditions
are met:

• its operational state and the operational state of its containing node is
enabled,

• none of the administrative states of itself, the containing service group,
AMF node, application, CLM node, or the cluster is locked or locked-instan-
tiation,

• at least one of the administrative states of itself, the containing service
group, AMF node, application, CLM node, or the cluster is shutting-down,
or the container component which is handling the life cycle of contained
components of the service unit has the quiescing HA state for the container
CSI of the contained components, and

• the CLM node to which the containing AMF node is mapped is a member
node.

When a service unit is in the stopping state, no service instance can be assigned
to it, but already assigned service instances are not removed until the service
unit's components indicate to do so.

Table 4 shows how a pre-instantiable service unit's readiness state is derived from
the operational state, the presence state, and the administrative states of itself, and
the administrative states of its enclosing AMF node, service group, application, and
AMF cluster. The same table applies to non-pre-instantiable service units by ignoring
the “Service Unit’s Presence State column and assuming that the containing CLM
node is in the cluster membership in the first two rows and regardless of whether the
CLM node is or not in the cluster membership for the third row.
66 SAI-AIS-AMF-B.04.01 Section 3.2.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.1.5 HA State of a Service Unit for a Service Instance

When a service instance is assigned to a service unit, the Availability Management
Framework assigns an HA state to the service unit for that service instance. The HA
state takes one of the following values:

• active: the service unit is currently responsible for providing the service charac-
terized by this service instance.

• standby: the service unit acts as a standby for the service characterized by this
service instance.

• quiescing: the service unit that had previously an active HA state for this service
instance is in the process of quiescing its activity related to this service instance.
In accordance with the semantics of the shutdown administrative operations, the
quiescing is performed by rejecting new users of the service characterized by
this service instance while still providing the service to existing users until they
all terminate using it. When no user is left for that service, the components of the
service unit indicate that fact to the Availability Management Framework, which
transitions the HA state to quiesced.
The quiescing HA state is assigned as a consequence of a shutdown administra-
tive operation.

• quiesced: the service unit that had previously an active or quiescing HA state
for this service instance has now quiesced its activity related to this service
instance, and the Availability Management Framework can safely assign the
active HA state for this service instance to another service unit.

Table 4 Service Unit’s Readiness State

Cluster’s
Administrat

ive State

Application’s
Administrativ

e State

Service
Unit’s

Administr
ative
State

Service
Group’s

Administr
ative
State

AMF
Node’s

Administr
ative
State

AMF
Node’s

Operatio
nal State

Service
Unit’s

Operatio
nal State

Service
Unit’s

Presence
State

Service
Unit’s

Readiness
State

unlocked unlocked unlocked unlocked unlocked enabled enabled instantiated
or
restarting.

in-service

One or more columns contain the shutting-down state, and none is
locked or locked-instantiation.

enabled enabled instantiated,
instantiating,
terminating,
or
restarting

stopping

All other combinations of locked/locked-instantiation/unlocked/shutting-down, enabled/disabled and any pres-
ence state.

out-of-ser-
vice
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.1.5 67

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The quiesced state is assigned in the context of switch-over situations (for a
description of switch-over, refer to Section 3.3).

Note: At any point of time, a service unit may have multiple service instance assign-
ments.

The service units do not have an HA state of their own. They are assigned HA states
on behalf of service instances.

Note: In the remainder of the document, the usage of the terminology “active or
standby service units”, without mentioning for which service instance or ser-
vice instances the service unit has been assigned a particular HA state, will
be deemed legal when the context makes it obvious. This terminology is
mostly applicable in scenarios in which all service instances assigned to a
particular service unit share the same HA state and the service unit is incapa-
ble of sustaining a mix of HA states for the assigned service instances.

For simplicity of expression, the term active assignment of/for a service instance
(or simply active assignment if the context makes it clear which service instance is
meant) is used to mean the assignment of the active HA state to a service unit for this
service instance. Similar terms are also used for the other HA states, such as
standby assignment.

Taking into consideration the configuration of each service group (list of service
instances, list of service units, redundancy model attributes, and so on) and the cur-
rent value of the administrative and operational states of their service units and ser-
vice instances, the Availability Management Framework dynamically assigns the HA
state to the service units for the various service instances. Section 3.6 describes how
these assignments are performed for the various redundancy models.

Though some aspects differ from one redundancy model to another, some rules
apply to all redundancy models:

• The overall goal of the Availability Management Framework is to keep as many
active assignments as requested by the configuration for all service instances
(which are administratively unlocked). If a service unit that is active for a service
instance goes out-of-service, the Availability Management Framework automati-
cally assigns the active HA state to a service unit that is already standby for the
service instance if there is one.

• In the absence of administrative operations or error recovery actions being per-
formed, only active and (possibly) standby HA states are assigned to the service
units for particular service instances.
68 SAI-AIS-AMF-B.04.01 Section 3.2.1.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.1.6 HA Readiness State of a Service Unit per Service Instance

The HA readiness state of a service unit for a service instance is the aggregation
of the various HA readiness states of the components included in the service unit for
the component service instances included in the service instance. This state reflects
the ability of the service unit to assume the active or the standby assignments for the
service instance. This state further qualifies the readiness state of a service unit with
respect to each particular service instance protected by the service group. The Avail-
ability Management Framework can use this state and the readiness state to decide
which service unit is most appropriate for an HA state assignment. For details about
the HA readiness state of a component for a component service instance, refer to
Section 3.2.2.5.

The HA readiness state of a service unit for a service instance can take the following
values:

• ready-for-assignment - The Availability Management Framework sets this state
to a service unit for a service instance if for each component service instance of
the service instance there is at least one component in the service unit with an
HA readiness state set to ready-for-assignment, so that the component service
instance can be assigned to the component. The service unit can take assign-
ments in any HA state for the service instance. If this value is set when the ser-
vice unit is not assigned or assigned standby for the service instance, the
Availability Management Framework must evaluate whether the service unit
should be assigned the affected service instance or whether the standby assign-
ment should be changed to an active assignment based on the overall status
and redundancy model of the containing service group and also on whether the
redundancy requirements of the service instance are being met.

• ready-for-active-degraded - The Availability Management Framework sets this
state to a service unit for a service instance if
• there is at least one component service instance in the service instance for

which there is no component in the service unit with an HA readiness state set
to ready-for-assignment, so that the component service instance can be
assigned to the component, but there is at least one component in the service
unit with an HA readiness state set to ready-for-active-degraded to which the
component service instance can be assigned, and

• for each other component service instance of the service instance, there is at
at least one component in the service unit with an HA readiness state set to
ready-for-assignment or ready-for-active-degraded, so that the component
service instance can be assigned to the component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.1.6 69

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
This state indicates that the Availability Management Framework should avoid
assigning to the service unit the active HA state for the service instance,
because the service unit is not yet ready for it, and the active assignment would
have a negative impact on the quality of the service being provided.

If this value is set when the service unit is assigned or being assigned active or
quiescing for the service instance, the Availability Management Framework must
attempt to reassign the service instance to another service unit whose HA readi-
ness state is set to ready-for-assignment for this service instance. However, if
this value is set when the service unit is assigned or being assigned standby or
quiesced for the service instance, the assignment is not affected.

If this value is set when the service instance is not assigned to the service unit,
the Availability Management Framework must evaluate whether the service unit
should be assigned standby for the affected service instance based on the over-
all status and redundancy model of the containing service group and also on
whether the redundancy requirements of the service instance are being met.

• not-ready-for-active - The Availability Management Framework sets this state
to a service unit for a service instance if
• there is at least one component service instance in the service instance for

which there is no component in the service unit with an HA readiness state set
to ready-for-assignment or ready-for-active-degraded, so that the component
service instance can be assigned to the component, but there is at least one
component in the service unit with an HA readiness state set to not-ready-for-
active to which the component service instance can be assigned, and

• for each other component service instance of the service instance, there is at
at least one component in the service unit with an HA readiness state set to
ready-for-assignment, ready-for-active-degraded, or not-ready-for-active, so
that the component service instance can be assigned to the component.

This state indicates that the Availability Management Framework must not
assign to the service unit any of the HA states active or quiescing for a service
instance.

If this value is set when the service unit is assigned or being assigned active or
quiescing for the service instance, the Availability Management Framework must
remove the assignment or change it to standby. However, if this value is set
when the service unit is assigned or being assigned standby or quiesced for the
service instance, the assignment is not affected.
70 SAI-AIS-AMF-B.04.01 Section 3.2.1.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
If this value is set when the service instance is not assigned to the service unit,
the Availability Management Framework must evaluate whether the service unit
should be assigned standby for the affected service instance based on the over-
all status and redundancy model of the containing service group and on whether
the redundancy requirements of the service instance are being met.

• not-ready-for-assignment - The Availability Management Framework sets this
state to a service unit for a service instance if, at least for one of the component
service instance of the service instance, there is no component in the service
unit with an HA readiness state set to ready-for-assignment, ready-for-active-
degraded, or not-ready-for-active, so that the component service instance can
be assigned to the component.
This state indicates that the Availability Management Framework must not
assign this service instance to the service unit.
If this value is set when the service instance is assigned or being assigned to the
service unit, the Availability Management Framework must remove the assign-
ment.

3.2.2 Component States

The overall state of a component is a combination of a number of underlying states. A
description of these underlying states is given in the next sections.

Note: No restriction exists in the applicability of various states of a component and
their values described in the following subsections to proxied components.
However, if the status of a proxied component changes to unproxied (typi-
cally, when its proxy component fails, and no proxy can be engaged to “proxy”
the proxied component), the values for various states of this proxied compo-
nent reflect the last know value of the corresponding states before its status
became unproxied.

3.2.2.1 Presence State

The presence state of a component reflects the component life cycle. It takes one of
the following values:

• uninstantiated
• instantiating
• instantiated
• terminating
• restarting
• instantiation-failed
• termination-failed
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2 71

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The presence state of a component is set to instantiating when the Availability Man-
agement Framework invokes

• the saAmfProxiedComponentInstantiateCallback() function (see
Section 7.10.2), or

• the saAmfContainedComponentInstantiateCallback() function (see
Section 7.10.4), or

• the saAmfCSISetCallback() function (see Section 7.9.2), or
• when it executes the INSTANTIATE CLC-CLI command (see Section 4.6),

as applicable according to Table 37 on page 439, to instantiate the component.

The presence state of a component is set to instantiated when the INSTANTIATE
CLC-CLI command returns successfully (only for non-proxied, non-SA-aware compo-
nents) or the component is registered successfully with the Availability Management
Framework (for SA-aware or proxied components).

If, after all possible retries, a component cannot be instantiated, the presence state of
the component is set to instantiation-failed.

The following actions set the presence state of a component to terminating:

• The Availability Management Framework invokes the
• SaAmfComponentTerminateCallbackT function (see Section 7.10.1),
• or the saAmfCSIRemoveCallback() function (see Section 7.9.3),
• or it executes the TERMINATE CLC-CLI function (see Section 4.7),

as applicable according to Table 37 on page 439, to terminate the component
gracefully.

• The Availability Management Framework abruptly terminates the component by
using one of the following interfaces, as applicable according to
Table 37 on page 439:

• by executing the CLEANUP CLC-CLI command (see Section 4.8),
• or by invoking the saAmfContainedComponentCleanupCallback()

(see Section 7.10.5),
• or by invoking the saAmfProxiedComponentCleanupCallback() (see

Section 7.10.3).

A component will enter the uninstantiated state if it is successfully terminated or
cleaned up; it enters the termination-failed state if the cleanup operation fails.
72 SAI-AIS-AMF-B.04.01 Section 3.2.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
If an instantiated component fails, the Availability Management Framework will
make an attempt to restart the component, provided that restart is allowed for the
component.

A component is restarted by the Availability Management Framework in the context of
error recovery and repair actions (for details, see Section 3.11) or in the context of a
restart administrative operation (for details, see Section 9.4.7). Restarting a compo-
nent means first terminating it and then instantiating it again (see Section 3.11.1.2).
Two different actions shall be undertaken by the Availability Management Framework
regarding the component service instances assigned to a component when the com-
ponent restart is needed:

• Keep the component service instances assigned to the component while the
component is restarted. This action is typically performed when it is faster to
restart the component than to reassign the component service instances to
another component. In this case, the presence state of the component is set to
restarting while the component is being terminated and until it is instantiated
again (or a failure occurs). Internally, in this particular scenario, the Availability
Management Framework withdraws and reassigns exactly the same HA state on
behalf of all component service instances to the component as was assigned to
the component for various component service instances before the restart pro-
cedure, without evaluating the various criteria that the Availability Management
Framework would normally assess before making such an assignment.

• Reassign the component service instances currently assigned to the component
to another component before terminating/instantiating the component. In this
case, the presence state of the component is not set to restarting but transitions
through the other presence state values (typically in the absence of failures: ter-
minating, uninstantiated, instantiating, and then instantiated) as the component
is terminated and instantiated again.

The choice between these two policies is based on the
saAmfCompDisableRestart configuration attribute of each component (see the
SaAmfComp object class in Section 8.13.2).

When a node leaves the cluster, the Availability Management Framework sets the
presence state of all components included on that node to uninstantiated, except for
components that are in the instantiation-failed or termination-failed state.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.1 73

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Table 5 shows the possible presence states of the components of a service unit for
each valid presence state of the service unit:.

Table 5 Presence State of Components of a Service Unit

Service Unit Included Components

uninstantiated uninstantiated

instantiating uninstantiated
instantiating
instantiated
restarting

instantiated instantiated
restarting

terminating terminating
instantiated
restarting
uninstantiated

restarting restarting

instantiation-failed instantiation-failed
uninstantiated
instantiated
terminating
termination-failed

termination-failed instantiated
terminating
termination-failed
uninstantiated
74 SAI-AIS-AMF-B.04.01 Section 3.2.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.2.2 Operational State

The operational state of a component reflects its error status. Valid values for the
operational state of a component are:

• enabled: the Availability Management Framework is not aware of any error for
this component, or a restart recovery action is in progress to recover from this
error.

• disabled: the Availability Management Framework is aware of at least one error
for this component that could not be recovered from by restarting the component
or its service unit.

The described approach for operational state definition was chosen to reflect properly
the capability of a component to be restarted within the time limits critical for the ser-
vice it provides regardless the reason of the restart.

The Availability Management Framework becomes aware of an error for a compo-
nent in the following circumstances:

• An error for the component is reported to the Availability Management Frame-
work when the API function saAmfComponentErrorReport_4() is invoked.
Such an error can be reported by the component itself, by another component,
or by a monitoring facility (see saAmfPmStart_3()).

• The component fails to respond to the Availability Management Framework's
healthcheck request or responds with an error.

• The component fails to initiate a component-invoked healthcheck in a timely
manner.

• A command used by the Availability Management Framework to control the
component life cycle returned an error or did not return in time.

• The component fails to respond in time to an Availability Management Frame-
work's callback.

• The component responds to an Availability Management Framework's state
change callback (SaAmfCSISetCallbackT) with an error other than
SA_AIS_ERR_NOT_READY.

• If the component is SA-aware, and it does not register with the Availability Man-
agement Framework within the preconfigured time-period after its instantiation
(see Section 4.6).

• The invocation of the saAmfProxiedComponentInstantiateCallback()
function of a proxy or the invocation of the
saAmfContainedComponentInstantiateCallback() function of the
associated container component returns with an error.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.2 75

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• If an SA-aware component finalizes a handle returned by the
saAmfInitialize_4() function when it still has some registered components
associated to it (see Section 7.1.1).

• The component terminates unexpectedly.
• When a fail-over recovery operation performed at the level of the service unit or

the node containing the service unit triggers an abrupt termination of the compo-
nent (for the term abrupt termination, see Section 3.2.2.1). For more details
about recovery operations, refer to Section 3.11.1.3.

A component is enabled when the node containing it joins the cluster for the first time.
It is set to disabled when the Availability Management Framework performs a fail-
over recovery action on the component as a consequence of the component becom-
ing faulty, or if its presence state is set to instantiation-failed or termination-failed. It is
again enabled after a successful repair. When a restart recovery action is performed
on a component, it is considered as an instantaneous, combined recovery and repair
action; therefore, the operational state of the component remains enabled in that
case.

It is the Availability Management Framework that determines the value for the opera-
tional state. The operational state of a component is not directly exposed to compo-
nents by the Availability Management Framework API.

3.2.2.3 Readiness State

The operational state of a component is combined with the readiness state of its ser-
vice unit to obtain the readiness state of the component. This state indicates
whether a component is available to take component service instance assignments,
and it is used by the Availability Management Framework to decide whether a com-
ponent is eligible to receive component service instance assignments.

The readiness state of a component is defined as follows:

• out-of-service: the readiness state of a component is out-of-service if its opera-
tional state is disabled, or the readiness state of the service unit containing it is
out-of-service. When the readiness state of a component is out-of-service, no
component service instance can be assigned to it.

• in-service: the readiness state of a component is in-service if its operational
state is enabled, and the readiness state of the service unit containing it is in-ser-
vice. When a component is in the in-service readiness state, it is eligible for com-
ponent service instance assignments; however, it is possible that it has not yet
been assigned any component service instance.
76 SAI-AIS-AMF-B.04.01 Section 3.2.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• stopping: the readiness state of a component is stopping if its operational state
is enabled, and the readiness state of the service unit containing it is stopping.
When the readiness state of a component is stopping, no component service
instance can be assigned to it. The standby component service instance assign-
ments are removed immediately, but active component service instances are not
removed before the component indicates to the Availability Management Frame-
work to do so.

The following table summarizes how the readiness state of a component is derived
from the component's operational state and the enclosing service unit's readiness
state.

3.2.2.4 HA State of a Component per Component Service Instance

For each component service instance assigned to a component within a service unit,
the Availability Management Framework assigns an HA state to the component on
behalf of the component service instance.

When the Availability Management Framework assigns an HA state to a service unit
for a particular service instance, the action is actually translated into a set of sub-
actions on the components contained in the service unit. These subactions consist in
assigning an HA state to these components for the individual component service
instances contained in the service instance.

The HA state of a component for a particular component service instance takes one
of the following values (identical to the HA state of a service unit for a particular ser-
vice instance):

Table 6 Component’s Readiness State

Service Unit’s
Readiness State

Component’s
Operational State

Component’s
Readiness State

in-service enabled in-service

stopping enabled stopping

out-of-service enabled out-of-service

in-service disabled out-of-service

stopping disabled out-of-service

out-of-service disabled out-of-service
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.4 77

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• active: the component is currently responsible for providing the service charac-
terized by this component service instance.

• standby: the component acts as a standby for the service characterized by this
component service instance.

• quiescing: the component that had previously an active HA state for this com-
ponent service instance is in the process of quiescing its activity related to this
service instance. In accordance with the semantics of the shutdown administra-
tive operation, this quiescing is performed by rejecting new users of the service
characterized by this component service instance while still providing the service
to existing users until they all terminate using it. When no user is left for that ser-
vice, the component indicates that fact to the Availability Management Frame-
work, which transitions the HA state to quiesced. The quiescing HA state is
assigned as a consequence of a shutdown administrative operation.

• quiesced: the component that had previously the active or quiescing HA state
for this component service instance has now quiesced its activity related to this
component service instance, and the Availability Management Framework can
safely assign the active HA state for this component service instance to another
component. The quiesced state is assigned in the context of switch-over situa-
tions (for the description of switch-over, refer to Section 3.3).

As the sub-actions involved to change the HA state of individual components of the
service unit will not complete at the same time, the HA state of a service unit for a ser-
vice instance and the HA state of individual components for the component service
instances contained in that service instance may differ.
The following table describes the possible combinations. Note that the occurrence of
the states active, standby, quiescing, and quiesced, in this order, in a row at the com-
ponent or component service instance level (second column), determines the state in
the same row at the service unit or service instance level (first column). So, if the
state active appears in a row at the component or component service instance level,
the state in the same row at the service unit or service instance level is active. If a row
at the component or component service instance level shows no active but rather a
standby state, the state of the same row at the service unit or service instance level is
standby. The same applies similarly for the quiescing and quiesced states.
78 SAI-AIS-AMF-B.04.01 Section 3.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The first two rows of the previous table are used to identify the two possible but mutu-
ally exclusive combinations of HA state of components when the HA state of the ser-
vice unit is active. The second row is specific for a transition of the HA state of the
service unit from standby to active.

For simplicity of expression, the term active assignment of/for a component ser-
vice instance (or simply active assignment if the context makes it clear which com-
ponent service instance is meant) is used to mean the assignment of the active HA
state to a component for this component service instance. Similar terms are also
used for the other HA states, such as standby assignment.

When the Availability Management Framework assigns the active HA state to a com-
ponent on behalf of a component service instance, the component must start to pro-
vide the service that is characterized by that component service instance. If unable to
provide the service characterized by the component service instance, the component
must set its HA readiness state for that component service instance accordingly and

Table 7 HA State of Component/Component Service Instance

HA State of Service Unit/
Service Instance

HA State of Component/
Component Service Instance

active active
quiescing
quiesced
(not assigned)

active active
standby
(not assigned)

quiescing quiescing
quiesced
(not assigned)

quiesced quiesced
(not assigned)

standby standby
quiesced
(not assigned)

(not assigned) (not assigned)
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.4 79

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
reject the active assignment (for details about the HA readiness state, refer to
Section 3.2.2.5).

When the Availability Management Framework assigns the standby HA state to a
component on behalf of a component service instance, the component must prepare
itself for a quick and smooth transition into the active HA state for that component
service instance if requested by the Availability Management Framework. How the
standby component prepares itself for this transition is very dependent on its imple-
mentation and may involve, for example, actions such as sharing access to check-
pointed data with the active component. If unable to assume the standby assignment
for the component service instance, the component must set its HA readiness state
for that component service instance accordingly and reject the standby assignment
(for details about the HA readiness state, refer to Section 3.2.2.5).

In switch-over situations (see Section 3.3), when the Availability Management Frame-
work assigns the quiesced HA state to a component on behalf of a component ser-
vice instance, the component must, as quickly as possible, get the work related to
that component service instance into such a state that the work can be transferred to
another component with as minimal service disruption as possible. This may mean
different things depending on the nature of the work and the implementation of the
component. Typically, the component should not take in new work related to the com-
ponent service instance. For example, if work related to the service instance is deliv-
ered in the form of messages sent to a specific message queue, the component
should stop retrieving messages from that queue. Work which is related to that com-
ponent service instance and which is already in progress inside the component,
should be checkpointed, so that it can be completed later on by the component that
will take over. If the component or the way it interacts with its clients does not support
checkpointing of on-going work, either the work needs to be completed immediately
or an indication needs to be returned to the client indicating that it should submit that
work later. If the component maintains some state associated with the component
service instance, that state needs to be made available to the component that will
take over the activity. Depending on the implementation of the component, this may
imply, for example, writing the state in persistent storage or in a checkpoint, or pack-
ing it in a message and sending it to a particular message queue.

As a consequence of a shutdown administrative operation (see
Section 9.4.6 on page 380), when the Availability Management Framework assigns
the quiescing HA state to a component on behalf of a component service instance,
the component must reject attempts from new users to access the service character-
ized by the component service instance and only continue to service existing users.
When all users have terminated using the service corresponding to that component
service instance, the component must notify this termination to the Availability Man-
80 SAI-AIS-AMF-B.04.01 Section 3.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
agement Framework by invoking the saAmfCSIQuiescingComplete() function.
The invocation of the saAmfCSIQuiescingComplete() function implicitly transi-
tions the HA state of the component from quiescing to quiesced for that component
service instance.

The Availability Management Framework performs the following actions when it
assigns the active HA state to a service unit for a particular service instance:

• It invokes the saAmfCSISetCallback() callback of all SA-aware components
for the components themselves.

• It invokes the saAmfCSISetCallback() callback of their proxy components
for all proxied components. If the proxied component is a non-pre-instantiable
component and is not already instantiated, the proxy instantiates the proxied
component as part of performing the component service instance assignment.

• It runs the INSTANTIATE command for non-proxied, non-SA-aware compo-
nents.

The Availability Management Framework performs the following actions regarding
components when it assigns to a service unit an HA state other than active for a par-
ticular service instance:

⇒ It invokes the saAmfCSISetCallback() callback of all SA-aware components
for the components themselves.

⇒ For the special case of a container CSI of this particular service instance for
which the HA state of the container component was active, the Availability Man-
agement Framework performs the following actions, before it invokes the
saAmfCSISetCallback() callback to set the new HA state of the container
component for the container CSI.
• For each associated contained component and for each of its component ser-

vice instances that has the active HA state and needs to be quiesced, the
Availability Management Framework sets the HA state of the associated con-
tained component to quiescing, if the change of the HA state of the container
CSI was caused by a shutdown administrative operation on a service unit or
on any entity containing the service unit; otherwise, it is set to quiesced.

• The Availability Management Framework waits for each associated contained
component to quiesce for its component service instances (if the setting of the
HA state to quiescing or quiesced was necessary), then it removes all compo-
nent service instances assigned to the contained component and terminates it.

,

AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.4 81

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
⇒ It invokes the saAmfCSISetCallback() callback of their proxy components
for all proxied components. The proxy component terminates its non-pre-instan-
tiable proxied components as part of performing the component service instance
assignment.

⇒ It runs the TERMINATE command for non-proxied, non-SA-aware components.

The Availability Management Framework performs the following actions regarding
components when it removes a service instance assignment from a service unit:

⇒ It invokes the saAmfCSIRemoveCallback() callback of all SA-aware compo-
nents for the components themselves.

⇒ For the special case of a container CSI of this particular service instance for
which the HA state of the container component was active, the Availability Man-
agement Framework performs the following actions, before it invokes the
saAmfCSIRemoveCallback() callback to remove the active HA state from the
container component for the container CSI.
• For each associated contained component and for each of its component ser-

vice instances that has the active HA state and needs to be quiesced, the
Availability Management Framework sets the HA state of the associated con-
tained component to quiesced.

• The Availability Management Framework waits for each associated contained
component to quiesce for its component service instances (if the setting of the
HA state to quiesced was necessary), then it removes all component service
instances assigned to the contained component and terminates it.

⇒ It invokes the saAmfCSIRemoveCallback() callback of their proxy compo-
nents for all proxied components. The proxy component terminates its non-pre-
instantiable proxied components as part of removing the component service
instance assignment.

⇒ It runs the TERMINATE command for non-proxied, non-SA-aware components.

The instantiation of proxied, non-pre-instantiable components is performed by the
proxy as part of the assignment of component service instances to the proxied com-
ponent. Similarly, the termination of proxied, non-pre-instantiable components is per-
formed by the proxy as part of the removal of component service instances from the
proxied component. Hence, the Availability Management Framework never invokes
the saAmfProxiedComponentInstantiateCallback() and
saAmfComponentTerminateCallback() callback functions of the proxy for prox-
ied, non-pre-instantiable components.
82 SAI-AIS-AMF-B.04.01 Section 3.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
During an individual component restart induced by a fault encountered by the compo-
nent, the component remains enabled. Its readiness state can change according to
changes in its presence state (as described in Section 3.2.2.1), and it is the readiness
state that determines the Availability Management Framework's actions regarding the
CSI assignments to the component.

The state diagram for a component service instance is shown in FIGURE 3.

FIGURE 3 State Diagram of the HA State of an SA-Aware Component for a CSI

active

quiescing

quiesced

standby

ADD

ADD

RMV

RMV

RMV

RMV

ADD Transitions: saAmfCSISetCallback(SA_AMF_CSI_ADD_ONE)

RMV Transitions: saAmfCSIRemoveCallback(),

saAmfTerminateCallback(), cleanup operation (see Table 37 in Appendix A)

Other Transitions: saAmfCSISetCallback(SA_AMF_CSI_TARGET_*)
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.4 83

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Table 8 shows combinations of the readiness state and the HA state for pre-instantia-
ble components for a component service instance. Only the HA state is exposed to
application developers.

Table 9 shows combinations of the readiness state and the HA state for non-pre-
instantiable components for a component service instance. Only the HA state is
exposed to application developers.

3.2.2.5 HA Readiness State of a Component for a Component Service Instance

The HA readiness state of a component for a component service instance is
used to further qualify the ability of the component to be assigned the component ser-
vice instance in a particular HA state.

The HA readiness state is not used to reflect a failure of the component, but rather to
reflect situations in which a healthy component is not ready to assume a particular
assignment for a component service instance, either because the component is not in
an internal state required for the assignment, or because some resources on which
the assignment depends are not available.

Table 8 Application Developer View for Pre-Instantiable Components

Component’s Readiness State Component’s HA state for a
Component Service Instance

in-service

active
standby
quiescing
quiesced

stopping standby
quiescing
quiesced

out-of-service [no HA state]

Table 9 Application Developer View for Non-Pre-Instantiable Components

Component’s Readiness State Component’s HA state for a
Component Service Instance

in-service active or no HA state

out-of-service [no HA state]
84 SAI-AIS-AMF-B.04.01 Section 3.2.2.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The HA readiness state of a component for a component service instance is set

• automatically by the Availability Management Framework in the situations
described below, or

• explicitly by the registered process for a pre-instantiable component when the
registered process invokes the saAmfHAReadinessStateSet() function (that
is, this state cannot be modified for non-pre-instantiable components).

The HA readiness state of a component for a component service instance can take
the following values:

• ready-for-assignment - This value indicates that the component is ready for an
assignment of the component service instance in any HA state. This is the only
value that the HA readiness state of a non-pre-instantiable component may take;
this value is enforced by the Availability Management Framework, and it cannot
be modified. The Availability Management Framework automatically sets the HA
readiness state of pre-instantiable components to this value for all its potential
component service instances when the presence state of the component
becomes uninstantiated.

• ready-for-active-degraded - This value indicates that though the component is
able to be assigned the active HA state for the component service instance,
such an assignment would impact the quality of the service being provided and
should only be issued when no other component has an HA readiness state set
to ready-for-assignment for this component service instance, so that this other
component could assume the active assignment. This value is typically used by
a component that has the standby assignment for a component service instance
but has not yet fully synchronized its internal state with the component assigned
active, quiescing, or quiesced for the component service instance. The compo-
nent is able to become active but may have to drop all client sessions whose
state is not yet synchronized.
This value can only be set for pre-instantiable components and is never set auto-
matically by the Availability Management Framework.

• not-ready-for-active - This value indicates that the component cannot take an
active or quiescing assignment for the component service instance, and standby
or quiesced are the possible assignments that the component can assume for
the component service instance. This value is typically used when the compo-
nent has a missing dependency that prevents it from taking the active assign-
ment for the component service instance. It may also be used in situations
where the component has not synchronized its state with the component
assigned active, quiescing, or quiesced for the component service instance, and
it cannot take the active assignment with a unsynchronized state. If this value is
set when the component is already assigned active or quiescing for the compo-
nent service instance, the Availability Management Framework must either
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.2.5 85

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
remove the assignment or change it to standby.
This value can only be set for pre-instantiable components and is never set auto-
matically by the Availability Management Framework.

• not-ready-for-assignment - This value indicates that the component is not able
to take any assignment for the component service instance. This value is typi-
cally used if the component detects a missing dependency that prevents it from
assuming any assignment for the component service instance. If this value is set
when the component is already assigned for the component service instance,
the Availability Management Framework must remove the assignment.
This value is can only be set for pre-instantiable components and is never set
automatically by the Availability Management Framework.

A component does not typically know in advance which component service instance
assignments it will receive from the Availability Management Framework. If a compo-
nent receives a new component service instance assignment request (see
SaAmfCSISetCallbackT) for which it is not ready, it must set its HA readiness
state for this component service instance accordingly (by invoking the
saAmfHAReadinessStateSet() function), before it responds to the assignment
request with the SA_AIS_ERR_NOT_READY error (by invoking the
saAmfResponse_4() function) to prevent the Availability Management Framework
from treating the error as a component failure.

Valid combinations of component readiness, component HA readiness for a compo-
nent service instance, and HA state for a component service instance are listed in
Table 10 (the quiesced transitional state is not shown),
86 SAI-AIS-AMF-B.04.01 Section 3.2.2.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.3 Service Instance States

3.2.3.1 Administrative State

The administrative state of a service instance is manipulated by the system admin-
istrator. Valid values for the administrative state of a service instance are:

• unlocked: HA states can be assigned to service units on behalf of the service
instance.

• locked: no HA state can be assigned to service units on behalf of the service
instance.

• shutting-down: the service instance is shutting down gracefully. This means
that all assignments of all its component service instances are quiescing or qui-
esced assignments.

The administrative state of a service instance is not directly exposed to components
by the Availability Management Framework API.

The administrative state of a service instance is persistent even when all nodes within
the cluster are rebooted.

Table 10 Combinations of States for a Component

Readiness State HA Readiness State for a CSI HA State for a CSI

in-service

ready-for-assignment all

ready-for-active-degraded all

not-ready-for-active no assignment, standby

not-ready-for-assignment no assignment

stopping

ready-for-assignment no assignment, quiescing

ready-for-active-degraded no assignment, quiescing

not-ready-for-active no assignment

not-ready-for-assignment no assignment

out-of-service all no assignment
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.3 87

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Note: The administrative state value of locked-instantiation is not a valid state value
for a service instance, as a service instance cannot be terminated and made
non-instantiable as other logical entities may be.

3.2.3.2 Assignment State

The assignment state of a service instance indicates whether the service repre-
sented by this service instance is being provided or not by some service unit. Valid
values for the assignment state of a service instance are:

• unassigned: a service instance is said to be unassigned if no service unit has
the active or quiescing HA state for this service instance.

• fully-assigned: a service instance is said to be fully-assigned if and only if
• the number of service units having the active or quiescing HA state for the

service instance is equal to the preferred number of active assignments for
the service instance, which is defined in the redundancy model of the corre-
sponding service group (see Section 3.6), and

• the number of service units having the standby HA state for the service
instance is equal to the preferred number of standby assignments for the ser-
vice instance, which is defined in the redundancy model of the corresponding
service group (see Section 3.6).

• partially-assigned: a configured service instance that is neither unassigned nor
fully-assigned is said to be partially-assigned.

The following table shows the preferred number of active and standby assignments,
for various redundancy models (additionally, refer to Section 3.6):

Table 11 Preferred Number of Active and Standby Assignments

Redundancy
Model

Preferred Number of Active
Assignments

Preferred Number of Standby
Assignments

2N 1 1

N+M 1 1

N-Way 1 as configured for the service
instance

N-Way Active as configured for the service
instance

0

No-Redundancy 1 0
88 SAI-AIS-AMF-B.04.01 Section 3.2.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
It is the Availability Management Framework that determines the value of the assign-
ment state.

The assignment state of a service instance is not directly exposed to components by
the Availability Management Framework API.

When a service instance enters the unassigned state, an alarm will be issued. For
other changes in the assignment state, appropriate notifications will be issued (see
Chapter 11).

3.2.4 Component Service Instance States

The Availability Management Framework does not define any states for a component
service instance; instead states are defined for the service instance to which this
component service instance pertains.

3.2.5 Service Group States

The only state defined by the Availability Management Framework for service groups
is the administrative state. It can be manipulated by the system administrators and
is an extension of the administrative state proposed by the ITU X.731 state manage-
ment model ([9]). Valid values for the administrative state of a service group are:

• unlocked: the service group has not been directly prohibited from providing ser-
vice by the administrator.

• locked: the service group has been administratively prohibited from providing
service.

• locked-instantiation: the administrator has prevented all service units of the
service group from being instantiated by the Availability Management Frame-
work.

• shutting-down: the administrator has prevented all service units contained
within the service group from taking new service instance assignments and
requested that existing service instance assignments be gracefully removed.
When all service instances assigned to all the service units within the service
group have finally been removed, the administrative state of the service group
transitions to locked, that is, the administrative state of the service group is
locked after completion of the shutting down operation.

The Availability Management Framework uses the administrative state of the service
group to determine the readiness state of the service units of the service group, as
described in Section 3.2.1.4.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.4 89

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The administrative state of a service group is persistent even when all nodes within
the cluster are rebooted.

The administrative state of a service group is not directly exposed to components by
the Availability Management Framework, but rather only indirectly, as the readiness
state of the service unit has an impact on component service instance assignments.

Note: Though a service group has no associated HA state, this specification uses
the term “assign a service instance” to a service group, meaning that the ser-
vice instance is assigned to one or more service units of the service group.

3.2.6 Node States

3.2.6.1 Administrative State

The administrative state of a node is an extension of the administrative state pro-
posed by the ITU X.731 state management model ([9]). The administrative state of a
node can be set by the system administrator. Valid values for the administrative state
of a node are:

• unlocked: the node has not been directly prohibited from providing service by
the administrator.

• locked: the node has been administratively prohibited from providing service.
• locked-instantiation: the administrator has prevented all service units of the

node from being instantiated by the Availability Management Framework. Thus,
all service units within the node are not instantiable.

• shutting-down: the administrator has prevented all service units contained
within the node from taking new service instance assignments and requested
that existing service instance assignments be gracefully removed. When all ser-
vice instances assigned to all the service units within the node have finally been
removed, the administrative state of the node transitions to locked, that is, the
administrative state of the node is locked after completion of the shutting down
operation.

The Availability Management Framework uses the administrative state of the node to
determine the readiness state of the service units of the node, as described in
Section 3.2.1.4.

The administrative state of a node is persistent even when all nodes within the cluster
are rebooted.
90 SAI-AIS-AMF-B.04.01 Section 3.2.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The administrative state of a node is not directly exposed to components by the Avail-
ability Management Framework, but rather only indirectly, as the readiness state of
the service unit has an impact on component service instance assignments.

3.2.6.2 Operational State

The operational state of the node reflects its error status. Valid values for the opera-
tional state of a node are:

• enabled: the operational state transitions from disabled to enabled when a suc-
cessful repair action has been performed on the node (see Section 3.11.1.4).

• disabled: the operational state of a node transitions to disabled if a component
of the node has transitioned to the disabled state and the Availability Manage-
ment Framework has taken a recovery action at the level of the entire node
(node switch-over, fail-over, or failfast).

The operational state of a node is enabled when the node joins the cluster for the first
time. It is set to disabled when the Availability Management Framework performs a
node-level recovery action. After a successful repair, the operational state of the node
is set again to enabled by the entity performing the repair (Availability Management
Framework or other entity). An administrative operation is provided to clear the dis-
abled state of a node, so that an entity different from Availability Management Frame-
work may perform the repair and declare the node repaired.

The Availability Management Framework uses the operational state of the node to
determine the readiness state of the service units of the node, as described in
Section 3.2.1.4. The operational state of a node is valid even after a node left the
membership, as it is used to provide the information if the node was healthy or had a
failure when leaving. The following explains the state transitions in detail:

The operational state of a node is not directly exposed to components by the Avail-
ability Management Framework, but rather only indirectly, as the readiness state of
the service unit has an impact on component service instance assignments.

If a node is enabled and in the locked-instantiation administrative state when it leaves
the cluster membership, the node stays enabled until it joins the cluster again.

If a node is enabled and not in the locked-instantiation administrative state when it
leaves the cluster membership, the node becomes disabled while it is out of the clus-
ter and becomes enabled again when it rejoins the cluster.

If a disabled node with the automatic repair attribute (see Section 3.11.1.4) turned on
unexpectedly leaves the cluster membership, the Availability Management Frame-
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.6.2 91

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
work should assess the state of the node when the node rejoins the cluster member-
ship to ascertain if it needs to proceed with the planned repair action that was
potentially interrupted when the node unexpectedly left the cluster membership.

If a disabled node with the automatic repair attribute turned off leaves the cluster
membership, the operational state of the node (and of its contained entities) is not
modified when the node joins the cluster again. Note that the operational state of the
node may have been reenabled by an SA_AMF_ADMIN_REPAIR administrative oper-
ation before the node rejoined the cluster, in which case the node becomes enabled
upon rejoining the cluster.

3.2.7 Application States

The only state defined by the Availability Management Framework for an application
is the administrative state. It can be manipulated by the system administrator and is
an extension of the administrative state proposed by the ITU X.731 state manage-
ment model ([9]). Valid values for the administrative state of an application are:

• unlocked: the application has not been directly prohibited from providing service
by the administrator.

• locked: the application has been administratively prohibited from providing ser-
vice.

• locked-instantiation: the administrator has prevented all service units of the
application from being instantiated by the Availability Management Framework.

• shutting-down: the administrator has prevented all service units contained
within the application from taking new service instance assignments and
requested that existing service instance assignments be gracefully removed.
When all service instances assigned to all the service units within the application
have finally been removed, the administrative state of the application transitions
to locked, that is, the administrative state of the application is locked after com-
pletion of the shutting down operation.

The Availability Management Framework uses the administrative state of the applica-
tion to determine the readiness state of the service units of the application, as
described in Section 3.2.1.4.

The administrative state of an application is persistent, even when all nodes within
the cluster are rebooted.

The administrative state of an application is not directly exposed to components by
the Availability Management Framework, but rather only indirectly, as the readiness
state of the service unit has an impact on component service instance assignments.
92 SAI-AIS-AMF-B.04.01 Section 3.2.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.8 Cluster States

The only state defined by the Availability Management Framework for a cluster is the
administrative state. It can be manipulated by the system administrator and is an
extension of the administrative state proposed by the ITU X.731 state management
model ([9]). Valid values for the administrative state of a cluster are:

• unlocked: the cluster has been administratively allowed to provide service.
• locked: the cluster has been administratively prohibited from providing service.
• locked-instantiation: the administrator has prevented all service units of the

cluster from being instantiated by the Availability Management Framework.
Thus, all service units within the cluster are not instantiable.

• shutting-down: the administrator has prevented all service units contained
within the cluster from taking new service instance assignments and requested
that existing service instance assignments be gracefully removed. When all ser-
vice instances assigned to all the service units within the cluster have finally
been removed, the administrative state of the cluster transitions to locked, that
is, the administrative state of the cluster is locked after completion of the shutting
down operation.

The Availability Management Framework uses the administrative state of the cluster
to determine the readiness state of the service units of the cluster, as described in
Section 3.2.1.4.

The administrative state of a cluster is persistent across the reboot of the cluster.

The administrative state of a cluster is not directly exposed to components by the
Availability Management Framework, but rather only indirectly, as the readiness state
of the service unit has an impact on component service instance assignments.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.8 93

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.9 Summary of States Supported for the Logical Entities

Table 12 summarizes the states that the Availability Management Framework sup-
ports for the logical entities of the system model.

The administrative states of service units, service groups, service instances, nodes,
applications, and the cluster are completely independent in the sense that one does
not affect the other. As an example, a service unit might be administratively unlocked
while its enclosing node is locked. Whether the service unit is actually administra-
tively prevented from providing service or not depends on the administrative state of
the service unit and on the administrative states of its containing node, service group,
application, and the cluster. The corresponding rules are given in Section 3.2.1.2.

Note that the administrative, presence, and operational states of a particular entity
typically do not have a direct impact on each other. However, certain incidents may
change more than one of these states, as explained next:

• A service unit failure can lead to its presence state changing to uninstantiated
and its operational state changing to disabled. This incident is an example of
an event that changes both the operational and presence states.

• When a service unit is administratively locked for instantiation (refer to
Section 9.4.4 on page 375), its presence state changes to uninstantiated, and
its administrative state changes to locked-instantiation, but its operational
state remains unchanged.

Table 12 Summary of States Supported for the Logical Entities

Logical Entity States

cluster administrative

application administrative

service group administrative

node administrative, operational

service unit administrative, operational, readiness, HA readiness,
HA, presence

component operational, readiness, HA readiness, HA, presence

service instance administrative, assignment

component service instance -
94 SAI-AIS-AMF-B.04.01 Section 3.2.9 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Note that the states of service units and of their components are closely related and
depend on each other:

• The operational state of a service unit is directly affected when the operational
state of one of its components changes.

• The presence state of a service unit is directly affected when the presence state
of one of its components changes.

• The readiness state of a component is affected when the readiness state of the
containing service unit changes. Thus, administrative changes on a service unit
have a direct impact on all components of a service unit.

In a similar way, the administrative state of the cluster, applications, AMF nodes, and
service groups affect the readiness state of the contained service units and compo-
nents.

Administrative commands are propagated from a parent to all its children by the
readiness state. Dynamic changes are propagated in the opposite direction, from the
component to the containing service unit, based on the component’s presence or
operational state.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.2.9 95

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.3 Fail-Over and Switch-Over
The terms component service instance fail-over and component service
instance switch-over are used to designate two scenarios in which a component
assigned the active HA state for a particular component service instance loses the
active assignment.

The term fail-over is used to designate a recovery procedure performed by the Avail-
ability Management Framework when a component with the active HA state for a
component service instance fails (when, for instance, its operational state becomes
disabled), and the Availability Management Framework decides to reassign the active
HA state for the component service instance to another component. In a fail-over sit-
uation, the faulty component is abruptly terminated either by the fault itself (for exam-
ple, a node failure) or by the Availability Management Framework, which promptly
isolates the fault by executing the appropriate cleanup operation for the component
(see Table 37 in Appendix A).

The term switch-over is used to designate circumstances in which the Availability
Management Framework moves the active HA state assignment of a particular com-
ponent service instance from one component C1 to another component C2 while the
component C1 is still healthy and capable of providing the service (that is, C1 opera-
tional state is enabled). Switch-over operations are usually the consequence of
administrative operations (such as lock of a service unit) or escalation of recovery
procedures (for details about recovery escalations, see Section 3.11). To minimize
the impact of the switch-over operation, the Availability Management Framework per-
forms an orderly transition of the HA state of C1 from active to quiesced before
assigning the active HA state to C2. After C2 has been assigned active for the compo-
nent service instance, the Availability Management Framework will typically remove
the component service instance assignment from C1.

Component service instance fail-overs and component service instance switch-overs
are performed in the context of service instance fail-overs and service instance
switch-overs. The terms service instance fail-over and service instance switch-
over are used to designate situations in which the Availability Management Frame-
work removes the active HA state of a service unit for a particular service instance. A
service instance switch-over operation is the consequence of an administrative oper-
ation such as a lock operation, whereas a fail-over operation is the consequence of a
failure recovery. As described in Section 3.11, it should be noted that depending on
configuration options, a service instance fail-over may be implemented as a fail-over
of all component service instances assigned to the failed component, while compo-
nent service instances assigned to non faulty components are simply switched-over.
96 SAI-AIS-AMF-B.04.01 Section 3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
When the active assignment of a service instance to a service unit is removed from
the service unit in the context of a fail-over or a switch-over, the Availability Manage-
ment Framework must choose another service unit to take that active assignment. All
other service units in the service group are considered following a decreasing prefer-
ence order (i.e. most preferred service unit is considered first). The following rules are
used to order the service units:

• Service units that are assigned standby for the service instance are preferred
over other service units. This rule applies only to the 2N, N+M, and N-way redun-
dancy models (for a description of redundancy models, refer to Section 3.6).

• If several service units are assigned standby for the service instance, a service
unit with a higher ranking standby assignment for that service instance is pre-
ferred over a service unit with a lower ranking standby assignment. This rule
applies only to the N-way redundancy model (see Section 3.6.4).

• Instantiated service units are preferred over uninstantiated service units.

The first (or possibly the only one) service unit in this ordered list that can take the
active assignment for the service instance without exceeding the resource capacity of
its AMF node (see Section 3.6.1.3) is chosen by the Availability Management Frame-
work.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.3 97

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.4 Possible Combinations of States for Service Units

3.4.1 Combined States for Pre-Instantiable Service Units

Table 14 and FIGURE 4 show the possible combinations of states for pre-instantiable
service units. The first column of Table 14 contains the combined administrative
states of the service unit and of the entities that enclose it, that is, service group, node
(for a local service unit), application, and cluster. The combined administrative state
has been introduced only for convenience, and its respective values are explained in
Table 13.

The terms “Operational”, “Presence”, “Readiness”, and “HA State” in the heading of
Table 14 refer to the respective states of a service unit. The operational state of the
node hosting the service unit is not shown in this table, but its effect is as follows:
unless otherwise stated in footnotes to table rows, all rows in the table apply if the
operational state of the node is enabled. If its operational state is disabled, only the
rows containing “disabled” in the second column apply, irrespective of whether the
operational state of the service unit is enabled or disabled.

Table 13 Combined Administrative States for the Service Unit

Combined
Administrative State Meaning

“unlocked” The service unit and all its enclosing entities are in the unlocked
administrative state.

“locked” • One or more of the entities service unit and its enclosing entities
are in the locked administrative state and

• neither the service unit nor any of its enclosing entities are in the
locked-instantiation administrative state.

"locked-instantiation" • One or more of the entities service unit and its enclosing entities
are in the locked-instantiation administrative state and

• the service unit and all its enclosing entities that are not in the
locked-instantiation state are either in the unlocked or locked
administrative states.

"shutting-down" • One or more of the entities service unit and its enclosing entities
are in the shutting-down administrative state and

• the service unit and all enclosing entities that are not in the shut-
ting-down state are in the unlocked administrative state.
98 SAI-AIS-AMF-B.04.01 Section 3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40

Table 14 Combined States for Pre-Instantiable Service Units

Combined
Administrative State
from Table 13

Operational Presence Readiness HA

“locked” enabled uninstantiated
instantiating
instantiated
restarting

out-of-service [no HA state]

“locked” disabled uninstantiated
instantiation-failed
terminating
termination-failed

out-of-service [no HA state]

“unlocked” enabled instantiated
restarting

in-service any

“unlocked” enabled uninstantiated
instantiating
terminating

out-of-service [no HA state]

“unlocked” disabled uninstantiated
instantiation-failed
terminating
termination-failed

out-of-service [no HA state]

“shutting-down” enabled instantiated
restarting

stopping quiescing
quiesced

“shutting-down” enabled instantiating
terminating

stopping [no HA state]

“shutting-down” enabled uninstantiated out-of-service [no HA state]
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.4.1 99

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Reasons for a service unit to move from one combination of states to another:

• lock, lock-instantiation, shutdown, unlock-instantiation or unlock administrative
operation,

• failure of a component contained in the service unit, and which escalates to dis-
abling the containing service unit, and thus leading to a clean up and uninstanti-
ation of the service unit,

• repair of a failed service unit (by restarting the service unit, by rebooting the
node, by invoking the saAmfComponentErrorClear_4() function, or by exe-
cuting the SA_AMF_ADMIN_REPAIRED administrative operation), and

• all components contained in the service unit leaving the
SA_AMF_HA_QUIESCING state for all their component service instances
(labeled with "Stopped" in the next diagram);

• concerning service units containing contained components, the following addi-
tional reasons: termination or restart of the associated container component,
administrative lock or shutdown of a service instance containing the correspond-
ing container CSI, or administrative lock or shutdown of the service unit contain-
ing the associated container component.

“shutting-down” disabled uninstantiated
instantiation-failed
instantiating
instantiated1

restarting
terminating
termination-failed

out-of-service [no HA state]

“locked-instantiation” enabled uninstantiated
terminating

out-of-service [no HA state]

“locked-instantiation” disabled uninstantiated
instantiation-failed
terminating
termination-failed

out-of-service [no HA state]

1. This combination of states applies only if the node hosting the service unit is disabled while the service unit itself
is still enabled.

Table 14 Combined States for Pre-Instantiable Service Units (Continued)

Combined
Administrative State
from Table 13

Operational Presence Readiness HA
100 SAI-AIS-AMF-B.04.01 Section 3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Some of the important state transitions for a pre-instantiable service unit are shown in
FIGURE 4. The following simplifications were made in this figure:

• only the presence state instantiated and uninstantiated are considered;
• the states shown as locked, unlocked, and so on refer to the administrative state

of the service unit; it is assumed that the enclosing entities are all in the unlocked
administrative state;

• for the transitions among states, only “Instantiate” and administrative operations
are considered (Lock, Unlock, and so on), and they apply only to the service unit;

• the operational state of the node hosting the service unit is enabled.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.4.1 101

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 4 State Transitions for Pre-Instantiable Service Units

locked-instantiation,

disabled, uninstantiated

locked,

disabled, uninstantiated

locked,

enabled, uninstantiated

locked-instantiation,

enabled, uninstantiated

unlocked,

enabled, uninstantiated

unlocked,

disabled, uninstantiated

unlocked,

enabled, instantiated

Shutdown

Repair

Instantiate

Unlock Instantiation

Lock Instantiation

Repair

RepairFailure

Lock Instantiation

Unlock Instantiation

Failure

Unlock

Unlock

Failure

Shutdown

Failure

locked,

enabled, instantiated

Shutdown

Unlock

Lock Instantiation

Failure

shutting-down,

enabled, instantiated

Lock

Shutdown

Failure

Unlock

Instantiate

Lock

Lock

Lock
102 SAI-AIS-AMF-B.04.01 Section 3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.4.2 Combined States for Non-Pre-Instantiable Service Units

Table 15 and FIGURE 5 show the possible combinations of states for non-pre-instan-
tiable service units. The terms “Operational”, “Presence”, “Readiness”, and “HA
State” in the heading of Table 15 refer to the respective states of a service unit. The
operational state of the node hosting the service unit is not shown in this table, but its
effect is as follows:

All rows in the table apply if the operational state of the node is enabled. If its opera-
tional state is disabled, only the rows containing “disabled” in the second column
apply, irrespective of whether the operational state of the service unit is enabled or
disabled.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.4.2 103

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Table 15 Combined States for Non-Pre-Instantiable Service Units

Combined
Administrative State
from Table 13

Operational Presence Readiness HA

“locked” enabled uninstantiated
instantiating
restarting
terminating

out-of-service [no HA state]

“locked” disabled uninstantiated
instantiation failed
terminating
termination failed

out-of-service [no HA state]

“unlocked” enabled uninstantiated in-service [no HA state]

“unlocked” enabled instantiating
instantiated
restarting

in-service active

“unlocked” disabled uninstantiated
instantiation failed
terminating
termination failed

out-of-service [no HA state]

“shutting-down” enabled instantiating
instantiated
restarting

stopping quiescing

“shutting-down” enabled uninstantiated
terminating

stopping [no HA state]

“shutting-down” disabled uninstantiated
instantiation-failed
terminating
termination-failed

out-of-service [no HA state]

“locked-instantiation” enabled uninstantiated out-of-service [no HA state]

“locked-instantiation” disabled uninstantiated
instantiation failed
terminating
termination failed

out-of-service [no HA state]
104 SAI-AIS-AMF-B.04.01 Section 3.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Reasons for a service unit to move from one combination of states to another:

• lock, lock-instantiation, shutdown, unlock-instantiation, or unlock administrative
operation,

• failure of a component contained in the service unit, which escalates to disabling
the containing service unit, and thus cleaning up and uninstantiating the service
unit,

• service unit uninstantiated by the Availability Management Framework, and
• service unit instantiated by the Availability Management Framework.

Some of the important state transitions for a non-pre-instantiable component are
shown in FIGURE 5.

The following simplifications were made in this figure:

• only the presence state instantiated and uninstantiated are considered;
• the states shown as locked, unlocked, and so on refer to the administrative state

of the service unit; it is assumed that the enclosing entities are all in the unlocked
administrative state;

• for the transitions among states, only “Instantiate”, “Terminate”, and administra-
tive operations are considered (Lock, Unlock, and so on), and they apply only to
the service unit;

• the operational state of the node hosting the service unit is enabled;
• no transitions and states induced by the shutdown administrative operation are

shown.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.4.2 105

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 5 State Transitions for Non-Pre-Instantiable Service Units

locked-instantiation,

disabled, uninstantiated
locked,

disabled, uninstantiated

locked,

enabled, uninstantiated

locked-instantiation,

enabled, uninstantiated

unlocked,

enabled, uninstantiated

unlocked,

disabled, uninstantiated

unlocked,

enabled, instantiated

Lock

Repair

Instantiate

Unlock Instantiation

Lock Instantiation

Repair RepairFailure

Lock Instantiation

Unlock Instantiation

Failure

Unlock

Unlock

Failure

Lock

Failure

Lock

Terminate
106 SAI-AIS-AMF-B.04.01 Section 3.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.5 Component Capability Model
To accommodate possible simplifications in component development, whereby com-
ponents may implement only restricted capabilities, the Availability Management
Framework defines the component capability model. The component capability
always applies to a component for a component service type. Note that the letters x
and y in the name of a component capability indicate only multiplicity of numbers of
active or standby component service instances of a certain component service type.
The precise values of the maximum number of active and standby CSIs are config-
ured by setting the saAmfCompNumMaxActiveCSIs and
saAmfCompNumMaxStandbyCSIs configuration attributes of the
SaAmfCompCsType association class (see Section 8.13.2).

• x_active_and_y_standby: for a certain component service type, the component
supports all values of the HA state, and it can have the active HA state for x
component service instances and the standby HA state for y component service
instances at a time.

• x_active_or_y_standby: for a certain component service type, the component
supports all values of the HA state. It can be assigned either the active HA state
for x component service instances or the standby HA state for y component ser-
vice instances at a time.

• 1_active_or_y_standby: for a certain component service type, the component
supports all values of the HA state. It can be assigned either the active HA state
for only one component service instance or the standby HA state for y compo-
nent service instances at a time.

• 1_active_or_1_standby: for a certain component service type, the component
supports all values of the HA state, and it can be assigned either the active HA
state or the standby HA state for only one component service instance at a time.

• x_active: for a certain component service type, the component cannot be
assigned the standby HA state for component service instances, but it can be
assigned the active HA state for x component service instances at a time.

• 1_active: for a certain component service type, the component cannot be
assigned the standby HA state for component service instances, but it can be
assigned the active HA state for only one component service instance at a time.

• non-pre-instantiable: for a certain component service type, the component pro-
vides service as soon as it is started. The Availability Management Framework
delays the instantiation of the component to the time when the component is
assigned the active HA state on behalf of a component service instance. When
the active HA state for a component service instance is removed from the com-
ponent, the Availability Management Framework terminates the component.
Such a component is termed non-pre-instantiable.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.5 107

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Service units may hold components supporting different capability models. The num-
ber of service instances assigned to a service unit depends on the number of compo-
nent service instances supported by the components included in the service unit per
component service type.
108 SAI-AIS-AMF-B.04.01 Section 3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6 Service Group Redundancy Model
By configuration, a service group has associated with it a service group redun-
dancy model (specified by the saAmfSgtRedundancyModel configuration attribute
of the SaAmfSGType object class, shown in Section 8.9). The service units within a
service group provide service availability to the service instances that they support
according to the particular service group redundancy model.

The redundancy models are described in this chapter in terms of the rules followed by
the Availability Management Framework when it assigns the active and standby HA
state to service units of a service group for one or several service instances.

The assignment of the quiesced and quiescing HA states to the service units for par-
ticular service instances is not described here, as these states are not an integral part
of the redundancy models definition, but rather transition states used by the Availabil-
ity Management Framework to perform switch-over operations or implement the shut-
down administrative operation.

In the remainder of this description, a service unit assigned the quiescing HA state for
a service instance must be accounted as if the same service unit were assigned the
active HA state for that same service instance.

The transient quiesced HA state is peculiar, as during a switch-over operation, a ser-
vice unit assigned the quiesced HA state for a service instance must be accounted as
being assigned either the active or standby HA state for that service instance.
In the remainder of this description, a service unit assigned the quiesced HA state for
a particular service instance should be accounted as a service unit assigned the
active HA state for that service instance if no other service unit has the active HA
state assigned for that service instance; otherwise, it should be accounted as a ser-
vice unit assigned the standby HA state for that service instance.

In the remainder of this description, a service unit that has the stopping readiness
state must be accounted as an in-service service unit.

This specification defines the following service group redundancy models:

• 2N
• N+M
• N-way
• N-way active
• no-redundancy
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6 109

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
These service group redundancy models are not exposed in the APIs of this specifi-
cation. Note that the N in the 2N model refers to the number of service groups,
whereas N and M, when used in the other models, refer to service units. This usage
of N in the 2N model is due to common usage of the term 2N to refer to 1+1
active/standby redundancy configurations, which can be repeated N times.

Each redundancy model and the common characteristics of all or most of the redun-
dancy models are explained in the following sections. Section 3.6.7 on page 182
describes the effect of administrative operations on the redundancy models.

3.6.1 Common Characteristics
Note: The following description uses several ordered lists like ordered list of service

units or ordered list of service instances. The order of the elements in the list
is based on the relative importance of these elements. The terms rank or
ranking are used as synonyms to this order. Similarly, ranked list is also
used as a synonym to ordered list.

3.6.1.1 Common Definitions

The following definitions and concepts are common to all the supported redundancy
models.

• Instantiable service units: a service unit is instantiable if and only if all the fol-
lowing conditions are met:
⇒ it is configured in the Availability Management Framework;
⇒ it is contained in a CLM node that is currently a member of the cluster;
⇒ it is contained in an AMF node whose operational state is enabled;
⇒ its presence state is uninstantiated;
⇒ its operational state is enabled;
⇒ none of the relevant entities (service group, AMF node, etc.) has the adminis-

trative state locked-instantiation (however, their administrative state can be
locked).

Note that pre-instantiable service units in the instantiable set are out-of-service.

• in-service service units: these are the service units that have a readiness state
of either in-service or stopping.
110 SAI-AIS-AMF-B.04.01 Section 3.6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Instantiated service units: in the context of this discussion, these are service
units with the presence state of either instantiated, instantiating, or restarting.
When the Availability Management Framework intends to select service units to
be in the "instantiated service units" list, it chooses these service units from the
instantiable service units that are not administratively locked at any of the levels
service unit, containing node, service group, application, and the cluster. This
selection is done according to the service unit rank defined for the particular
redundancy models. The notion of “preferred number of in-service service units”
is defined later for each redundancy model. See, for instance, Section 3.6.2.2.
Note that the instantiable and instantiated sets are disjoint.

• Assigned service units: these are the service units that have at least one SI
assigned to them. At runtime, this number is the value of the
saAmfSGNumCurrAssignedSUs runtime attribute of the saAmfSG object class
(see Section 8.9). If the Availability Management Framework needs to choose a
service unit for assignment from the list of instantiated service units, it has to
choose from the in-service instantiated service units.

• Instantiated and non-instantiated spare service units: all instantiated but
unassigned service units are called instantiated spare service units, or simply
spare service units. All non-instantiated service units of a service group are
called non-instantiated spare service units. At runtime, these numbers of
spare service units are the values of the
saAmfSGNumCurrInstantiatedSpareSUs and
saAmfSGNumCurrNonInstantiatedSpareSUs runtime attributes of the
saAmfSG object class (see Section 8.9).

• Ordered list of service units for a service group: for each service group, an
ordered list of service units defines the rank of the service unit within the service
group. This rank is configured by setting the saAmfSURank attribute of the
saAmfSU object class (see Section 8.10). The rank is represented by a positive
integer. The lower the integer value, the higher the rank. The size of the list is
equal to the number of service units configured for the service group. This
ordered list is used to specify the order in which service units are selected to be
instantiated. This list can also be used to determine the order in which a service
unit is selected for SI assignments when no other configuration parameter
defines it. It is possible that this list has only one service unit. However, to main-
tain the availability of the service provided by the service group, the list should
include at least two service units.
Default value: no default, the order is implementation-dependent.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.1 111

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Reduction Procedure: the configuration of a service group describes the
desired SI assignments that the Availability Management Framework should
maintain when the preferred number of its service units can actually be instanti-
ated; however, if one ore several service units fail to instantiate or are adminis-
tratively taken out of service, all desired SI assignments may not be maintained
anymore, and the reduction procedure describes for most redundancy models
the behavior of the Availability Management Framework in such a situation.

• No spare HA state: as spare service units have no SI assigned to them, no
"spare" HA state is defined for service units and components on behalf of ser-
vice instance and component service instances, respectively. Hence, protection
groups do not contain components of the spare service units, and so no changes
need to be tracked for these components.

• Auto-adjust option: this option indicates that it is required that the SI assign-
ments to the service units in the service group are transferred back to the most
preferred SI assignments in which the highest-ranked available service units are
assigned the active or standby HA states for those SIs. The auto-adjust option is
configured by setting the saAmfSGAutoAdjust attribute of the saAmfSG object
class (see Section 8.9). If the auto-adjust option is not set, the HA assignments
to service units are kept unchanged even when a higher-ranked service unit
becomes eligible to take assignments (for example, when a new node joins the
cluster). For details when the auto-adjust option is initiated, refer to
Section 3.6.1.2.

The following definitions are used in most, but not all, of the supported redundancy
models.

• Multiple (ranked) standby assignments: for some redundancy models, it is
possible that multiple service units are assigned the standby HA state for a given
SI. These service units are termed the standby service units for this given SI.
The standby service units are ranked, meaning that one service unit will be con-
sidered standby #1, another one standby #2, and so on. The rank is represented
by a positive integer. The lower the integer value, the higher the rank. The
standby service unit with the highest rank will be assigned the active HA state for
a given service instance if the service unit that is currently active for that service
instance fails. The rank of a standby service unit for an SI is configured by set-
ting the saAmfRank attribute of a service unit identified by safRankedSu in the
SaAmfSIRankedSU association class (see Section 8.11).
When the Availability Management Framework assigns component service
instances to a component, it notifies the component about the rank of its standby
assignment. This additional information can be used for the component in pre-
paring itself for the standby role.
112 SAI-AIS-AMF-B.04.01 Section 3.6.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Ordered list of SIs: this ordered list is used to rank the SIs based on their impor-
tance. The rank of an SI is configured by setting the saAmfSIRank attribute of
the saAmfSI object class (see Section 8.11). The rank is represented by a posi-
tive integer. The lower the integer value, the higher the rank. The Availability
Management Framework uses this ranking to choose SIs to either support with
less than the wanted redundancy or to drop them completely if the set of instan-
tiated service units does not allow full support of all SIs. Note that the rank of an
SI is global to the cluster and represents the importance of a SI in the whole
cluster.

• Redundancy level of a Service Instance: the redundancy level is the number
of service units being assigned an HA state for this service instance.

Though most redundancy models are applicable to service groups containing non-
pre-instantiable service units (see Table 16 in Section 3.7), the description provided
in the following sections only applies to service groups with pre-instantiable service
units, as they lead to more complex situations. The behavior of the various redun-
dancy models for service groups with non-pre-instantiable service units can be
deduced from the following descriptions by taking into account the following restric-
tions for service groups with non-pre-instantiable service units:

• there are no spare service units and
• no standby service units;
• there is one and only one SI assignment per in-service service unit;
• the three sets of instantiated service units, in-service service units, and active

service units are identical.

3.6.1.2 Initiation of the Auto-Adjust Procedure for a Service Group

If a service group is configured with the auto-adjust option set, that is, the
saAmfSGAutoAdjust configuration attribute is set to SA_TRUE (see the SaAmfSG
object class in Section 8.9), the Availability Management Framework should attempt
to return the assignments of the service group back to the most preferred assign-
ments (as defined in Section 3.6.1.1) as soon as possible. In general, auto-adjust-
ment for a service group is needed in the following cases:

• A service unit configured for the service group becomes instantiable.
• The readiness state of a service unit configured for the service group becomes

in-service.
• The HA readiness state of a service unit for a service instance changes in a way

that allows the assignment of the service instance to the service unit.
• A locked service instance configured for the service group becomes unlocked.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.2 113

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Free capacity of a node hosting a service unit becomes available such that a
service instance can be assigned to a service unit.

When a service group becomes eligible for auto-adjustment, the Availability Manage-
ment Framework can initiate the auto-adjust procedure for that service group immedi-
ately. This seems practical when an administrative action has made the service group
eligible for the auto-adjust (for example, when a service instance is unlocked by the
administrative operation). However, if the completion of a recovery/repair operation
has made the service group eligible for auto-adjustment (for example, if a node joins
the cluster after the repair), it is not so wise to run the auto-adjust procedure for the
service group involving the newly repaired service units immediately. Thus, the ser-
vice group-level configuration attribute auto-adjust probation period has been intro-
duced (actually, the saAmfSGAutoAdjustProb configuration attribute in the
SaAmfSG object class, shown in Section 8.9). When a service unit becomes available
for auto-adjustment after a repair/recovery operation, the service unit enters its auto-
adjust probation period, and it cannot thereby be used for auto-adjustment during this
probation period. Note that the service group can be auto-adjusted using other ser-
vice units, but auto-adjustment cannot use the service units in their auto-adjust pro-
bation periods. Also, the service unit on probation can and should be used in other
operations such as switch-over and fail-over.

As soon as the auto-adjust probation period of a service unit elapses, the Availability
Management Framework initiates the auto-adjust procedure for the corresponding
service group.

By configuring the auto-adjust probation period appropriately, the administrator can
ensure that the Availability Management Framework does not run into unwanted situ-
ations such as toggling the active service units due to, for example, intermittent fail-
ures of a service unit or inadequate repair operations.

3.6.1.3 AMF Node Capacity Limitation

In an AMF cluster, the capacity of AMF nodes in terms of resources like memory or
computing power may vary. Some AMF nodes may have higher capacity in terms of
these different resources than other AMF nodes. Also, different service instances
may use these resources differently, one may require more memory, others may
require more computing power. The usage of resources may also depend on the HA
state the service instances are assigned to a service unit. Accordingly, service units
of the same AMF node may be able to support more service instances of one service
type than of another service type, and different AMF nodes may be able to support
different combinations of service instances.
114 SAI-AIS-AMF-B.04.01 Section 3.6.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The Availability Management Framework configuration provides means for specifying
the requirements of SIs in terms of logical resources and the capacity of nodes in
terms of these resources. These logical resources can refer to physical resources on
the mapped CLM node.

The configuration of an SI can specify a pair of SI weights for each of these
resources, one weight when the SI is assigned active, quiescing, or quiesced to a
service unit and the other when the SI is assigned standby to a service unit. The SI
weight of an SI characterizes the load in term of these resources that the SI will
impose on the node when it is assigned to a service unit. The respective configuration
attributes belong to the SaAmfSI object class, shown in Section 8.11, and they are
termed saAmfSIActiveWeight and saAmfSIStandbyWeight.

Each value of such a multi-value attribute has the following format:

<resource name>=<weight value>

For example:

{"resource_type_name1=weight_value1",

"resource_type_name2=weight_value2",

...

"resource_type_nameN=weight_valueN"}

Whereby for X = 1, 2, …, N, resource_type_nameX denotes a particular resource
and weight_valueX the free capacity required of that resource to accommodate
the assignment.

If no weight is specified for an active or standby assignment, or it is not specified for a
particular type of resource, it means that the SI requires no resource at all or no
resource for that type, respectively.

The capacity of an AMF node is specified in the saAmfNodeCapacity configuration
attribute of the SaAmfNode object class, shown in Section 8.7.

Each value of such a multi-value attribute has the following format:

<resource name>=<capacity value>
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.3 115

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
For example:

{"resource_type_name1=capacity_value1",

"resource_type_name2=capacity_value2",

...

"resource_type_nameN=capacity_valueN"}

Whereby for X = 1, 2, …, N, resource_type_nameX denotes a particular resource
and capacity_valueX the capacity of that resource.

If no capacity is specified for a node, or it is not specified for a particular type of
resource, it means that the capacity of the node for all resources or for the resource
of that type, respectively, is not limited.

The Availability Management Framework applies the next rules when it performs an
HA state assignment for any SI to any service unit on an AMF node for which capaci-
ties have been defined:

⇒ For each resource on an AMF node, the Availability Management Framework
checks whether the sum of all SI weights of service instances assigned to ser-
vice units contained in the AMF node does not exceed the capacity of the AMF
node. An SI weight and an AMF node capacity refer to the same resource type if
they both have the same name, for instance, node_resourceY. Note that each
weight_valueX and its respective capacity_valueX must be expressed in
the same units.

⇒ If at a given time the remaining capacity of the nodes that contain the service
units configured for a service group is not sufficient to satisfy the assignments of
the SIs protected by the service group, the Availability Management Framework
must drop some SI assignments. This reduction is not limited to the assignments
of the SIs of this particular service group, but rather interpreted cluster-wide.
This reduction takes into account the global ranking of the service instances and
the common set of nodes on which the different SIs can be assigned.
When calculating which SI assignment needs to be dropped first, the following
rules should be observed:
• Standby assignments are dropped before any active assignment is dropped,

starting from SIs of lower rank.
• Dropping of an active assignment—starting with the lower rank—is consid-

ered only when the dropping of standby assignments cannot free up the
capacity required for the active assignment.
116 SAI-AIS-AMF-B.04.01 Section 3.6.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Note that as no SIs are assigned to spare service units, these service units are
ignored when the load imposed on the AMF nodes on which they reside is com-
puted.

Note: In the examples provided in the description of redundancy models, starting
with Section 3.6.2, it is assumed that the HA readiness state of all service
units for all service instances is 'ready-for-assignment' and that the hosting
node resource capacity limits are not exceeded by any of the example assign-
ments.

3.6.1.3.1 Examples

FIGURE 6 and FIGURE 7 next show two examples for node capacity limitation.

In both examples, assume that there are two service groups protecting two SIs, both
service groups associated with the 2N redundancy model; SG1 contains SU1, SU3
(spare service unit), and SU5; SG2 contains SU2 (spare service unit), SU4, and SU6.

In the first example, if Node1 fails, AMF assigns SI1 as active to SU5. As with this
assignment the capacity of Node3 would be exceeded, the standby assignment of
SI2 to SU6 is removed.

Now, assume that Node2 also fails. SI1 and SI2 cannot be both assigned as active to
SU5 and SU6, respectively, because with these assignments the capacity of Node3
would be exceeded. As the rank of SI2 is lower than the rank of SI1, SI2 is not
assigned as active to SU6.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.3.1 117

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 6 Example 1 for Node Capacity Limitation
118 SAI-AIS-AMF-B.04.01 Section 3.6.1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
In FIGURE 7, assume that Node2 fails. Then the assignments of SI1 are = {active:
SU1; standby: SU5}, and the assignments of SI2 are = {active: SU6}.
If subsequently Node1 fails too, as the capacity of Node3 does not permit both active
SI1 and active SI2 assigned to it at the same time, and the rank of SI2 is lower than
that of SI1, the active assignment of SI2 is removed from Node3.

FIGURE 7 Example 2 for Node Capacity Limitation
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.3.1 119

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.1.4 Considerations when Configuring Redundancy

This document specifies various features and options that are used by an Availability
Management Framework implementation to decide which service units are instanti-
ated and which service instances are assigned to them. However, it does not com-
pletely specify how an implementation uses the provided features and options to best
provide the highest level of service in case of a shortage of resources.

In general, resources like instantiated AMF nodes having sufficient capacity to host
service units with the desired service instances assigned to them must be available
for the Availability Management Framework when it calculates how service units are
distributed in node groups and how service instances are assigned. However, in cer-
tain cases during the lifetime of the cluster, a shortage of resources may occur.

As has been explained, it is highly recommended to perform consistency checks on
the configuration, as incorrectly setting configuration options could provide the Avail-
ability Management Framework with contradictory rules for its reactions on a short-
age of resources.

The following notes are intended to help the system architect to decide how to use
the various configuration options. These features are, for example, the cluster-wide
SI rank, the SI weight (and the limiting node capacity), the auto-adjust option for ser-
vice instances, the ordered list of service units, and node groups.

Service Groups and Nodes

A service unit may be configured on a specific node. A more flexible configuration is
possible by configuring a node group for a service unit or for its service group. A poor
configuration may lead to nodes being idle, while other nodes cannot provide enough
resources for all assignments.

Note that the assignment of a service unit to a node of the configured node group
does not change dynamically. The Availability Management Framework will not reas-
sign service unit to nodes within a node group when a node fails.

Ranks, Weights, and Capacities

Ranks, weights, and capacities are the basis for the Availability Management Frame-
work to calculate service instance assignments within the ordered lists of service
units and node groups.
120 SAI-AIS-AMF-B.04.01 Section 3.6.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
SU ranks are used by the Availability Management Framework to calculate the order
of assignments within a service group. SI ranks define the importance of a service
instance globally in the cluster and, thus, also the importance of service groups com-
pared to each other. SI ranks are used globally when the Availability Management
Framework—due to a shortage of resources—cannot assign all service instances
that are needed to support the preferred number of assignments. Cases for a short-
age of resources are:

• there are not enough nodes in-service to host the service units, or
• there are not enough service units in-service that can be assigned, or
• the capacity of the nodes is not sufficient.

The configuration of SI ranks needs to take into account SI dependencies, which can
be explicitly expressed with the SaAmfSIDependency object class in the configura-
tion or implicitly with the proxy-proxied or container-contained component relations.
That is, the rank of the SI on which other SIs depend must not be lower than the
ranks of the dependent SIs, so that dropping of lower ranks SIs does not force higher-
ranked, dependent SIs to also be dropped.

Auto-Adjust Option

If the auto-adjust option is specified, the Availability Management Framework reas-
signs service instances that are already assigned to service units to other service
units when it becomes possible, so as to match the preferred configuration.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.1.4 121

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.2 2N Redundancy Model

3.6.2.1 Basics

In a service group with the 2N redundancy model, at most one service unit will have
the active HA state for all service instances (usually called the active service unit),
and at most one service unit will have the standby HA state for all service instances
(usually called the standby service unit). Some other service units may be considered
spare service units for the service group, depending on the configuration. The com-
ponents in the active service unit execute the service, while the components in the
standby service unit are prepared to take over the active role if the active service unit
fails.

Although the goal of the 2N redundancy model is to offer redundancy in service, it is
possible that a 2N redundancy service group is configured to have only one service
unit. In this case, no redundancy is provided at the service units-level; however, the
Availability Management Framework manages the availability of such a degenerated
service group. The specification supports this single service unit 2N redundancy
model, because it makes easier, from the configuration-update perspective, to add
more service units later on when, for example, more nodes are configured into the
cluster.

Components implementing any of the capability models described in
Section 3.5 on page 107 can participate in the 2N redundancy model.

Examples of a service group with a 2N redundancy model are presented in
Section 3.6.2.4 on page 125.

For the sake of simplicity, in the subsequent discussion of this redundancy model, it is
assumed that the HA readiness state of all service units for all SIs is ready-for-assign-
ment and that the resource capacity limits of the nodes are never exceeded, as the
Availability Management Framework assigns and reassigns the SIs.

3.6.2.2 Configuration
• Ordered list of service units for a service group: this parameter is described

in Section 3.6.1.1.
Default value: no default, the order is implementation-dependent.

• Preferred number of in-service service units at a given time: the Availability
Management Framework should make sure that this number of in-service ser-
vice units is always instantiated, if possible. This preferred number is configured
by setting the saAmfSGNumPrefInserviceSUs attribute of the saAmfSG
object class (see Section 8.9). If the ordered list of service units of a service
122 SAI-AIS-AMF-B.04.01 Section 3.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
group has at least two service units, then the preferred number of in-service ser-
vice units should be at least two. If the preferred number of in-service service
units is greater than two, the service group will contain some instantiated spare
service units. These service units are called "spare" service units. The preferred
number of in-service service units for the service groups containing only non-
pre-instantiable components must be set to one.
Default value: two

• Auto-adjust option: for the general explanation of this option, refer to
Section 3.6.1.1 on page 110.
Section 3.6.2.3.3 on page 123 discusses how this option is handled in this
redundancy model.
Default value: no auto-adjust

3.6.2.3 SI Assignments and Failure Handling

3.6.2.3.1 Failure of the Active Service Unit

When an active service unit fails over, the associated standby service unit will be
assigned active for all SIs. Then, one of the spare service units will be selected and
will be assigned standby for all SIs. If the number of instantiated service units falls
below the preferred number of in-service service units, another service unit from the
ordered list of instantiable service units will be instantiated.

3.6.2.3.2 Failure of the Standby Service Unit

When a standby service unit fails, one of the spare service units will be assigned to
take over the standby role, if possible. If the number of instantiated service units falls
below the preferred number of in-service service units, another service unit from the
set of instantiable service units will be instantiated.

3.6.2.3.3 Auto-Adjust Procedure

If the auto-adjust option is set in the configuration, the Availability Management
Framework should make sure that the service group assignments are assigned back
to the preferred configuration, meaning that the highest-ranked in-service service unit
be active and the second highest-ranked in-service service unit be standby. It is obvi-
ous that the auto-adjust procedure may involve relocation of SIs. Though it is left to
the implementation how to perform an auto-adjust, it should be done with minimum
impact on the availability of the corresponding service.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.2.3 123

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.2.3.4 Cluster Startup

Because the cluster startup is a rare event, its latency may not be as critical as the
latency of other failure recovery events such as a service unit fail-over. Moreover, it is
very important to start a cluster in an orderly fashion, so that the initial runtime status
of the entities under the Availability Management Framework’s control is as close as
possible to the preferred configuration. Saying so, during the startup of the cluster,
the Availability Management Framework should wait for at most a predefined period
of time to make sure that all required service units are instantiated before assigning
SIs to service units. This period of time is specified in the
saAmfClusterStartupTimeout configuration attribute of the SaAmfCluster
object class, shown in Section 8.7. It is left to the implementation how to handle clus-
ter startup; however, the implementation should make sure that the initial assign-
ments are as close as possible to the preferred assignments.

3.6.2.3.5 Role of the List of Ordered Service Units in Assignments and Instantiations

The ordered list of service units determines the preferred configuration: the highest-
ranked in-service service unit should be assigned active and the second highest-
ranked in-service service unit assigned standby. It is used for the following purposes:

⇒ To choose among all instantiable service units which one must be instantiated.
This choice is made in situations like:

• when the number of instantiated service units drops below the preferred
number, and new service units must be instantiated, and

• when an auto-adjust procedure is performed or the
SA_AMF_ADMIN_SG_ADJUST administrative operation is executed, and
the current situation does not match the preferred configuration.

⇒ To select which of the instantiated service units will have active and standby
assignments. This choice is made each time a service instance must be
assigned to an in-service service unit.
124 SAI-AIS-AMF-B.04.01 Section 3.6.2.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.2.4 Examples

In the following example, it is assumed that the number of preferred in-service service
units is set to 2.

FIGURE 8 Example of the 2N Redundancy Model: Two Service Units on Different Nodes

After a fault that disables node U, service unit S2 on node V will be assigned to be
active for service instance A, as shown in FIGURE 9.

Service Unit S2

C3

C4

Node U

Service Unit S1

C2

Node V
Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active standby

C1
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.2.4 125

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 9 Example of the 2N RM. Two SUs on Different Nodes, Fault Has Occurred

The two service units may even reside on the same node, as shown in FIGURE 10,
which allows one to implement software redundancy with two instances of the appli-
cation running on the same node.

Node U Node V

Service Unit S2

C3

C4

Service Group

CSI A1

CSI A2
Service

Instance A

active

Protection Group A1

Protection Group A2

Node
Failure
126 SAI-AIS-AMF-B.04.01 Section 3.6.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 10 Example of the 2N Redundancy Model: Two Service Units on the Same Node

As shown in FIGURE 11, after a fault that disables component C1 within service unit
S1, service unit S2 is assigned to be active for service instance A. Note that a fault
that affects any component within a service unit and that cannot be recovered by
restarting the affected component causes the entire service unit and all components
within the service unit to be withdrawn from service. In this example, even though
component C2 is still fully operational, it must fail-over to component C4.

Node U

Service Unit S1

C1

C2

Service Unit S2

C3

C4

Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active standby
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.2.4 127

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 11 Example of the 2N RM: Two SUs on the Same Node, Fault Has Occurred

As shown in the FIGURE 12, the 2N service group redundancy model can support
N+1 strategies at the node level. Node X supports standby service units for several
service groups. If one of the other nodes fails, the corresponding service unit on node
X will be reassigned to be active for the service instance supported by the failed
node. Note that node X must support multiple service units, and might require addi-
tional resources like memory.

Node U

Service Unit S1

C1

C2

Service Unit S2

C3

C4

Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active

C1 Fails
128 SAI-AIS-AMF-B.04.01 Section 3.6.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 12 Example of the 2N RM: One Node Provides Standby SUs for Several Service Groups

Node WNode U

Service Unit S1

C1

C2

Node V Node X

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group SG1

PG A1

PG A2

active

Service Unit S3

C5

C6

Service Unit S4

C7

C8

Service Group SG2

PG B1

PG B2

Service Unit S5

C9

C10

Service Unit S6

C11

C12

Service Group SG3

PG C1

PG C2

active active

standby standby standby
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.2.4 129

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
As FIGURE 13 illustrates, the 2N redundancy model can also support strategies in
which all nodes host some service units that are active for their service instances and
other service units that are standby for their service instances.

FIGURE 13 Example of the 2N RM: Each Node Has an Active and a Standby Service Unit

Node WNode U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group SG1

PG A1

PG A2

active

Service Unit S3

C5

C6

Service Unit S4

C7

C8

Service Group SG2

PG B1

PG B2

Service Unit S6

C11

C12

Service Unit S5
C9

C10

Service Group SG3

PG C1

PG C2

active active

standby standby
standby
130 SAI-AIS-AMF-B.04.01 Section 3.6.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.2.5 UML Diagram of the 2N Redundancy Model

The 2N redundancy model is represented by the UML diagram shown in FIGURE 14.

FIGURE 14 UML Diagram for the 2N Redundancy Model

1
1.*

0..1 0..1

0..* 0..*

Service Unit

0..1
0..*

active standby A service unit can take all
active or all standby service
instance assignments at a time

2N Redundancy
Service Group

protects

Service Instance
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.2.5 131

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.3 N+M Redundancy Model

3.6.3.1 Basics

The N+M redundancy model extends the 2N redundancy model by allowing more
than two service units to have active or standby service instance assignments. N ser-
vice units have the active assignments and M service units have the standby assign-
ments.

For the sake of simplicity, in the subsequent discussion of this redundancy model, it is
assumed that the HA readiness state of all service units for all SIs is ready-for-assign-
ment and that the resource capacity limits of the nodes are never exceeded, as the
Availability Management Framework assigns and reassigns the SIs.

This redundancy model has the following characteristics:

• A service unit can be
(i) active for all SIs assigned to it or
(ii) standby for all SIs assigned to it.
In other words, a service unit cannot be active for some SIs and standby for
some other SIs at the same time.

• At any given time, several in-service service units can be instantiated for a ser-
vice group: some service units are active for some SIs, some service units are
standby for some SIs, and possibly some other service units are considered
spare service units for the service group. For simplicity of the discussion, the
service units having the active HA state for all SIs assigned to them are denoted
as "active service units", and the service units having the standby HA state for all
SIs assigned to them are denoted as "standby service units".

• The number of active service units, the number of standby service units, and the
number of spare service units of a service group are dynamic and can change
during the life-span of the service group; however, the preferred number of these
service units can be configured, as discussed in Section 3.6.3.3 on page 135.

• For each SI and at any given time, there will be at most one active service unit
and at most one standby service unit.

• At any given time, the Availability Management Framework should make sure
that the per-SI redundancy level (one service unit assigned the active HA state
and a service unit on another node assigned the standby HA state for each SI) is
guaranteed, while requirements on the load constraints in each service unit and
the number of available spare service units (see Section 3.6.3.3) are fulfilled.
132 SAI-AIS-AMF-B.04.01 Section 3.6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• As mentioned before, the objective should be to maintain the redundancy level
for all SIs (one service unit assigned the active HA state and another service unit
assigned the standby HA state for each SI); however, this may not be feasible in
some cases due to a shortage of available service units for the service group.
For example, if the number of in-service service units is not large enough to sup-
port full redundancy levels for all SIs, then some of the SIs could be supported in
a degraded mode (for instance, no service unit assigned standby for this SI). The
order of importance of SIs can be configured, as discussed in Section 3.6.3.3.

Components implementing any of the capability models described in
Section 3.5 on page 107, except the 1_active _or_1_standby capability model, can
participate in the N+M redundancy model.

3.6.3.2 Examples

A common use of the N+M redundancy model is the N+1 redundancy model, in which
a single service unit is assigned standby for N active service units, as shown in
FIGURE 15. The following diagram depicts a typical N+1 configuration. Note that
each of the components C7 and C8 of the standby service unit supports three compo-
nent service instances. Node X might require additional resources like memory to
accommodate additional component service instances.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.2 133

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 15 Example of the N+1 Redundancy Model

To illustrate a fail-over in the N+M model, assume that the service unit S2 fails. As a
consequence, service unit S4 should be assigned the active HA state for SI B. As S4
must not be assigned active for some SIs and standby for other SIs at the same time
in accordance with the redundancy model, the standby HA state for service instances
A and C will be removed from S4. Note that this scenario also applies if the involved
component capability models are x_active_and_y_standby.

In a more general N+M case, the M standby service units can be freely associated
with the N active service units. FIGURE 16 shows an example of the N+M redun-
dancy model with N=3 and M=2.

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

Service Unit S4

C7

C8

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active active

standby standbystandby

Service Group
134 SAI-AIS-AMF-B.04.01 Section 3.6.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 16 Example of the N+M Redundancy Model, Where N = 3 and M = 2

3.6.3.3 Configuration
• Ordered list of service units for a service group: this parameter is described

in Section 3.6.1.1.
Default value: no default, the order is implementation-dependent.

• Ordered list of SIs: for the general meaning of this parameter, refer to its defini-
tion in Section 3.6.1.1. The Availability Management Framework uses this rank-
ing to select some SIs to support either in non-redundant mode (that is, for each
of these SIs, there is a service unit having the active HA state, but no service unit
having the standby HA state) or to drop them completely if the Availability Man-
agement Framework encounters a shortage of service units for the full support of
all SIs; however, it is important to note that the Availability Management Frame-
work should consider not only the ordering of the SIs but also their dependen-
cies when it chooses some SIs to support partially or to drop them.
Default value: no default, the order is implementation-dependent.

Node W

Service Unit S3

C5

C6

Node Y

Service Unit S5

C9

C10

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

Service Unit S4

C7

C8

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active active

standby standbystandby
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.3 135

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Preferred number of in-service service units: the Availability Management
Framework should make sure that this number of in-service service units is
always instantiated, if possible. This preferred number is configured by setting
the saAmfSGNumPrefInserviceSUs attribute of the saAmfSG object class
(see Section 8.9). If the service units list for a service group includes at least two
service units, then the preferred number of instantiated service units should be at
least two.
Default value: the number of configured service units for the service group.

• Preferred number of active service units: this parameter indicates the pre-
ferred number of active service units at any time. This preferred number is con-
figured by setting the saAmfSGNumPrefActiveSUs attribute of the saAmfSG
object class (see Section 8.9). The Availability Management Framework should
guarantee that this number of active service units exist for the service group pro-
vided that the number of in-service service units is large enough.
Default value: no default value is specified. It is mandatory to set this number for
each service group.

• Preferred number of standby service units: this indicates the preferred num-
ber of standby service units at any time. This preferred number is configured by
setting the saAmfSGNumPrefStandbySUs attribute of the saAmfSG object
class (see Section 8.9). The Availability Management Framework should guar-
antee that this number of standby service units exist for the service group pro-
vided that the number of in-service service units and the number of service units
associated with the service group are large enough.
Default value: no default value is specified. It is mandatory to set this number for
each service group.

• Maximum number of active SIs per service unit: this indicates the maximum
number of SIs that can be assigned to a service unit, so that the service unit has
the active HA state for all these SIs. It is assumed that the load imposed by each
SI is the same. If this assumption is not true for some service instances, the ser-
vice deployer has to approximate. This maximum number is configured by set-
ting the saAmfSGMaxActiveSIsperSU attribute of the saAmfSG object class
(see Section 8.9).
Default value: no limit, a value of 0 is used to specify this.

• Maximum number of standby SIs per service unit: this indicates the maxi-
mum number of SIs that can be assigned to a service unit, so that the service
unit has the standby HA state for all these SIs. It is assumed that the load
imposed by each SI is the same. This maximum number is configured by setting
the saAmfSGMaxStandbySIsperSU attribute of the saAmfSG object class (see
Section 8.9).
Default value: no limit, a value of 0 is used to specify this.
136 SAI-AIS-AMF-B.04.01 Section 3.6.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Auto-adjust option: for the general explanation of this option, refer to
Section 3.6.1.1 on page 110.
Section 3.6.3.6 on page 146 shows an example for handling the auto-adjust
option in this redundancy model.
Default value: no auto-adjust

3.6.3.4 SI Assignments

In this section, the general direction in assigning SIs to in-service service units is dis-
cussed. Then, the assignment procedure will be illustrated using example configura-
tions.

If available service units for the service group allow it, the Availability Management
Framework will instantiate the preferred number of in-service service units for the ser-
vice group. Then, as many service units as the preferred number of active service
units will be assigned the active HA state for SIs, and as many service units as the
preferred number of standby service units will be assigned the standby HA state for
SIs, according to the configuration. Additionally, some of the service units will be ded-
icated as spare.

It is assumed that the service group configuration has passed a series of validations,
so that when as many service units as the preferred number of active service units
are assigned the active HA state, and as many service units as the preferred number
of standby service units are assigned the standby HA state, one service unit will be
assigned the active HA state, and another service unit will be assigned the standby
HA state for each SI of the service group, without violating the load limits expressed
in Section 3.6.3.3.

In case of a shortage of in-service service units, the Availability Management Frame-
work should use the ordered list of SIs in choosing which SIs have to be dropped or
supported in non-redundant mode (that is, for each of these SIs, there is a service
unit having the active HA state, but no service unit having the standby HA state).

In the remainder of this section, the SI assignment procedure is described. The fol-
lowing example of a service group configuration will be used throughout this illustra-
tion:

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Preferred number of in-service service units = 7
• Preferred number of active service units = 3
• Preferred number of standby service units = 3
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.4 137

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Maximum number of active SIs per service unit = 3
• Maximum number of standby SIs per service unit = 4

Assignment I: Full Assignment with Spare Service Units

As an initial example, it is assumed that all service units of the preceding configura-
tion can be brought in-service. Then, the following can be a running configuration for
the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {SU8}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}

Then, the assignments look like:

• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby ={SI5, SI6}

The following points should be mentioned regarding the assignments:

(1) The selection of instantiated, active, and standby service units is based on the
ordered list of service units.

(2) The assignments of SIs to service units are based on the ordered list of SIs.
(3) Service units are not fully used to their capacities. Each active service unit could

handle one more SI. Similarly, each standby service unit can handle two more
SIs. This extra slack will be used in case of a shortage of service units due to
the unavailability of some nodes.

Note: This specification does not define the actual algorithm for SI assignments;
instead, it provides rules and examples to guide implementers. The examples
provided are only illustrative and represents one possible assignment sce-
nario (by a particular implementation) based on the configuration specified in
Section 3.6.3.4. Implementers should design their own assignment algorithms
by following the given rules.
138 SAI-AIS-AMF-B.04.01 Section 3.6.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The difficulty comes when the number of in-service service units is not enough to sat-
isfy the configuration requirements. The first goal is to try to keep all SIs in the redun-
dant mode (that is, for each of these SIs, one service unit has the active HA state,
and another service unit has the standby HA state), even at the expense of imposing
maximum load on each service unit. If this goal is not attainable, the next goal is to
keep as many SIs as possible in a redundant mode while all SIs are assigned active
in one of the service units. This procedure may lead to a reduction in the number of
standby service units. Finally, if this objective is also not attainable, the only choice is
to drop some of the SIs completely. This means reducing further the number of active
service units.

The following subsections sketch the procedure for assigning service units and SIs in
situations of shortage of in-service service units.

3.6.3.4.1 Reduction Procedure

The following procedure is for assigning SIs to in-service service units and for sup-
porting the N+M service group if not enough service units are available.

If the number of in-service service units is not large enough to support the preferred
number of active, standby, and spare service units, as defined in the configuration,
the following procedure is used to maintain an acceptable level of support for the ser-
vice group.

Step 1: Reduction of the Number of Spare Service Units

If the number of instantiated service units does not allow enough spare service units,
the service group should be maintained with less spare service units than the
required number. The number of the spare service units is reduced until:

(1.a) The Availability Management Framework succeeds in allocating the preferred
number of active and standby service units. In this case, the assignment procedure is
completed.

 OR

(1.b) After dropping all spare service units, the Availability Management Framework
does not succeed in allocating the preferred number of active and standby service
units. In this case, the assignment procedure continues to the next step ((2.a) or
(2.b)).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.4.1 139

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following example illustrates case (1.a).

Assignment II: Full Assignment with Spare Reduction

Assume that the state of the cluster is as follows:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {}

Based on the preceding configuration, SI assignments fulfilling the condition that
every SI is in redundant mode can be:

• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}

Step 2: Reduction of the Number of Standby Service Units

If the preferred number of active and standby service units cannot be supported due
to a shortage of in-service service units, the Availability Management Framework is
forced to use fewer standby service units than the preferred number expressed in the
configuration. As the number of standby service units gets smaller, the number of SIs
assigned to each standby service units increases. The Availability Management
Framework needs to guarantee that the load does not exceed the service units
capacity expressed in the configuration.

The number of standby service units is reduced until:

(2.a) The preferred number of active service units is reached, and, for each SI, a ser-
vice unit has been assigned the standby HA state without violating the capacity levels
of the service units. In this case, the assignment procedure is completed.

 OR
140 SAI-AIS-AMF-B.04.01 Section 3.6.3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
 (2.b) All standby service units have been loaded to their maximum capacity, but
some SIs are still without standby assignments. In this case, the assignment proce-
dure continues to the next step ((3.a) or (3.b)).

The following example illustrates case (2.a).

Assignment III: Full Assignment With Reduction of Standby Service Units

Assume that the state of the cluster is such that the only service units that can be
brought in-service are SU1, SU2, SU3, SU4, and SU5.

These instantiated service units take the following responsibilities:

• in-service service units = {SU1, SU2, SU3, SU4, SU5}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5}
• spare service units = {}

Based on the preceding configuration, SI assignments fulfilling the condition that
every SI is in redundant mode can be:

• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2, SI3}
• SIs assigned to SU5 as standby = {SI4, SI5, SI6}

Step 3: Reduction of the Number of Active Service Units

If even after loading standby service units to their full capacity, the number of in-serv-
ice service units is still not enough to maintain the preferred number of active service
units, the Availability Management Framework tries to reduce the number of active
service units by loading active service units to their full capacity. In this step, the num-
ber of active service units should be reduced until:

(3.a) For each SI, there is an active assignment without violating the capacity levels
of active service units. In this case, the assignment procedure is completed.

 OR

 (3.b) All active service units have been loaded to their maximum capacity, but some
SIs are still without active or standby assignments. In this case, the assignment pro-
cedure should continue to the next step ((4.a) or (4.b)).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.4.1 141

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following example illustrates case (3.a).

Assignment IV: Full Assignment with Reduction of Active Service Units

Assume that the state of the cluster is such that the only service units that can be
brought in-service are SU1, SU2, SU3, and SU4.

These instantiated service units take the following responsibilities:

• in-service service units = {SU1, SU2, SU3, SU4}
• active service units = {SU1, SU2}
• standby service units = {SU3, SU4}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:

• SIs assigned to SU1 as active = {SI1, SI2, SI3}
• SIs assigned to SU2 as active = {SI4, SI5, SI6}
• SIs assigned to SU3 as standby = {SI1, SI2, SI3}
• SIs assigned to SU4 as standby = {SI4, SI5, SI6}

Note that in the preceding assignments, all SIs are still supported in redundant mode.

Step 4: Reduction of the Standby Assignments for some SIs

At this step of the assignment procedure, the number of instantiated service units is
not enough to guarantee redundant assignments for all SIs; therefore, the Availability
Management Framework is forced to drop the standby assignment of some SIs. The
Availability Management Framework will use the ordered SI list to decide for which
SIs standby assignments should be dropped. The standby assignments for some SIs
will be dropped until:

(4.a) For each SI, there is a service unit with the active HA state for this SI. In this
case, the assignment procedure is completed.

 OR

 (4.b) The number of the in-service service units is so small that the Availability Man-
agement Framework cannot assign the active HA state to these service unit for all
SIs. In this case, the reduction procedure continues to the next step (5).
142 SAI-AIS-AMF-B.04.01 Section 3.6.3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following example illustrates case (4.a).

Assignment V: Partial Assignment with Reduction of Standby Assignments

Assume that the state of the cluster is such that only the service units SU1, SU2, and
SU3 can be brought in-service.

The instantiated service units take the following responsibilities:

• in-service service units = {SU1, SU2, SU3}
• active service units = {SU1, SU2}
• standby service units = {SU3}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:

• SIs assigned to SU1 as active = {SI1, SI2, SI3}
• SIs assigned to SU2 as active = {SI4, SI5, SI6}
• SIs assigned to SU3 as standby = {SI1, SI2, SI3, SI4}

In this assignment, SI5 and SI6 are supported only in non-redundant mode (that is,
for each of these SIs, there is a service unit having the active HA state, but no service
unit having the standby HA state).

Step 5: Reduction of the Active Assignments for some SIs

At this stage of the reduction procedure, the number of instantiated service units is so
small that the Availability Management Framework cannot guarantee that service
units have been assigned active for all SIs. Therefore, some of the SIs should be
dropped. As stated earlier, the ordered list of SIs should be used to decide which SIs
should be dropped. This last step continues until a subset of the SIs are supported in
non-redundant mode (that is, for each of these SIs, there is a service unit having the
active HA state, but no service unit having the standby HA state).

The following example illustrate the last step of the reduction procedure.

Assignment VI: Partial Assignment with SIs Drop-Outs

Assume that the state of the cluster is such that SU1 is the only service unit that can
be brought in-service.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.4.1 143

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The instantiated service units take the following responsibilities:

• in-service service units = {SU1}
• active service units = {SU1}
• standby service units = {}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:

• SIs assigned to SU1 as active = {SI1, SI2, SI3}

Note that in the preceding example, SI4, SI5, and SI6 are completely dropped.

3.6.3.5 Examples for Service Unit Fail-Over

The Availability Management Framework should handle failures in a way that the
availability of all SIs supported by service groups are guaranteed, if possible. The fol-
lowing examples should be considered as illustrations of high-level requirements on
the Availability Management Framework failure handling and should not be seen as
the only way of failure handling.

3.6.3.5.1 Handling of a Node Failure when Spare Service Units Exist

Assume the following cluster configuration before the node hosting SU1 failed:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
144 SAI-AIS-AMF-B.04.01 Section 3.6.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
When the node hosting SU1 fails, SI1 and SI2 lose their active assignments; there-
fore, the Availability Management Framework must react in attempting to restore the
active assignments for SI1 and SI2. This attempt is the immediate reaction of the
Availability Management Framework to the failure. Additionally, the Availability Man-
agement Framework should use the spare service unit to restore the standby assign-
ment for SI1 and SI2 as well. After the recovery, the assignment should look like as
follows:

• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

3.6.3.5.2 Handling of a Node Failure when no Spare Service Units Exist

The following example illustrates how the Availability Management Framework uses
the available capacity of service units to retain the redundant mode of SIs when a
node hosting some service units fails.

Assume the following cluster configuration before the failure of the node hosting SU2:

• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.5.2 145

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

When the node hosting SU2 fails, SI3 and SI4 lose their active assignments; there-
fore, the immediate action for the Availability Management Framework is to restore
the active assignments of SI3 and SI4. Additionally, the standby assignments of
these SIs should also be restored. A couple of different ways exist for restoring the
standby assignments for SI3 and SI4. It depends on the Availability Management
Framework implementation how to restore the standby assignments without violating
the configuration parameters (such as the number of active/standby SIs assigned to a
service unit).

One way of restoring the standby assignments for SI3 and SI4 is the following one.

• in-service service units = {SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU3, SU4, SU5}
• standby service units = {SU6, SU7}
• spare service units = {}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as active = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6, SI4}
• SIs assigned to SU7 as standby = {SI1, SI2, SI3}

3.6.3.6 Example of Auto-Adjust

The auto-adjust option indicates that the current (running) configuration of the service
group needs to return to the preferred configuration, so that the service units with the
highest ranks are active and the highest-ranked SIs are assigned in redundant mode
(that is, there is a service unit having the active HA state for each of these SIs and
another service unit having the standby HA state for each of these SIs). It is up to the
Availability Management Framework implementation to decide when and how the
auto-adjust will be initiated. The following example is given for illustration purposes.
Assume that the following is the configuration of the service group.
146 SAI-AIS-AMF-B.04.01 Section 3.6.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

Now, assume that the node hosting SU1 joins the cluster. As a result, SU1 becomes
instantiable. Because SU1 has the highest rank in the ordered list of service units, the
preceding configuration is no longer a preferred one. The auto-adjust is initiated in a
implementation-dependent way. After the completion of the auto-adjust procedure
(assuming that SU1 could be brought in-service) the service group configuration
should look like as follows:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}

The assignments look like:

• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.3.6 147

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Note that the Availability Management Framework may undergo a series of SI reloca-
tions to transition from the configuration before the auto-adjust to the preceding con-
figuration.

3.6.3.7 UML Diagram of the N+M Redundancy Model

The N+M redundancy model is represented by the UML diagram shown in
FIGURE 17.

FIGURE 17 UML Diagram of the N+M Redundancy Model

1
1..*

0..1 0..1

0..M1 0..M2

Service Unit

0..1
0..*

active standby

N service units can have
only active and M service units
can have only standby service
instance assignments at a time

N + M Redundancy
Service Group

protects

Service Instance
M1 and M2 can be
configured
148 SAI-AIS-AMF-B.04.01 Section 3.6.3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.4 N-Way Redundancy Model

3.6.4.1 Basics

The N-way redundancy model extends the N+M redundancy model allowing a ser-
vice unit to have simultaneously active and standby assignments for different service
instances. It has the advantage that all service units can be used to provide active
service while still providing standby protection.

For the sake of simplicity, in the subsequent discussion of this redundancy model, it is
assumed that the HA readiness state of all service units for all SIs is ready-for-assign-
ment and that the resource capacity limits of the nodes are never exceeded, as the
Availability Management Framework assigns and reassigns the SIs.

This redundancy model has the following characteristics:

• In a service group with the N-way redundancy model, a service unit can simulta-
neously be assigned
(i) the active HA state for some SIs and
(ii) the standby HA state for some other SIs.

• At most one service unit may have the active HA state for an SI, and none, one,
or multiple service units may have the standby HA state for the same SI.

• The preferred number of standby assignments for an SI is an SI-level configura-
tion parameter. The preferred number of standby assignments may differ for
each SI.

• At any given time, several service units can be in-service for a service group:
some have SI assignments and possibly some others are considered spare ser-
vice units for the service group. The number of assigned service units and the
number of spare service units are dynamic and can change during the life-span
of the service group; however, the preferred number of these service units can
be configured, as will be discussed in Section 3.6.4.3.

• At any given time, and if resources allow, the Availability Management Frame-
work should ensure that the redundancy level is guaranteed for each SI (one
service unit assigned active and as many service units as the preferred number
of standby assignments assigned standby) while the load constraints in each
service unit and the number of spare service units are fulfilled.

• Each SI has an ordered list of service units to which the SI can be assigned. As
any service unit in a service group is capable of providing any SI defined in the
configuration for the service group (see Section 3.1.6), the ordered list of service
units per SI includes all the service units configured for the service group. In
other words, a partial list of service units is an invalid configuration. If the number
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4 149

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
of in-service service units allows it, the Availability Management Framework
should make sure that the highest-ranked in-service service units be assigned
active for each service instance, and, according to the preferred number of
standby assignments, the higher-ranked amongst in-service service units be
assigned standby for that service instance.

Only components implementing the x_active_and_y_standby component capability
model can participate in the N-way redundancy model.

3.6.4.2 Example

FIGURE 18 shows an example of the N-way redundancy model. Note that each com-
ponent has the active HA state for one component service instance and the standby
HA state for the other two component service instances.

FIGURE 18 Example of the N-Way Redundancy Model

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI X1

CSI X2
Service

Instance X

CSI Y1

CSI Y2
Service

Instance Y

CSI Z1

CSI Z2
Service

Instance Z

PG X1
PG Y1

PG X2

active
active active

standby

standby

standby

Service Group

standby

standbystandby

PG Z2

PG Y2

PG X2

PG Y1 PG X1

PG Z1

PG Z2

PG Y2

PG Z1
150 SAI-AIS-AMF-B.04.01 Section 3.6.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.4.3 Configuration
• Ordered list of service units for a service group: this parameter is described

in Section 3.6.1.1.
Default value: no default, the order is implementation-dependent.

• Ordered list of SIs: for the general meaning of this parameter, refer to its defini-
tion in Section 3.6.1.1. The Availability Management Framework uses this rank-
ing to choose SIs to support either in non-redundant mode (that is, there is a
service unit having the active HA state for each of these SIs, but no service unit
having the standby HA state for each of these SIs) or to drop them completely if
the set of instantiated service units does not allow full support of all SIs.
Default value: no default, the order is implementation dependent.

• Ranked service unit list per SI: each SI has an ordered list of service units to
which the SI can be assigned. The rank of a service unit for an SI is configured
by setting the saAmfRank attribute of a service unit identified by safRankedSu
in the SaAmfSIRankedSU association class (see Section 8.11). The rank is rep-
resented by a positive integer. The lower the integer value, the higher the rank.
The Availability Management Framework should make sure that the highest-
ranked available service unit be assigned active for the SI, and the remaining
available high-ranked service units be assigned standby for the SI, if possible;
that is, the second highest-ranked service unit is assigned the first ranked
standby, the third highest-ranked service unit is assigned the second ranked
standby, and so on.
Default value: the ordered service units list defined for the service group.

• Preferred number of standby assignments per SI: this parameter indicates
the preferred number of service units that are assigned the standby HA state for
this SI. This preferred number is configured by setting the
saAmfSIPrefStandbyAssignments attribute of the saAmfSI object class
(see Section 8.11).
Default value: 1

• Preferred number of in-service service units: the Availability Management
Framework should make sure that this number of in-service service units is
always instantiated, if possible. This preferred number is configured by setting
the saAmfSGNumPrefInserviceSUs attribute of the saAmfSG object class
(see Section 8.9). If the service units list for a service group includes at least two
service units, the preferred number of in-service service units should be at least
two.
Default value: the number of the service units configured for the service group.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4.3 151

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Preferred number of assigned service units: this parameter indicates the pre-
ferred number of assigned service units at any time. This preferred number is
configured by setting the saAmfSGNumPrefAssignedSUs attribute of the
saAmfSG object class (see Section 8.9). As to be discussed in
Section 3.6.4.4 on page 152, the Availability Management Framework should
guarantee that this number of assigned service units exist for the service group
provided that the number of instantiated service units is large enough.
Default value: the preferred number of in-service service units.

• Maximum number of active SIs per service unit: this parameter indicates the
maximum number of SIs that can be concurrently assigned to a service unit, so
that the service unit has the active HA state for all these SIs. It is assumed that
the load imposed by each SI is the same. This maximum number is configured
by setting the saAmfSGMaxActiveSIsperSU attribute of the saAmfSG object
class (see Section 8.9).
Default value: no limit, a value of 0 is used to specify this.

• Maximum number of standby SIs per service unit: this parameter indicates
the maximum number of standby SIs that can be concurrently assigned to a ser-
vice unit, so that the service unit has the standby HA state for all these SIs. It is
assumed that the load imposed by each SI is the same. This maximum number
is configured by setting the saAmfSGMaxStandbySIsperSU attribute of the
saAmfSG object class (see Section 8.9)
Default value: no limit, a value of 0 is used to specify this.

• Auto-adjust option: for the general explanation of this option, refer to
Section 3.6.1.1 on page 110.
Section 3.6.4.6 on page 158 shows an example for handling the auto-adjust
option in this redundancy model.
Default value: no auto-adjust

3.6.4.4 SI Assignments

In this section, the general direction in assigning SIs to service units is discussed.
Then, a few examples will be given for illustration.

If available service units in the cluster allow it, the Availability Management Frame-
work will instantiate the preferred number of in-service service units for the service
group. Then, the preferred number of assigned service units will be used for SI
assignments. The remaining in-service service units, if any, will be spare.

It is assumed that the service group configuration has passed a series of validations,
so that when as many service units as the preferred number of assigned service units
have been assigned, for each configured SI in the service group, a service unit is
152 SAI-AIS-AMF-B.04.01 Section 3.6.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
assigned active for this SI, and the preferred number of standby assignments is
ensured without violating the limits expressed in Section 3.6.4.3.

The following example of a service group configuration will be used throughout this
section:

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Ranked service units for SI1 = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Preferred number of standby assignments for SI1 = 5
• Ranked service units for SI2 = {SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU1}
• Preferred number of standby assignments for SI2 = 5
• Ranked service units for SI3 = {SU3, SU4, SU5, SU6, SU7, SU8, SU1, SU2}
• Preferred number of standby assignments for SI3 = 5
• Ranked service units for SI4 = {SU4, SU5, SU6, SU7, SU8, SU1, SU2, SU3}
• Preferred number of standby assignments for SI4 = 5
• Ranked service units for SI5 = {SU5, SU6, SU7, SU8, SU1, SU2, SU3, SU4}
• Preferred number of standby assignments for SI5 = 5
• Ranked service units for SI6 = {SU6, SU7, SU8, SU1, SU2, SU3, SU4, SU5}
• Preferred number of standby assignments for SI6 = 5
• Preferred number of in-service service units = 8
• Preferred number of assigned service units = 7
• Maximum number of active SIs per service unit = 3
• Maximum number of standby SIs per service unit = 5

Assignment I: Full Assignment with Spare Service Units

Assume that under the current state of the cluster, all service units can be brought in-
service. Then, a running configuration for the service group can be as follows:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• spare service units = {SU8}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4.4 153

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Then, the assignments look like:

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU7, SU1}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU7, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU7, SU1, SU2, SU3}
• SI6's assignments = {active: SU6; standby: SU7, SU1, SU2, SU3, SU4}

The following points should be mentioned regarding the preceding assignments:

(1) The selection of instantiated service units is based on the ordered list of service
units.

(2) The assignments of SIs to service units is based on the ordered list of service
units for each SI.

3.6.4.4.1 Reduction Procedure

The difficulty comes when the number of in-service service units is not enough to sat-
isfy the configuration requirements listed in the example. The first goal is to try to
keep all SIs in the wanted redundant mode (that is, one service unit is assigned
active for each of these SIs, and the preferred number of standby assignments is
ensured), even at the expense of imposing maximum load on each service unit. If this
goal is not attainable, the next goal is to make sure that as many SIs as possible have
active assignments. This may mean a reduction in the number of standby assign-
ments. The reduction is done for less important SIs first. Finally, if this objective is
also not attainable, the only choice is to drop some of the SIs completely.

Because the reduction algorithm is simple and somehow similar to the reduction pro-
cedure discussed in the N+M case, the reduction procedure is not discussed, and
only examples are given.

Assignment II: Full Assignment with Spare Reduction

Assume that initially the service units that can be brought in-service are SU1, SU2,
SU3, SU4, SU5, SU6, and SU7. Then, the following can be a running configuration
for the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• spare service units = {}
154 SAI-AIS-AMF-B.04.01 Section 3.6.4.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Then, the assignments look like:

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU7, SU1}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU7, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU7, SU1, SU2, SU3}
• SI6's assignments = {active: SU6; standby: SU7, SU1, SU2, SU3, SU4}

Assignment III: Full Assignment with Reduction of Assigned Service Units

Assume that the state of the cluster is initially such that only SU1, SU2, SU3, SU4,
SU5, SU6 can be brought in-service. Then, the state of the service units is:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• spare service units = {}

Then, the assignments look like:

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2, SU3}
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU3, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU3, SU4, SU5}

Assignment IV: Partial Assignment with Reduction of SIs Redundancy Level

Assume that the state of the cluster is such that only the following service units can
be brought in-service:

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

,

AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4.4.1 155

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Then, the assignments look like:

• SI1's assignments = {active: SU1; standby: SU2, SU3}
• SI2's assignments = {active: SU2; standby: SU3, SU1}
• SI3's assignments = {active: SU3; standby: SU1, SU2}
• SI4's assignments = {active: SU1; standby: SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3}
• SI6's assignments = {active: SU2; standby: SU3, SU1}

Assignment V: Partial Assignment with SIs Drop-Outs

Assume that the state of the cluster is such that only SU1 can be brought in-service.
Then, the cluster status looks like:

• in-service service units = {SU1}
• instantiable service units = {}
• assigned service units = {SU1}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: none}
• SI2's assignments = {active: SU1; standby: none}
• SI3's assignments = {active: SU1; standby: none}
• SI4's assignments = {active: none; standby: none}
• SI5's assignments = {active: none; standby: none}
• SI6's assignments = {active: none; standby: none}

3.6.4.5 Failure Handling

In this section, the fail-over action initiated by a node failure is described. Assume
that the node hosting SU3 fails. The assignments before the node hosting SU3 failed
and after the fail-over completion are as follows:

Assignments Before the Node Hosting SU3 Fails

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• spare service units = {}
156 SAI-AIS-AMF-B.04.01 Section 3.6.4.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2, SU3}
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU3, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU3, SU4, SU5}

Assignments After Completion of the Fail-Over

• in-service service units = {SU1, SU2, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU4, SU5}

When the node hosting SU3 fails, the Availability Management Framework makes
adjustments by removing assignments of the SIs from SU3. In this example, it is
assumed that the ordering of standby assignments is important. This means that the
Availability Management Framework has to inform the components of some service
units of the change in their active/standby HA states. For instance, in this example,
the Availability Management Framework should do the following for SI1:

• Ask the components of SU4 to go to standby-level 2 for SI1 (it was standby-level
3 before).

• Ask the components of SU5 to go to standby-level 3 for SI1 (it was standby-level
4 before).

• Ask the components of SU6 to go to standby-level 4 for SI1 (it was standby-level
5 before).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4.5 157

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.4.6 Example of Auto-Adjust

The auto-adjust option indicates that it is required that the current (running) configura-
tion of the service group returns to the preferred configuration in which the service
instance with highest ranks are active and the highest-ranked SIs are assigned in
redundant mode. It is up to the Availability Management Framework implementation
to decide when and how the auto-adjust will be initiated. The following example is
given for illustration purposes.

Assume that the running configuration of the service group is as follows.

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU3}
• SI2's assignments = {active: SU2; standby: SU3, SU1}
• SI3's assignments = {active: SU3; standby: SU1, SU2}
• SI4's assignments = {active: SU1; standby: SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3}
• SI6's assignments = {active: SU2; standby: SU3, SU1)

Now, assume that the node hosting SU4 joins the cluster. As a result, SU4 becomes
instantiable. It is obvious that this configuration is not the preferred one. If the auto-
adjust is initiated (in an implementation-dependent way), and assuming that SU4
could be brought in-service, then the service group configuration is as follows after
completion of the auto-adjust procedure:

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU1, SU2}
158 SAI-AIS-AMF-B.04.01 Section 3.6.4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• SI4's assignments = {active: SU4; standby: SU1, SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3, SU4}
• SI6's assignments = {active: SU2; standby: SU3, SU4, SU1}

3.6.4.7 UML Diagram of the N-Way Redundancy Model

The N-way redundancy model is represented by the UML diagram shown
FIGURE 19.

FIGURE 19 UML Diagram of the N-Way Redundancy Model

1
1..*

0..1 0..*

0..M1 0..M2

Service Unit

0..1
0..*

active standby

A service unit can take
several active and several
standby service instance
assignments at a time

N-Way Redundancy
Service Group

protects

Service Instance
M1 and M2 can be
configured
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.4.7 159

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.5 N-Way Active Redundancy Model

3.6.5.1 Basics

The N-way active redundancy model differs from the 2N, N+M, and N-way redun-
dancy models, as it does not support standby service instance assignments, but
allows a service instance to be assigned active to several service units.

For the sake of simplicity, in the subsequent discussion of this redundancy model, it is
assumed that the HA readiness state of all service units for all SIs is ready-for-assign-
ment and that the resource capacity limits of the nodes are never exceeded, as the
Availability Management Framework assigns and reassigns the SIs.

The characteristics of this redundancy model are:

• Each service unit has to be active for all the SIs assigned to it.
• A service unit is never assigned the standby state for any SI.
• For each SI, none, one, or multiple service units can be assigned the active HA

state for that SI.
• The preferred number of active assignments for an SI is an SI-level configuration

parameter (see Section 3.6.5.3 on page 162). The preferred number of active
assignments may be different for each SI.

• At any given time, several service units can be in-service for a service group:
some have SIs assigned to them, and possibly some others are considered
spare service units for the service group. The number of assigned service units
and the number of spare service units are dynamic and can change during the
life-span of the service group; however, the preferred number of these service
units can be configured.

• At any given time, the Availability Management Framework should make sure
that the redundancy level (the preferred number of active assignments) for each
SI is guaranteed (if possible) while the maximum number of SIs assigned to
each service units is not exceeded.

• Each SI has an ordered list of service units to which the SI can be assigned.
The ordered list of service units per SI must include all the service units config-
ured for the service group. In other words, a partial list of service units is an
invalid configuration. If the number of instantiated service units allows it, the
Availability Management Framework should make sure that the highest-ranked
available service units are assigned active for the SI.
160 SAI-AIS-AMF-B.04.01 Section 3.6.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The simplest case for the N-way active redundancy model is the 2-way active redun-
dancy model in which the service group contains two service units that are both
assigned the active HA state for every service instance that they support. This config-
uration is sometimes referred to as an active-active redundancy configuration.

Components implementing any of the capability models described in
Section 3.5 on page 107 can participate in the N-way active redundancy model.

3.6.5.2 Example

FIGURE 20 next shows an example of the N-way active redundancy model. Note that
the HA state of each component for all component service instances assigned to it is
active.

FIGURE 20 Example of the N-Way Active Redundancy Model

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active activeactive
active

active

Service Group
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.2 161

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.5.3 Configuration
• Ordered list of service units for a service group: this parameter is described

in Section 3.6.1.1.
Default value: no default, the order is implementation-dependent.

• Ordered list of SIs: for the general meaning of this parameter, refer to its defini-
tion in Section 3.6.1.1. The Availability Management Framework uses this rank-
ing to choose the SIs with less redundancy (that is, the number of service units
having the active HA state for them is less than the preferred number of active
service units) or to drop them completely if the number of available service units
is not enough for a full support of all SIs.
Default value: no default, the order is implementation-dependent.

• Ranked service unit list per SI: each SI has an ordered list of service units to
which the SI can be assigned. This list must be an ordered list consisting of all
service units configured for the service group. The rank of a service unit for an SI
is configured by setting the saAmfRank attribute of a service unit identified by
safRankedSu in the SaAmfSIRankedSU association class (see Section 8.11).
The rank is represented by a positive integer. The lower the integer value, the
higher the rank.
The Availability Management Framework should make sure that the highest-
ranked available service unit be assigned active for the SI, if possible.
Default value: the ordered service units list defined for the service group.

• Preferred number of active assignments per SI: this parameter indicates the
preferred number of service units being assigned the active HA state for each SI.
This preferred number is configured by setting the
saAmfSIPrefActiveAssignments attribute of the saAmfSI object class
(see Section 8.11).
Default value: the preferred number of assigned service units.

• Preferred number of in-service service units: the Availability Management
Framework should make sure that this number of service units are always
instantiated, if possible. This preferred number is configured by setting the
saAmfSGNumPrefInserviceSUs attribute of the saAmfSG object class (see
Section 8.9).
Default value: the number of the service units configured for the service group.

• Preferred number of assigned service units: this parameter indicates the pre-
ferred number of assigned service units at any time. This preferred number is
configured by setting the saAmfSGNumPrefAssignedSUs attribute of the
saAmfSG object class (see Section 8.9). As to be discussed later, the Availability
Management Framework should guarantee that this number of assigned service
units exist for the service group provided that the number of instantiated service
units is large enough.
Default value: the preferred number of in-service service units.
162 SAI-AIS-AMF-B.04.01 Section 3.6.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Maximum number of active SIs per service unit: this parameter indicates the
maximum number of SIs that can be concurrently assigned to a service unit, so
that the service unit has the active HA state for all these SIs. It is assumed that
the load imposed by each SI is the same. This maximum number is configured
by setting the saAmfSGMaxActiveSIsperSU attribute of the saAmfSG object
class (see Section 8.9).
Default value: no limit, a value of 0 is used to specify this.

• Auto-adjust option: for the general explanation of this option, refer to
Section 3.6.1.1 on page 110.
Section 3.6.5.6 on page 172 shows an example for handling the auto-adjust
option in this redundancy model.
Default value: no auto-adjust

3.6.5.4 SI Assignments

First, the general direction in assigning SIs to service units is discussed. Then, a few
examples will be given for illustration.

If the number of available service units in the cluster allows it, the Availability Man-
agement Framework will instantiate the preferred number of in-service service units
for the service group. Then, the preferred number of in-service service units will be
assigned the active HA state for each SI. The remaining instantiated service units will
be spare if allowed by the configuration. It is assumed that the service group configu-
ration has passed a series of validations, so that when as many as the preferred
number of assigned service units have been assigned, all SIs configured for the ser-
vice group are assignable, and each SI will have the preferred number of active
assignments without violating the limits expressed in the configuration section.

The following example of a service group configuration will be used throughout this
section.

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8,
SU9}

• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Ranked service units for SI1 = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8,

SU9}
• Preferred number of active assignments for SI1 = 6
• Ranked service units for SI2 = {SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU9,

SU1}
• Preferred number of active assignments for SI2 = 6
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.4 163

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Ranked service units for SI3 = {SU3, SU4, SU5, SU6, SU7, SU8, SU9, SU1,
SU2}

• Preferred number of active assignments for SI3 = 6
• Ranked service units for SI4 = {SU4, SU5, SU6, SU7, SU8, SU9, SU1, SU2,

SU3}
• Preferred number of active assignments for SI4 = 6
• Ranked service units for SI5 = {SU5, SU6, SU7, SU8, SU9, SU1, SU2, SU3,

SU4}
• Preferred number of active assignments for SI5 = 6
• Ranked service units for SI6 = {SU6, SU7, SU8, SU9, SU1, SU2, SU3, SU4,

SU5}
• Preferred number of active assignments for SI6 = 6
• Preferred number of in-service service units = 9
• Preferred number of assigned service units = 8
• Maximum number of active SIs per service unit = 5

Assignment I: Full Assignment with Spare

Assume that under the current state of the cluster, all service units can be brought in-
service. Then, the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU9}
• instantiable service units ={}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {SU9}

Then, the assignments look like:

• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}
164 SAI-AIS-AMF-B.04.01 Section 3.6.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following points should be mentioned regarding the preceding assignments:

(1) The selection of in-service service units is based on the ordered list of service
units.

(2) The assignments of SIs to service units are based on the ordered list of service
units for each SI.

3.6.5.4.1 Reduction Procedure

The difficulty comes when the number of in-service service units is not enough to sat-
isfy the requirements listed in the configuration. The first goal is to try to keep all SIs
in the preferred redundancy levels (that is, with the preferred number of active
assignments), even at the expense of imposing maximum load on each service unit.
If this goal is not attainable, the next goal is to keep as many important SIs as possi-
ble in the preferred redundancy levels without dropping any SIs completely. This may
mean reducing the number of assignments for some SIs. The reduction is done for
less important SIs first. Finally, if this objective is also not attainable, the only choice
is to drop some of the SIs completely (starting first with least important service units).

Because the reduction algorithm is simple and somehow similar to the reduction pro-
cedures discussed in the N+M and N-way cases, the reduction procedure is not dis-
cussed, and only examples are given.

Assignment II: Full Assignment with Spare Reduction

Assume that under the current state of the cluster, SU9 cannot be instantiated. Then,
the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:

• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.4.1 165

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignment III: Full Assignment with Maximum Assignments per Service Unit

The reduction procedure should first attempt to keep full assignments (that is, all SIs
being supported at their preferred number of active assignments) by loading the ser-
vice units as much as possible. This first step in the procedure can succeed only if the
following condition is fulfilled:

(Maximum number of assignments that can be supported by all in-service service
units)

 >=

 (Number of assignments needed for all SIs given the preferred number of active
assignments)

AND

(Number of in-service service units) >= (Maximum of all preferred number of assign-
ments for SIs).

This means that for the example configuration, full assignment is possible only if
more than seven service units are instantiated. In the previous example, full assign-
ment is not possible if one of the service units becomes unavailable.

Assignment IV: Partial Assignment with Reduction of SIs Redundancy Level

Assume that the state of the cluster is such that only SU1, SU2, and SU3 can be
instantiated:

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

Then, the assignments look like:

• SI1's assignments = {SU1, SU2, SU3}
• SI2's assignments = {SU2, SU3, SU1}
• SI3's assignments = {SU3, SU1, SU2}
• SI4's assignments = {SU1, SU2, SU3}
• SI5's assignments = {SU1, SU2}
• SI6's assignments = {SU3}
166 SAI-AIS-AMF-B.04.01 Section 3.6.5.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Note that the number of assignments for SIs is reduced to cope with the shortage of
in-service service units. The basic logic for assigning SIs to service units can be sum-
marized as follows.

The number of assignments that can be handled in this case is
number of in-service service units (that is, 3) * maximum number of SIs per service
unit (that is, 5).
This means that in this example all available in-service service units can handle 15 SI
assignments. This may force the Availability Management Framework to decide that
the four most important SIs (that is, SI1, SI2, SI3, and SI4) will have three assign-
ments, SI5 two assignments, and SI6 one assignment, as shown above.

Assignment V: Partial Assignment with SIs Drop-Outs

Assume that the state of the cluster is such that only SU1 can be instantiated:

• in-service service units = {SU1}
• instantiable service units = {}
• assigned service units = {SU1}
• spare service units = {}

• SI1's assignments = {SU1}
• SI2's assignments = {SU1}
• SI3's assignments = {SU1}
• SI4's assignments = {SU1}
• SI5's assignments = {SU1}
• SI6's assignments = {}

Note that it was impossible to keep assignments for all SIs in this example, so that the
least important SI, SI6, was dropped.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.4.1 167

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.5.5 Failure Handling

The failure recovery is required to avoid one or both of the following undesirable situ-
ations after the occurrence of a failure:

(a) Some of the in-service service units have additional capacity to support more SIs,
while some SIs are not being supported with their preferred number of active assign-
ments. In this case, the Availability Management Framework should fill the slack
capacity by assigning more service units active for these SIs.

(b) Some less important SIs have more active assignments than those for some more
important SIs. In this case, the Availability Management Framework should rearrange
SI assignments such that more important SIs get assigned, if possible. This, of
course, may require removing some assignments of less important SIs.

The following subsection provides example for the cases (a) and (b):

3.6.5.5.1 Example for Failure Recovery

In this example, assume that the node hosting SU3 fails.

Assignments Before the Node Hosting SU3 Fails

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

Then, the assignments look like:

• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}
168 SAI-AIS-AMF-B.04.01 Section 3.6.5.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignments After Failure of the Node Hosting SU3, and Before the Recovery

• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

Then, the assignments look like:

• SI1's assignments = {SU1, SU2, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}

In this case, the number of assignments for SIs look like:

• Number of current assignments for SI1 = 5
• Number of current assignments for SI2 = 5
• Number of current assignments for SI3 = 5
• Number of current assignments for SI4 = 6
• Number of current assignments for SI5 = 6
• Number of current assignments for SI6 = 5

The number of SIs assigned to service units is:

• Number of assignments on SU1 = 4
• Number of assignments on SU2 = 4
• Number of assignments on SU4 = 5
• Number of assignments on SU5 = 5
• Number of assignments on SU6 = 5
• Number of assignments on SU7 = 5
• Number of assignments on SU8 = 4
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.5.1 169

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
This result is not “optimal” for the following two reasons:

(1) the less important SIs (that is, SI4 and SI5) have higher levels of assignment
than more important SIs (that is, SI1, SI2, and SI3);

(2) some in-service service units (that is, SU1, SU2, and SU8) have free capacity
while some SIs are not assigned to as many service units as the preferred num-
ber of assigned service units.

This situation requires failure recovery, which is discussed next.

Assignments After Completion of Failure Recovery

The failure recovery procedure is implementation-dependent, but the Availability
Management Framework implementation should have the ultimate goal of maximiz-
ing the number of active assignments for the most important SIs (obviously, this num-
ber may not be higher than the preferred number of active assignments per SI);
however, to attain this goal, the Availability Management Framework implementation
may require complex reassignment algorithms; therefore, the specification does not
enforce this goal to the implementation. At the end of this subsection, a more practi-
cal (but less ambitious) goal for failure recovery is given.

Because the overall capacity of the service units is 35 (7 SIs with 5 assignments
each), SI1 through SI5 should get full assignments and only SI6 should get partial
assignments. According to this objective, the following can be the post-recovery
assignments:

• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}
170 SAI-AIS-AMF-B.04.01 Section 3.6.5.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
This means the following additional assignments:

• SI1 assigned to SU8
• SI2 assigned to SU1
• SI3 assigned to SU2

These assignments guarantee that the most important SIs get the highest number of
assignments possible under the existing configuration limitations (hence, it is called
an optimal assignment).
As noted earlier, the failure recovery procedure is implementation-dependent. Thus,
some simpler implementations may not arrive at the mentioned “optimal” solution. For
example, a simple implementation that does not aim to guarantee "highest possible
assignments to the most important SIs", but attempts to adjust the assignments par-
tially (without service group level optimization), may end up with the following post-
recovery configuration:

• SI1's assignments = {SU1, SU2, SU7, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU8, SU1, SU2, SU4}

In this example, each of the SIs affected by the service unit failure is assigned to
another service unit. For example, SI1 is assigned to SU7 as a replacement of its
assignment to SU3.

As mentioned at the beginning of this subsection, to make the Availability Manage-
ment Framework’s implementation simpler, the specification does not require the
optimal error recovery (as defined earlier in this section). It only requires that the error
recovery procedure achieves the following non-optimal goals:

(a) The more important SIs should get more assignments than less important SIs
after the completion of the recovery.

(b) The implementation should minimize the number of SI reassignments during the
recovery process.

(c) The free capacity of service units should be kept as small as possible.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.5.1 171

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.5.6 Example of Auto-Adjust

As discussed earlier, the failure recovery should avoid undesirable situations (that is,
underutilized service units and more important SIs not being assigned in higher num-
ber); however, the failure recovery may not consider the service units ordered list for
assigning SIs.

Thus, in some cases, the SIs are not arranged based on their service units ordered
lists. The switch-over procedure can be initiated to do one of the following rearrange-
ments:

(1) redistribute the SIs to service units evenly in accordance with the per-SI order-
ing, so that the SIs are distributed among all assigned service units;

(2) rearrange the assignment, so that the order of the per-SI service units is hon-
ored.

The following example illustrates the auto-adjust procedure.

Assignments Before the Node hosting SU3 Joins

• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:

• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}

Now, assume that the node hosting SU3 joins the cluster.

The following will be the service group configuration after the failure recovery.
172 SAI-AIS-AMF-B.04.01 Section 3.6.5.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignments After the Node Hosting SU3 Joins

Because only SI6 is not supported with full 6 active assignments, the Availability
Management Framework can (at least) assign SU3 active for SI6. Therefore, the fol-
lowing can be the assignments after the node hosting SU3 joins the cluster:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

After the node hosting SU3 joins, the assignments look like:

• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4, SU3}

If the administrator requests an auto-adjust, the assignments will look like after the
completion of the auto-adjust:

Assignments After Completion of the Auto-adjust Procedure

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:

• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.5.6 173

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.5.7 UML Diagram of the N-Way Active Redundancy Model

The N-way active redundancy model is represented by the UML diagram shown in
FIGURE 21.

FIGURE 21 UML Diagram of the N-Way Active Redundancy Model

1
1..*

0..*

0..M1

Service Unit

0..1
0..*

active

A service unit can take
only active service instance
assignments at a time

N-Way Active
Redundancy

Service Group
protects

Service Instance
M1 can be
configured
174 SAI-AIS-AMF-B.04.01 Section 3.6.5.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.6 No-Redundancy Redundancy Model

3.6.6.1 Basics

The no-redundancy model is a very simple model in which a service unit can have
at most one service instance assigned and where a service instance is assigned to at
most one service unit.

For the sake of simplicity, in the subsequent discussion of this redundancy model, it is
assumed that the HA readiness state of all service units for all SIs is ready-for-assign-
ment and that the resource capacity limits of the nodes are never exceeded, as the
Availability Management Framework assigns and reassigns the SIs.

This redundancy model is typically used with non-critical components, when the fail-
ure of a component does not cause any severe impact on the overall system.

This redundancy model has the following characteristics:

• A service unit is assigned the active HA state for at most one SI. In other words,
no service unit will have more than one SI assigned to it.

• A service unit is never assigned the standby HA state for an SI. The Availability
Management Framework can recover from a fault only by failing over the active
assignment to a spare service unit, if it is available, by restarting a service unit,
or—as an escalation—by restarting the node (see Section 9.4.7 on page 383)
containing the service unit.

• No two service units exist having the same SI assigned to them.
• At any given time, several in-service service units can be instantiated for a ser-

vice group: some have SIs assigned to them, and possibly some others are con-
sidered spare service units for the service group. The number of service units
that have SIs assigned to them and the number of spare service units are
dynamic and can change during the life-span of the service group; however, the
preferred number of in-service service units can be configured.

• At any given time, the Availability Management Framework should ensure that
each SI is assigned to a service unit provided that the number of in-service ser-
vice units is large enough.

• SIs are ordered based on their importance. This ordered list will be used for
assigning SIs to service units.

Note: As stated in Section 3.1.6, any service unit in a service group is capable of
providing all SIs defined in the configuration for the service group.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.6 175

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Components implementing the x_active_and_y_standby, x_active_or_y_standby,
1_active_or_y_standby, 1_active_or_1_standby, x_active, 1_active, or non-pre-
instantiable capability models can participate in the no-redundancy model.

3.6.6.2 Example

An example of the no-redundancy model is shown in FIGURE 22.

FIGURE 22 Example of the No-Redundancy Redundancy Model

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

active active active

Service Group
176 SAI-AIS-AMF-B.04.01 Section 3.6.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.6.3 Configuration
• Ordered list of service units for a service group: this parameter is described

in Section 3.6.1.1.
Default value: no default, the order is implementation-dependent.

• Ordered list of SIs: for the general meaning of this parameter, refer to its defini-
tion in Section 3.6.1.1. The Availability Management Framework uses this rank-
ing to select the SIs to drop from assignment if the number of service units is not
enough for a full support of all SIs.
Default value: no default, the order is implementation-dependent.

• Preferred number of in-service service units: the Availability Management
Framework should make sure that this number of in-service service units is
always instantiated, if possible. This preferred number is configured by setting
the saAmfSGNumPrefInserviceSUs attribute of the saAmfSG object class
(see Section 8.9).
Default value: the number of the service units configured for the service group.

• Auto-adjust option: for the general explanation of this option, refer to
Section 3.6.1.1 on page 110.
Section 3.6.6.6 on page 180 shows an example for handling the auto-adjust
option in this redundancy model.
Default value: no auto-adjust

3.6.6.4 SI Assignments

First, the general approach for assigning SIs to service units is discussed. Then, a
few examples will be given for illustration.

If the number of available service units in the cluster allows it, the Availability Man-
agement Framework will instantiate the preferred number of instantiated service units
for the service group. Then, some or all of these service units will be used for SI
assignments. The remaining instantiated service units will be spare. It is assumed
that the service group configuration has passed a series of validations, so that when
the required number of service units is assigned, each configured SI can be assigned
to a service unit.

The following example of a service group configuration will be used throughout this
section.

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5}
• Ordered list of SIs = {SI1, SI2, SI3}
• Preferred number of in-service service units = 4
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.6.3 177

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignment I: Full Assignment with Spare

Assume that under the current state of the cluster, all service units can be brought in-
service. Then, the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

Then, the assignments looks like:

• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {SU3}

The following points should be mentioned regarding these assignments:

(1) The selection of in-service service units is based on the ordered list of service
units.

(2) The assignments of SIs to service units are based on the ranking of the SIs in
the ordered list of SIs.

3.6.6.4.1 Reduction Procedure

The first goal of the assignment procedure is to try to keep all SIs assigned. If this
goal is not attainable, then the next goal is to keep as many important SIs as possible
assigned.

Assignment II: Full Assignment with Spare Reduction

Assume that under the current state of the cluster, SU4 and SU5 cannot be instanti-
ated. Then, the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

Then, the assignments looks like:

• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {SU3}
178 SAI-AIS-AMF-B.04.01 Section 3.6.6.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignment III: Partial Assignment

If the number of instantiated service units is not large enough, some less important
SIs will be dropped. Assume that only SU1 and SU2 can be brought in-service in this
example.

• in-service service units = {SU1, SU2}
• instantiable service units = {}
• assigned service units = {SU1, SU2}
• spare service units = {}

Then, the assignments look like:

• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {}

3.6.6.5 Failure Handling

The failure handling is rather simple. If a node hosting a service unit fails, the only fail-
over option is to select a spare service unit from the service group's spare service
units and to assign the SI of the failed service unit to the selected spare service unit.
If no spare service unit is available, the Availability Management Framework cannot
carry out any failure handling, and the SI that was being provided by the failed service
unit will not be supported until another service unit becomes available for the service
group.

The following example illustrates the fail-over action.

Assignments Before the Node Hosting SU3 Failed

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU3}
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.6.5 179

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignments After the Failure Recovery

• in-service service units = {SU1, SU2, SU4, SU5}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4}
• spare service units = {SU5}
• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU4}

3.6.6.6 Example of Auto-Adjust

The auto-adjust procedure does not achieve much in this redundancy model. It only
makes sure that the SIs are assigned to the most preferred in-service service units.
The following example illustrates the auto-adjust procedure.

Assignments Before the Auto-adjust Procedure

After the node hosting SU3 joins the cluster (see previous example), the service units
and the assignments can be as follows:

• in-service service units = {SU1, SU2, SU4, SU5}
• instantiable service units = {SU3}
• assigned service units = {SU1, SU2, SU4}
• spare service units = {SU5}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU4}

Because the ranking of SU3 for SI3 is higher than the ranking of SU4 for SI3, if the
auto-adjust option is enabled for the service group when SU3 is brought in-service
again, the assignments will look like:
180 SAI-AIS-AMF-B.04.01 Section 3.6.6.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Assignments After the Auto-adjust Procedure

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU3}

Note that SU5 has been uninstantiated, because the number of preferred service
units is 4.

3.6.6.7 UML Diagram of the No-Redundancy Redundancy Model

The no-redundancy redundancy model is represented by the UML diagram shown in
FIGURE 23.

FIGURE 23 UML Diagram of the No-Redundancy Redundancy Model

1
1..*

0..1

0..1

Service Unit

0..1
0..*

active

A service unit can take
only one active service instance
assignment at a time

No-Redundancy
Redundancy

Service Group
protects

Service Instance
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.6.7 181

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.6.7 The Effect of Administrative Operations on Service Instance Assignments

Usually, administrative operations such as lock or unlock of a service unit or of a
node result in reassignments of SIs to service units. This section briefly discusses
how the lock and unlock administrative operations affect SI assignments. The cases
for other administrative operations are similar.

Only basic directions are given here, as the detailed reaction of the Availability Man-
agement Framework for each administrative operation depends on the redundancy
model. The details are left for the implementation.

3.6.7.1 Locking a Service Unit or a Node

As the lock for instantiation does not affect the service instance assignment, this sub-
section focusses only on the lock administrative operation.

Depending on the status of the service unit, a lock administrative operation affects
the SIs assigned to the service unit as follows:

(a) The service unit (say, SU1) or one of its enclosing entities like the node, service
group, application, or the cluster is being locked, and the service unit has SI
assignments: in this case, the SIs supported by the service units will be reas-
signed to other service units in the service group. This reassignment depends
obviously on the redundancy model of the service group. The transfer of SI
assignments from the service unit SU1 to other service units is very similar to
the recovery operation performed when a service units fails. For details, refer to
the failure handling section of the associated redundancy model. However, it is
important to note that an effective reassignment may require selecting one of
the spare service units or instantiating a new service unit from the instantiable
set. The removal of SI assignments will not trigger a termination of the service
unit, unless it is non-pre-instantiable, and the operation discussed in case (b) is
undertaken when the service unit enters the out-of-service readiness state.

(b) The service unit (say SU1) or one of its enclosing entities like the node, service
group, application, or the cluster is being locked, and the service unit has no
current SI assignments, but it belongs to the set of in-service service units: in
this case, when the service unit SU1 becomes out-of-service, and, as a conse-
quence, the number of in-service service units drops below the preferred num-
ber of in-service service units, one instantiable service unit with none of its
containing entities (service group, node, application, or cluster) in locked state
will be selected to replace the service unit SU1. This selection will be based on
the service units and their ranks, as discussed in Section 3.6.1. The service unit
SU1 stays in the set of instantiated service unit.
182 SAI-AIS-AMF-B.04.01 Section 3.6.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
(c) The service unit to be locked does not belong to the set of in-service service
units: in this case, no SI reassignment or service unit instantiation is performed.

3.6.7.2 Unlocking a Service Unit, a Service Group, or a Node

Depending on the status of the service unit, an unlock administrative operation may
lead to assignments of SIs to the service unit. Three cases need consideration:

(a) The service unit does not belong to the set of instantiable service units:
in this case, the service unit still remains out of the set of instantiated service
units; thus, no SIs can be assigned to the service unit.

(b) The service unit belongs to the set of instantiable service units, but it is not
instantiated:
in this case, if the preferred number of in-service service units is not reached,
the service unit is instantiated. If the service unit can be brought in-service, the
operation described in case (c) is undertaken.

(c) The service unit is in-service:
based on the configuration of the service group (auto-adjust option and pre-
ferred number of assignments) and on the current assignments, some SIs may
be assigned to the service unit.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.6.7.2 183

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.7 Component Capability Model and Service Group Redundancy Model
A component having a certain component capability model can only participate in a
certain set of service group redundancy models. This mapping between the compo-
nent capability models and the service group redundancy models is shown in
Table 16.

A component with capability models x_active or 1_active for a certain component ser-
vice type is eligible for being used in service groups with redundancy models 2N and
N+M. The component may have the active, quiescing, or quiesced HA states, but not
the standby HA state for its CSIs. Nevertheless, its service unit can be assigned the
standby HA state for a service instance. The Availability Management Framework
does not attempt to assign the standby HA state for a CSI to the component in this
case.

Table 16 Component Capability Model and Service Group Redundancy Model

Service Group
Redundancy Model —>

Component Capability Model

2N N+M N-Way N-Way
Active

No-
Redundancy

x_active_and_y_standby X X X X X

x_active_or_y_standby X X - X X

1_active_or_y_standby X X - X X

1_active_or_1_standby X X - X X

x_active X X - X X

1_active X X - X X

non-pre-instantiable component X X - X X
184 SAI-AIS-AMF-B.04.01 Section 3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.8 Dependencies Among SIs, Component Service Instances, and
Components

3.8.1 Dependencies Among Service Instances and Component Service Instances

The Availability Management Framework defines two types of dependencies
between service instances (SI) and component service instances (CSI):

• SI—> SI, cluster wide.
• CSI—> CSI in the same SI.

The SI-SI dependencies are also applicable to applications (see also Section 3.1.7).

The dependencies apply in two cases.

• When a service unit is assigned the active HA state on behalf of a service
instance or a component is assigned the active HA state on behalf of a compo-
nent service instance.

• When the active HA state was assigned to a service unit or a component on
behalf of a service instance or component service instance, respectively, and
another HA state is now assigned, or the active HA state assignment is
removed.

3.8.1.1 Dependencies Among SIs when Assigning a Service Unit Active for a Service Instance

A service instance SI1 may be configured to depend on other service instances
(especially within the scope of an application logical entity, as defined in
Section 3.1.7), SI2, SI3, and so on, in the sense that a service unit can only be
assigned the active HA state for SI1 if all SI2, SI3, and so on are either fully-assigned
or partially-assigned (see Section 3.2.3.2). A dependency between a service instance
SI1 on a service instance SI2 is configured by specifying the DN of SI2 in the
safDepend attribute in an object of the SaAmfSIDependency association class that
is associated with the object representing SI1 (see Section 8.11).
These dependencies are cluster-wide, which means that the service instances on
which a service instance SI1 depends can belong to the same service group as SI1
or to another service group.

The rank of a dependent service instance must not be higher than the ranks of the
service instances on which it depends.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.8 185

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.8.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances

The Availability Management Framework defines one configurable attribute of a
dependency between service instances, the tolerance time: if a service instance SI1
depends on the service instance SI2, this time indicates for how long SI1 can tolerate
SI2 being in the unassigned state (see Section 3.2.3.2). If this time elapses before
SI2 becomes assigned again, the Availability Management Framework will remove
the active and the quiescing HA states for SI1 from all service units, that is, it will
make SI1 unassigned. The tolerance time is configured by setting the
saAmfToleranceTime attribute of the SaAmfSIDependency association class
(see Section 8.11). This tolerance time can be set to zero to indicate to the Availability
Management Framework that it must remove the active and the quiescing HA states
for SI1 from all service units immediately as soon as SI2 is unassigned.

3.8.1.3 Dependencies Among Component Service Instances of the same Service Instance

A component service instance of a service instance can be configured to depend on
other component service instances of the same service instance. This dependency
amongst component service instances is configured by specifying a list of the DNs
of the component service instances on which a component service instance depends
in the saAmfCSIDependencies attribute of the saAmfCSI object class (see
Section 8.12).
The Availability Management Framework performs the assignment of the active HA
state to components on behalf of component service instances in a sequence deter-
mined by these dependencies: if a component service instance CSI1 depends on the
component service instance CSI2, a component can only be assigned the active HA
state for CSI1 if a component of the service unit in question has already acknowl-
edged the assignment of the active HA state for CSI2 by calling the
saAmfResponse_4() function. The reverse order is applied when, on behalf of
component service instances, the active HA state is removed from components or
another HA state is assigned to components.

Example: suppose a component C1 consisting of an HTTP server supporting a com-
ponent service instance CSI1 that contains an IP address and a port number. The
server binds to that IP address (and not to INADDR_ANY) and to that port number.
A second component C2 implements a virtual IP address service, and its component
service instance CSI2 contains simply the same IP address as above. CSI2 must be
assigned before CSI1; otherwise the bind() system call would fail.
186 SAI-AIS-AMF-B.04.01 Section 3.8.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.8.2 Dependencies Among Components

A component can be configured to depend on another component in the same ser-
vice unit in the sense that the instantiation of the second component is a prerequisite
for the instantiation of the first component.

Dependencies amongst components described in this section are applicable only
when instantiating or terminating a service unit. These dependencies in no way influ-
ence the state transitions effected by the Availability Management Framework.

Such explicit dependencies can be configured between any two pre-instantiable com-
ponents in the same service unit. Note that implicit dependencies exist between a
proxy and its proxied components—not to be discussed here.

A system administrator can take advantage of dependencies amongst components to
avoid launching processes that perform a lengthy initialization concurrently, as this
could lead to CPU saturation. A "tempered" launching of these processes could be
more adequate.

Dependencies amongst components are configured by associating an instantiation
level with each pre-instantiable component. The instantiation level is a positive inte-
ger configured for such components. The corresponding configuration attribute is the
saAmfCompInstantiationLevel attribute of the saAmfComp object class (see
Section 8.13.2).

Within a service unit, the Availability Management Framework instantiates the pre-
instantiable components according to the configured instantiation level. All pre-
instantiable components with the same instantiation level are instantiated by the
Availability Management Framework in parallel. Components of a given level are only
instantiated by the Availability Management Framework when all components with a
lower instantiation level have successfully completed their instantiation.

Within a service unit, the Availability Management Framework terminates the pre-
instantiable components according to the configured instantiation level. All pre-
instantiable components with the same instantiation level are terminated by the Avail-
ability Management Framework in parallel. Pre-instantiable components of a given
level are only terminated by the Availability Management Framework when all pre-
instantiable components with a higher instantiation level have been terminated.

As has been said previously, the instantiation level is only applicable during service
unit instantiation and termination. As restarting a service unit means terminating the
service unit and instantiating it again, the instantiation level also applies when restart-
ing a service unit. If single components within a service unit are restarted, the instan-
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.8.2 187

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
tiation level does not cause components with a higher level to be also subject to a
restart. The instantiation level is, above all, a means to limit the load on the system
during the instantiation process.

Non-pre-instantiable components are only instantiated when they have to provide
service (for instance, when the Availability Management Framework assigns them the
active HA state for a component service instance).
If dependencies amongst a non-pre-instantiable and another component exist, they
should be resolved by using the inter-CSI (CSI–CSI) dependency scheme.
188 SAI-AIS-AMF-B.04.01 Section 3.8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.9 Approaches for Integrating Legacy Software or Hardware Entities
Non-SA-aware software or hardware entities can be integrated into the Availability
Management Framework model in two ways:

• By the use of a wrapper to encapsulate the legacy software (hardware) into an
SA-aware component. The wrapper consists of one or more processes that link
with the Availability Management Framework library and interact with the Avail-
ability Management Framework on the one hand and with the legacy software
(hardware) on the other hand. The wrapper and the legacy software (hardware)
together constitute a single component.

• By the use of a proxy to manage the legacy software (hardware). The legacy
software (hardware) can be considered to be a separate component managed
by the proxy component.

In general, the proxy/proxied solution is appropriate most when one of the following is
true:

• The redundancy model of the proxied entity (the legacy software or hardware) is
different from the redundancy model of the proxy entity. The proxy entity usually
requires a very simple redundancy model such as 2N, whereas the legacy entity
may need a more complex redundancy models such as N+M and N-way active.

• The failure semantics and fault zone of the proxied entities are different from the
ones for proxy entities. For example, the proxied entity may be running outside
the cluster, whereas the proxy entity has to be located on a node.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.9 189

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.10 Component Monitoring
Three types of component monitoring can be envisaged for a component:

• Passive Monitoring: the component is not involved in the monitoring, and
mostly operating system features are used to assess the health of a component.
These features include monitoring the death of processes that are part of the
component (but it could also be extended to also monitor crossing some thresh-
olds in resource usage such as memory usage).

• External Active Monitoring: the component does not include any special code
to monitor its health, but some entity external to the component (usually called a
monitor) assesses the health of the component by submitting some service
requests to the component and checking that the service is provided in a timely
fashion.

• Internal Active Monitoring: the component includes code (often called audits)
to monitor its own health and to discover latent faults. Each of these health
checks is triggered either by the component itself or by the Availability Manage-
ment Framework.

These three types of monitoring are in fact complementary. Passive monitoring or
external active monitoring do not need modification of the component itself and can
be applied to non-SA-aware components.

The Availability Management Framework supports these three types of monitoring.

The passive monitoring of components is covered by the API functions
saAmfPmStart_3() (refer to Section 7.7.1 on page 278) and saAmfPmStop()
(refer to Section 7.7.2 on page 280).
External active monitoring is supported with two command line interfaces (CLI),
namely the commands AM_START (refer to Section 4.9 on page 215), which is used
to start a monitoring process for a component and AM_STOP (refer to
Section 4.10 on page 215), which is used to stop a monitoring process for a compo-
nent.
Due to the extra load put on the system to run CLI commands (need to spawn a pro-
cess each time), it is preferable to have long running processes for external active
monitors (as opposed to run periodically a monitoring command similarly to what is
done for audits).

The internal active monitoring of components is accomplished through the health-
check interfaces (refer to Section 7.1.2 on page 232).
190 SAI-AIS-AMF-B.04.01 Section 3.10 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.11 Error Detection, Recovery, Repair, and Escalation Policy

3.11.1 Basic Notions

3.11.1.1 Error Detection

Error detection is the responsibility of all entities in the system. Errors are reported
to the Availability Management Framework by invoking the
saAmfComponentErrorReport_4() API function, described in
Section 7.12.1 on page 325. The invoker of this function specifies the recommended
recovery action, which can assume the values defined in the
SaAmfRecommendedRecoveryT enum, described in Section 7.4.7 on page 257.
Components play an important part in error detection and should report their own
errors or the errors of other components with which they interact. The Availability
Management Framework itself also generates error reports on components when it
detects errors while interacting with components. For the different cases, refer to
Section 3.2.2.2 on page 75.

It is assumed that a reported error does not refer explicitly to a specific component
service instance currently assigned to the component. It rather applies to the compo-
nent as a whole.

3.11.1.2 Restart

The restart of a component means any of the following sequences of life cycle oper-
ations:

• terminate + instantiate
• cleanup + instantiate
• terminate + cleanup + instantiate

The latter sequence applies if an error occurs during the terminate operation.

Appendix A describes how these operations are implemented for the various types of
components.

The Availability Management Framework terminates erroneous components abruptly
by executing the appropriate cleanup operation for the component
(see Table 37 in Appendix A). Non-erroneous components are terminated gracefully
by first attempting to run the corresponding callback or the TERMINATE command
(see also Table 37 in Appendix A).
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11 191

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
During a restart because of a failure, a component remains enabled, and its readi-
ness state may or may not change according to changes in its presence state (as
described in Section 3.2.2.1), which in turn determines whether its component ser-
vice instances must be removed (refer to Section 3.2.2.3).

Restarting a service unit is achieved by the following actions:

• First, all components in the service unit are terminated in the order dictated by
their instantiation-levels.

• In a second step, all components in the service unit are instantiated in the order
dictated by their instantiation-levels.

During this restart procedure, the components follow their relevant state transition
(see Section 3.2.2.1), which affects the presence state of the service unit (see
Section 3.2.1.1) and, consequently, its readiness state (see Section 3.2.1.4), which in
turn determines the service instance assignments. If a service unit contains only
restartable components, that is, the saAmfCompDisableRestart configuration
attribute of all the components is set to SA_FALSE (see the SaAmfComp object class
in Section 8.13.2), the service unit remains in the in-service readiness state during
the restart. As a consequence, its service instance assignments remain intact.

3.11.1.3 Recovery

Recovery is an automatic action taken by the Availability Management Framework
(no human intervention)—after an error occurred to a component—to ensure that all
component service instances that were assigned to this component, are reassigned
to non-erroneous components. This applies to all component service instances
regardless of the HA state of the component for these component service instances.

The recovery actions are described in the following subsections.

In this section and also throughout this document, the values defined in the
SaAmfRecommendedRecoveryT enum, described in Section 7.4.7 on page 257, will
be used to designate the corresponding recovery actions, without necessarily refer-
ring to this enum.

Note that if a component fails, just removing component service instances from the
component and reassigning the component service instances to it (without restarting
the component) is not considered as a valid recovery action.
192 SAI-AIS-AMF-B.04.01 Section 3.11.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
One of the recovery actions described in the following subsections is configured per
component as the default recovery action. The corresponding configuration attribute
is saAmfCompRecoveryOnError, defined in the SaAmfComp object class (see
Section 8.13.2).

The Availability Management Framework engages the default recovery action under
the following circumstances:

• The error report specifies the value SA_AMF_NO_RECOMMENDATION.
• A component does not respond to a callback invoked by the Availability Manage-

ment Framework within a reasonable period of time.
• A component responds with an error to a callback invoked by the Availability

Management Framework on the component.

3.11.1.3.1 Restart Recovery Action

The objective here is to avoid reassigning service instances to different service units.
The Availability Management Framework tries to fix the problem by restarting some
components and reassigning them all component service instances previously
assigned with the same HA state. This may not always be possible, as other events
that would prevent the Availability Management Framework from performing such
assignments (for example some dependencies may not be satisfied anymore) may
have occurred during the recovery. The following levels of restart are provided:

⇒ Restart the erroneous component: the erroneous component is abruptly termi-
nated and then instantiated again. The Availability Management Framework
attempts to reassign component service instances previously assigned to the
components with the same HA state. This action is performed as a consequence
of an SA_AMF_COMPONENT_RESTART recommended recovery action provided
in the error report.

⇒ Restart all components of the service unit: all components of the service unit
that contains the erroneous component are abruptly terminated and then instan-
tiated again (see Section 3.11.1.2). This action is performed as a consequence
of an escalation of an SA_AMF_COMPONENT_RESTART recommended recovery
action.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.1.3.1 193

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
⇒ Restart the associated container and all collocated contained components:
The Availability Management Framework performs the following actions in
sequence:
• it abruptly terminates the affected contained component and its collocated

contained components;
• it terminates the associated container component;
• it instantiates the container component and attempts to reassign component

service instances previously assigned to this container component (including
the corresponding container CSIs) with the same HA state;

• it requests the container component to instantiate the associated contained
components and attempts to reassign component service instances previ-
ously assigned to these contained components with the same HA state.

This action is performed as a consequence of an
SA_AMF_CONTAINER_RESTART recommended recovery action (requested for a
contained component) or as a consequence of an
SA_AMF_COMPONENT_RESTART recommended recovery action requested for a
container component.

The Availability Management Framework must provide the option to disable restart
recovery actions for particular components. This option should be used when restart-
ing a component takes too much time, and fail-over is a preferred recovery action.
See Section 3.2.2.1 on page 71.

3.11.1.3.2 Fail-Over Recovery Action

Either because the restart recovery action has been disabled in the configuration of a
particular component (its saAmfCompDisableRestart configuration attribute is set
to SA_TRUE, see the SaAmfComp object class in Section 8.13.2), or because previ-
ous attempts to restart the component failed, or because the error report specified
another recommended recovery action, the Availability Management Framework may
decide to recover by reassigning service instances to service units other than the one
to which they are currently assigned. The different levels of fail-over listed next differ
by the scope of the service instances being failed over (some service instances
assigned to a service unit, or all service instances assigned to services units of a
node) and by how abruptly component service instances are removed from the com-
ponents to which they are currently assigned (regular HA state management leading
to the removal of the component service instance, graceful component termination,
abrupt component termination, or abrupt node reboot).
194 SAI-AIS-AMF-B.04.01 Section 3.11.1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• Component or Service Unit Fail-Over
The Availability Management Framework provides the saAmfSUFailover con-
figuration attribute at the service unit level (see the SaAmfSU object class in
Section 8.10) to indicate whether a component fail-over should trigger a fail-over
of the entire service unit or of only of the erroneous component. The
saAmfSUFailover configuration attribute of a non-pre-instantiable service unit
must always be set to SA_TRUE
By default, the saAmfSUFailover configuration attribute of a service unit is set
to SA_TRUE.

If the service unit is configured to fail over as a single entity (saAmfSUFailover
set to SA_TRUE), all other components of the service unit are abruptly termi-
nated, and all service instances assigned to that service unit are failed over; oth-
erwise, only the erroneous component is abruptly terminated, and all component
service instances that were assigned to it are failed over. Other components are
not terminated, but all service instances that contained one of the failed over
component service instances have their remaining component service instances
switched over. Switch-over means that component service instances are not
abruptly removed from components; the HA state of these components for these
component service instances is rather transitioned to the quiesced HA state
before being removed.

The following example helps in clarifying this. Assume a service group having
some service units, each comprising 3 components. One of these service units,
SU1, contains the C1, C2, and C3 components. Now, assume that SU1 is
assigned the active HA state for two service instances, SI1 and SI2. SI1 con-
tains 3 CSIs: CSI11, CSI12, and CSI13, which are assigned to C1, C2, and
C3, respectively, and SI2 contains only two component service instances,
CSI21 and CSI23, which are assigned to C1 and C3, respectively.

Assume that C2 fails. C2 is abruptly terminated. As C2 was assigned CSI12,
CSI12 is failed over and the other component service instances of SI1 need to
be switched over, namely CSI11 and CSI13. However, it is not necessary to
switch over SI2, as it has no CSIs assigned to the failed component C2.

In a 2N or N+M redundancy model, SI2 also needs to be switched over; other-
wise, the number of active service units would be higher than what is allowed by
the redundancy model. However, in an N-way redundancy model, SI2 could be
left assigned to SU1 (if the saAmfSUFailover configuration attribute of the ser-
vice unit is set to SA_FALSE), and a repair of C2 should be attempted by rein-
stantiating it. If the attempt to instantiate C2 fails, the service unit becomes
disabled, and SI2 must be switched-over; however, if the attempt to instantiate
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.1.3.2 195

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
C2 is successful, SI2 shall remain assigned to SU1, and based on other configu-
ration parameters and N-way redundancy model semantics, even SI1 might get
reassigned to SU1.

This action is performed as a consequence of an
SA_AMF_COMPONENT_FAILOVER recommended recovery action or of an esca-
lation to it.

• Node Switch-Over
This implies an abrupt termination of the failed component and the fail-over of all
component service instances that were assigned to it. Component service
instances assigned to other components of the service unit are failed over or
switched over depending on the setting of saAmfSUFailover attribute of the
service unit.
All service instances assigned to other service units on the node have their com-
ponent service instances switched over. Switch-over means that component ser-
vice instances are not abruptly removed from components; the HA state of these
components for these component service instances is rather transitioned to the
quiesced HA state before being removed.
This action is performed as a consequence of an SA_AMF_NODE_SWITCHOVER
recommended recovery action.

• Node Fail-Over
This implies an abrupt termination of all local components and the fail-over of all
service instances assigned to all service units on a node. This action is per-
formed as a consequence of an SA_AMF_NODE_FAILOVER recommended
recovery action, or as the result of a recovery escalation.

• Node Failfast
The Availability Management Framework reboots the node by invoking an
administrative operation on the appropriate PLM entity without trying to termi-
nate the components individually. The reboot operation must be carried out in
such a way that all local components of the node (including its hardware compo-
nents) are placed into the uninstantiated presence state, which may require pow-
ering-down or resetting some hardware entities. As part of the node failfast
operation, a fail-over of the service instances assigned to service units on the
node is performed. This action is performed as a consequence of an
SA_AMF_NODE_FAILFAST recommended recovery action.
196 SAI-AIS-AMF-B.04.01 Section 3.11.1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.11.1.3.3 Application Restart Recovery Action

The application should be completely terminated and then started again by first termi-
nating all of its service units and then starting them again, ensuring that—during the
termination phase of the restart procedure—service instances of the application are
not reassigned (refer additionally to Section 9.4.7 on page 383). It is important to note
that it is not required to preserve the pre-restart service instance assignments to vari-
ous service units in the application upon re-starting an application.
The instantiation phase of this recovery action should be carried out in accordance
with the redundancy model configuration of the various service groups that belong to
the application.
This action is performed as a consequence of an SA_AMF_APPLICATION_RESTART
recommended recovery action, which should be specified when the failure is deemed
to be a global application failure.

3.11.1.3.4 Cluster Reset Recovery Action

The cluster should be reset. In order to execute this function, the Availability Manage-
ment Framework reboots all nodes that are part of the cluster by using a low level
interface without trying to terminate the components individually. To be effective, this
operation must be performed such that all AMF nodes are first terminated before any
of the AMF nodes starts to instantiate again. This recommendation should be used
only in the rare case in which a component (most likely itself involved in error man-
agement) has enough knowledge to foresee a "cluster reset" as the only viable recov-
ery action from a global failure. This action is performed as a consequence of an
SA_AMF_CLUSTER_RESET recommended recovery action.

3.11.1.4 Repair

Repair is the action performed on erroneous entities (that is, entities with a disabled
operational state) to bring them back into a healthy state (that is, to the enabled oper-
ational state).

One Availability Management Framework configuration attribute at node level
(saAmfNodeAutoRepair of the SaAmfNode object class, see Section 8.7) and
another one at service group level (saAmfSGAutoRepair of the SaAmfSG object
class, see Section 8.9) specify whether the Availability Management Framework
engages in automatic repair or not. The saAmfSGAutoRepair attribute applies to
any service unit of the particular service group, and the saAmfNodeAutoRepair
attribute applies only to the particular node.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.1.3.3 197

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
If saAmfSGAutoRepair or saAmfNodeAutoRepair is turned on, the Availability
Management Framework performs an automatic repair action after undertaking some
recovery actions at the service unit or node level.
If an automatic repair configuration attribute is turned off (saAmfNodeAutoRepair
or saAmfSGAutoRepair set to SA_FALSE), the Availability Management Frame-
work performs no automatic repair action at the corresponding level, and it is the
responsibility of applications with repair capabilities or of system administrators to
perform repair actions (which are not under the Availability Management Frame-
work's control) and then reenable the appropriate operational states when the repair
is successfully completed.

Reenabling disabled entities can be performed in one of two ways:

• at the service unit or node level by executing the SA_AMF_ADMIN_REPAIRED
administrative operation;

• at the component level by invoking the saAmfComponentErrorClear_4()
function.

It is expected that repair actions bring the repaired entities (components or service
units) in the uninstantiated presence state before reenabling the appropriate opera-
tional states.

Note that combined recovery and repair actions like the node failfast are also dis-
abled when saAmfSGAutoRepair is set to SA_FALSE.

The Availability Management Framework treats the component and service unit
restart recovery actions, which are described in Section 3.11.1.3.1, as repair actions
and does not require any additional repair action in this case. The Availability Man-
agement Framework reenables the operational state of the component or of the ser-
vice unit when the restart operation completes successfully.

In the case of a component fail-over recovery action and regardless of any configura-
tion attribute setting, the Availability Management Framework always tries to rein-
stantiate the erroneous component; if it is successful, it reenables the erroneous
component. The Availability Management Framework performs these actions to
avoid leaving a service unit partially disabled for an indefinite amount of time. If the
instantiation of the erroneous component fails, the Availability Management Frame-
work sets the operational state of the service unit to disabled.
198 SAI-AIS-AMF-B.04.01 Section 3.11.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
If a node leaves the cluster membership while the Availability Management Frame-
work is performing an automatic repair action on a service unit of that node, the fact
that the node leaves the cluster membership supersedes the service unit repair
action, and the Availability Management Framework considers the repair action com-
pleted when the node rejoins the cluster membership.
However, if a node leaves the cluster membership while the Availability Management
Framework is performing an automatic repair action on that node, the fact that the
node leaves the cluster membership may not eliminate the need for the node repair
action, and the Availability Management Framework may need to complete the repair
action when the node rejoins the cluster membership, if the node has not been reboo-
ted in the meantime.

3.11.1.4.1 Recovery and Associated Repair Policies

In this section, the recovery policies and the associated automatic repair policies are
presented.

• Service Unit Fail-Over Recovery—In the context of a service unit fail-over
recovery action, the Availability Management Framework attempts to terminate
all components of the service unit. If the service group containing the service unit
has the automatic repair configuration attribute set (saAmfSGAutoRepair set
to SA_TRUE), and all components have been successfully terminated, the Avail-
ability Management Framework reenables the operational states of the service
unit and of its disabled components and evaluates the various criteria used to
determine if the service unit must be reinstantiated (such as the preferred num-
ber of in-service service units for the service group containing that service unit);
it then reinstantiates service units, if deemed necessary.

• Node Switch-Over, Node Fail-Over and Node Failfast Recovery—After a
node switch-over or node fail-over recovery action, if the erroneous node has the
automatic repair configuration attribute set (saAmfNodeAutoRepair set to
SA_TRUE), the Availability Management Framework reboots the node. The Avail-
ability Management Framework treats a node failfast recovery action as a repair
action and does not require any additional repair action in this case. When such
a node rejoins the cluster, the Availability Management Framework reenables its
operational state and the operational state of its disabled service units and com-
ponents (except for components with the termination-failed presence state). It
then evaluates the various criteria used to determine if service units of that node
must be reinstantiated (such as the preferred number of in-service service units
service groups that have service units on that node) and reinstantiates service
units if deemed necessary.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.1.4.1 199

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The following table describes the recovery policies and the associated automatic
repair policies.

3.11.1.4.2 Restrictions to Auto-Repair

It is imperative that under certain circumstances the Availability Management Frame-
work must not engage auto-repair actions. One such instance is during a software
upgrade campaign, as defined by the Software Management Framework specifica-
tion ([8]). In this case, the Availability Management Framework must be explicitly pre-
vented from undertaking an automatic repair action to enable the initiator of the
upgrade campaign to take some corrective or alternate actions like suspending the
campaign in case components fail when they are being upgraded.

In order to disable the auto-repair behavior of the Availability Management Frame-
work on a selective basis for components and containing service units, the service
unit configuration in the Availability Management Framework Information Model sup-
ports a configuration attribute called saAmfSUMaintenanceCampaign (see the
SaAmfSU object class in Section 8.10 on page 350), which can be modified to
instruct the Availability Management Framework about disengaging auto-repair under
various circumstances.

Note that the Availability Management Framework treats the component and service
unit restart actions, which are described in Section 3.11.1.3.1, as well as node fail-
fast recovery actions as repair actions that can also be disabled by setting the
saAmfSUMaintenanceCampaign configuration attribute.

The saAmfSUMaintenanceCampaign configuration attribute contains the name of
the maintenance campaign that is being currently run. When this attribute holds a
valid value for a particular service unit, the Availability Management Framework dis-
ables the service unit without attempting any sort of repair in case constituent compo-
nents fail. Additionally, all operational state change notifications (see
Section 11.2.2.2 on page 429) pertinent to that service unit contain an indication that
the service unit is involved in a maintenance (or upgrade) campaign.

Table 17 Recovery and Associated Automatic Repair Policies

Recovery Action Automatic Repair

service unit fail-over Availability Management Framework
attempts to instantiate the service unit

node switch-over node reboot

node fail-over node reboot

node failfast none—already part of recovery
200 SAI-AIS-AMF-B.04.01 Section 3.11.1.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.11.1.5 Recovery Escalation

When an error is reported on a component, the error report also contains a recom-
mended recovery action. The Availability Management Framework decides whether
the recommended recovery action is executed, rejected, or escalated. The recovery
escalation covers cases in which the recovery action is too weak to prevent further
errors. The underlying principle of the escalation is to progressively extend the scope
of the error from component to service unit, and from service unit to node (that is,
considering more and more entities to be involved in the error that shows up in a
component).

3.11.2 Recovery Escalation Policy of the Availability Management Framework

3.11.2.1 Recommended Recovery Action

The following recommended recovery actions are defined in the
SaAmfRecommendedRecoveryT enum (see Section 7.4.7 on page 257) and can be
specified in the saAmfComponentErrorReport_4() API (refer to
Section 7.12.1 on page 325):

• SA_AMF_NO_RECOMMENDATION: used when the scope of the error is unknown.
In this case, the Availability Management Framework engages the configured
recovery policy for the component. This recovery policy is specified by the
saAmfCompRecoveryOnError configuration attribute, defined in the
SaAmfComp object class (see Section 8.13.2).

• SA_AMF_COMPONENT_RESTART: used when the scope of the error is the com-
ponent.

• SA_AMF_CONTAINER_RESTART: used when the scope of the error is a container
component and all collocated contained components. This recommended recov-
ery action can only be requested for a contained component in order to restart
the associated container.

• SA_AMF_COMPONENT_FAILOVER: used when the error is related to the execu-
tion environment of the component on the current node.

• SA_AMF_NODE_SWITCHOVER,
SA_AMF_NODE_FAILOVER, and
SA_AMF_NODE_FAILFAST:
these three recommended recovery actions are used when the error has been
identified as being at the node level, and components should not be in service on
the node. They indicate different levels or urgency to move the service instances
out of the node.

• SA_AMF_APPLICATION_RESTART: used when the error has been identified as
a global application failure.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.1.5 201

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
• SA_AMF_CLUSTER_RESET: used when the error has been identified at the clus-
ter level.

The Availability Management Framework validates the recommended recovery action
in an implementation-dependent way. This could be done, for example, by putting in
place security measures like access control and authentication schemes. If the vali-
dation succeeds, the Availability Management Framework will not implement a
weaker recovery action than the recommended one; however, the Availability Man-
agement Framework may decide to implement a stronger recovery action based on
its recovery escalation policy. If the validation fails, the Availability Management
Framework rejects the error report with the return code SA_AIS_ERR_ACCESS
unless the recommended recovery action is SA_AMF_NO_RECOMMENDATION.

The following levels of escalation are implemented by the Availability Management
Framework:

3.11.2.2 Escalations of Levels 1 and 2

If some components of the same service unit fail and are restarted too many times
within a given time period (the probation period), the Availability Management Frame-
work escalates the recovery to a restart of the entire service unit. If, after this first
level of escalation, the service unit is restarted too many times in a given time period
because of failures of its components, the Availability Management Framework per-
forms the SA_AMF_COMPONENT_FAILOVER recovery action, which is described as
“Component or Service Unit Fail-Over” on page 195.

The remainder of this section provides a detailed explanation on how AMF imple-
ments the first two escalation levels.

Table 18 Levels of Escalation

Escalation
Level Recommendation Escalated to

1 SA_AMF_COMPONENT_RESTART service unit restart
(see Section 3.11.1.3.1)

2 SA_AMF_COMPONENT_RESTART SA_AMF_COMPONENT_FAILOVER

3 SA_AMF_COMPONENT_RESTART or
SA_AMF_COMPONENT_FAILOVER

SA_AMF_NODE_FAILOVER
202 SAI-AIS-AMF-B.04.01 Section 3.11.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Each service group can be configured with the following attributes, which are defined
in the SaAmfSG object class (see Section 8.9):

• saAmfSGCompRestartProb (time value)
• saAmfSGCompRestartMax (maximum count)
• saAmfSGSuRestartProb (time value)
• saAmfSGSuRestartMax (maximum count)

The escalation policy algorithm for escalations of levels 1 and 2 starts when an
error with an SA_AMF_COMPONENT_RESTART recommended recovery action is
received by the Availability Management Framework for a component of a particular
service unit, and the service unit is not already in the middle of a probation period
(neither "component restart" nor "service unit restart" probation period, see below).

At this time, the Availability Management Framework considers that it is at the begin-
ning of a new "component restart" probation period for that service unit. The Availabil-
ity Management Framework starts counting the number of components of that service
unit it has to restart due to an error report with an SA_AMF_COMPONENT_RESTART
recommended recovery action.
Components restarted due to dependencies (see Section 3.8.2) should not be
counted.

If this count does not reach the saAmfSGCompRestartMax value before the end of
the "component restart" probation period (the duration of the period is specified by
saAmfSGCompRestartProb), the "component restart" probation period for the
affected service unit expires.
It will be reinitiated when the Availability Management Framework receives the next
occurrence of an error with an SA_AMF_COMPONENT_RESTART recommended recov-
ery action for a component of the particular service unit.
If this count reaches the saAmfSGCompRestartMax value before the end of the
"component restart" probation period, the Availability Management Framework per-
forms the first level of recovery escalation for that service unit: the Availability Man-
agement Framework restarts the entire service unit.

At this time, the Availability Management Framework considers that escalation of
level 1 is active for this service unit and terminates the current "component restart"
probation period for the service unit. At the same time, it starts the "service unit
restart" probation period for the service unit.
During the "service unit restart" probation period, each error report on the service unit
with an SA_AMF_COMPONENT_RESTART recommended recovery action immediately
escalates the recovery to an entire service unit restart (as level 1 escalation is active).
When the "service unit restart" probation period starts, the Availability Management
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.2.2 203

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
Framework also starts counting the number of times it has to perform a level 1 esca-
lation.
If this count does not reach the saAmfSGSuRestartMax value before the end of the
"service unit restart" probation period (the duration of the period is specified by
saAmfSGSuRestartProb), the "service unit restart" probation period for the
affected service unit expires.
If this count reaches the saAmfSGSuRestartMax value before the end of the "ser-
vice unit restart" probation period, the Availability Management Framework performs
the second level of recovery escalation for that service unit: the Availability Manage-
ment Framework fails over the entire service unit and terminates the "service unit
restart" probation period.

Container and contained components will follow the same recovery actions as
described above with the following difference: when a container component is
restarted, this recovery action triggers the restart of its associated contained compo-
nents (see Section 3.11.1.3.1).

The count of restarted components of the service unit during the
saAmfSGCompRestartProb probation period is not increased when contained
components are restarted as a consequence of the restart of the associated container
component. Similarly, the count of restarts of the service unit during the
saAmfSGSuRestartProb probation period is not increased when the service unit
containing the contained components is restarted as a consequence of the restart of
the associated container component.

Note: The first-level escalation of the SA_AMF_CONTAINER_RESTART recom-
mended recovery action requested for a contained component is the restart of
the service unit containing the associated container component, which trig-
gers the restart of the service units containing contained components associ-
ated with the container component.
The second-level escalation of the SA_AMF_CONTAINER_RESTART recom-
mended recovery action requested for a contained component is the fail-over
of the service unit containing the associated container component, which trig-
gers the fail-over of the service units containing contained components asso-
ciated with the container component.

Regarding the order of recovery operations of service instances protected by service
groups containing container components and the order of recovery operations of ser-
vice instances protected by service groups containing associated contained compo-
nents when failing over a container component, refer to the recommendation in
Section 6.3.
204 SAI-AIS-AMF-B.04.01 Section 3.11.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.11.2.3 Escalation of Level 3

If the Availability Management Framework fails over too many service units out of the
same node in a given time period as a consequence of error reports with either
SA_AMF_COMPONENT_RESTART or SA_AMF_COMPONENT_FAILOVER recommended
recovery actions, the Availability Management Framework escalates the recovery to
an entire node fail-over.

The Availability Management Framework maintains the following configuration
parameters on a per-node basis, which are used to implement
escalations of level 3.

• saAmfNodeSuFailOverProb

• saAmfNodeSuFailoverMax

These attributes are defined in the SaAmfNode object class (see Section 8.7).

The escalation algorithm of level 3 is very similar to the algorithm applied for levels 1
and 2.

The escalation policy algorithm for an escalation of level 3 starts when the Availability
Management Framework performs a service unit fail-over as a consequence of an
escalation of level 2 or of an error report with an SA_AMF_COMPONENT_FAILOVER
recommended recovery action on a node that is not already in the middle of a “ser-
vice unit fail-over” probation period.

At this time, the Availability Management Framework considers that it is at the begin-
ning of a new “service unit fail-over” probation period for that node. The Availability
Management Framework starts counting the number of service unit fail-overs it has to
perform on that node as a consequence of an escalation of level 2 or of an error
report with an SA_AMF_COMPONENT_FAILOVER recommended recovery action.

If this count does not reach the saAmfNodeSuFailoverMax value before the end of
the “service unit fail-over” probation period (the duration of the period is specified by
saAmfNodeSuFailOverProb), the “service unit fail-over” probation period is termi-
nated for all service units of the affected node.

If this count reaches the saAmfNodeSuFailoverMax value before the end of the
“service unit fail-over” probation period, the Availability Management Framework per-
forms the third level of recovery escalation for the node: the Availability Management
Framework fails over the entire node.
AIS Specification SAI-AIS-AMF-B.04.01 Section 3.11.2.3 205

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4 Local Component Life Cycle Management Interfaces
The SA Forum has adopted a model for component life cycle similar to what is cur-
rently done in other clustering products. The SA Forum defines a set of command line
interfaces (CLI), which are provided by local components to enable the Availability
Management Framework to control their life cycles. In the remainder of this docu-
ment, this interface will be referred to as the Component Life Cycle Command Line
Interface (CLC-CLI).

Five CLC-CLI commands are included in this specification: INSTANTIATE,
TERMINATE, CLEANUP, AM_START, and AM_STOP.

4.1 Common Characteristics
CLC-CLI commands and associated configuration attributes are part of the compo-
nent configuration, as defined for the Availability Management Framework.

The CLC-CLI configuration contains the following attributes:

• the pathname of the CLC-CLI command (see Section 4.2),
• the list of environment variables (see Section 4.3) and arguments (see

Section 4.4) to be provided to the CLC-CLI command by the Availability Man-
agement Framework at runtime, and

• a timeout value used to control the execution of the CLC-CLI command (refer to
the sections describing each CLC-CLI command). The Availability Management
Framework considers that the CLC-CLI command failed if it did not complete in
the time interval specified by this timeout.

Additional information on CLC-CLI configuration attributes is provided in Chapter 8
and [7].

CLC-CLI commands are idempotents.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 4 207

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4.2 Configuring the Pathname of CLC-CLI Commands
The pathname of a CLC-CLI command of a component is obtained by specifying
the pathname prefix of a location, which applies to all CLC-CLI commands of the
component, and a per-command pathname to each of the CLC-CLI commands,
which is relative to this pathname prefix.

The pathname prefix is both AMF node-specific and software bundle-specific, as it
depends on the installation location of the software bundle on a particular AMF node.
For the definition of a software bundle, see [8]. Each AMF node has an association
with the software bundles installed on it. This association is described by the
SaAmfNodeSwBundle object class (shown in Section 8.7). The
saAmfNodeSwBundlePathPrefix attribute of an SaAmfNodeSwBundle object
defines the root installation directory for a particular software bundle on a given AMF
node. This pathname prefix applies to all components of component types that refer
to this software bundle when these components are mapped to this AMF node (for
more details on the mapping, see Section 3.1.9). A component's type is given in the
saAmfCompType attribute (shown in Section 8.13.2), which is the DN of an object of
the SaAmfCompType object class (shown in Section 8.13.1). The
saAmfCtSwBundle attribute of this component type object contains the name of the
software bundle that is required for the component on the AMF node. The pathname
prefix for this software bundle on the selected AMF node needs to be used with the
CLC-CLI commands of the component.

The attributes referring to the per-command relative pathname are named
saAmfCtRelPath<commandName>Cmd; they are defined in the SaAmfCompType
object class (shown in Section 8.13.1). The actual names of these attributes are
obtained by replacing each <commandName> with a name representing the specific
CLC-CLI command (AMStart, AMStop, Cleanup, Instantiate, and
Terminate).

The absolute pathname for a CLC-CLI command for a component is the concatena-
tion of the pathname prefix of the software bundle on the given AMF node
(saAmfNodeSwBundlePathPrefix) and the appropriate per-command relative
pathname of the component type (saAmfCtRelPath<commandName>Cmd).

When the Availability Management Framework decides to execute a CLC-CLI com-
mand for a local component on a particular AMF node, it performs the following steps:

1. Using the saAmfCompType attribute of the component, it looks up the compo-
nent's type described by an SaAmfCompType object.
The component type object specifies
• the required software bundle in the saAmfCtSwBundle attribute and
• the relative paths to the CLI-CLI commands through the

SaAmfCtRelPath<commandName>Cmd attributes.
208 SAI-AIS-AMF-B.04.01 Section 4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
2. For the selected AMF node, it looks up the pathname prefix for the software bun-
dle (saAmfCtSwBundle), as given in the saAmfNodeSwBundlePathPrefix
attribute of the appropriate SaAmfNodeSwBundle association object.

3. It concatenates this pathname prefix of the software bundle
(saAmfNodeSwBundlePathPrefix) with the per-command relative pathname
of the component type (saAmfCtRelPath<commandName>Cmd) to compose
the absolute pathname for the CLC-CLI command.

4.3 CLC-CLI Environment Variables
An SA-aware component obtains the name value pairs for each component service
instance assigned to itself or to the components for which it is ’proxying’ when the
saAmfCSISetCallback() callback function is invoked (see Section 7.9.2). In case
of a non-proxied, non-SA-aware component, the Availability Management Framework
passes the name/value pairs of the component service instance as environment vari-
ables to each CLC-CLI command.

The SA_AMF_COMPONENT_NAME environment variable is set in the environment of
each CLC-CLI command. This environment variable contains the name of the com-
ponent the CLC-CLI command is acting upon.

To avoid non printable values for environment variables, values containing unicode
characters (such as component names) are encoded by the Availability Management
Framework in the following way:

• first, the unicode characters are translated into UTF-8 encoding, as described in
RFC 2253 ([11]), to obtain a character string;

• then, the quoted-printable encoding from RFC 2045 ([12]) is used to substitute
non-printable characters in the string.

The saAmfCompCmdEnv configuration attribute of the SaAmfComp object class
(shown in Section 8.13.2) defines environment variables and their values for all
CLC-CLI commands of the component. These environment variables are added to
the environment variables specified for components of this type (see the
saAmfCtDefCmdEnv configuration attribute defined in the SaAmfCompType object
class, shown in Section 8.13.1).
If the saAmfCompCmdEnv attribute is not specified, only the environment variables (if
any) and their values in the saAmfCtDefCmdEnv attribute apply.
AIS Specification SAI-AIS-AMF-B.04.01 Section 4.3 209

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4.4 Configuring CLC-CLI Arguments
The attributes symbolically named saAmfComp<commandName>CmdArgv in the
SaAmfComp object class, shown in Section 8.13.2, and the attributes symbolically
named saAmfCompCtDef<commandName>CmdArgv in the SaAmfCompType object
class, shown in Section 8.13.1, are used to configure arguments of CLC-CLI com-
mands. The actual names of these attributes are obtained by replacing each
<commandName> with a name representing the specific CLC-CLI command
(AMStart, AMStop, Cleanup, Instantiate, and Terminate). The configuration
attributes saAmfComp<commandName>CmdArgv of a component denote arguments
of the corresponding CLC-CLI commands of the component. These arguments are
added to the arguments specified in the corresponding
saAmfCompCtDef<commandName>CmdArgv attributes of the component type to
which the component pertains. If an saAmfComp<commandName>CmdArgv attribute
is not specified, only the arguments (if any) specified in the corresponding
saAmfCompCtDef<commandName>CmdArgv attribute are used.

4.5 Exit Status
The valid range for the exit status is

0 <= exit status <= 255.

CLC-CLI commands have a zero exit status in case of success and nonzero in case
of failure. Values in the range

200 <= exit status <= 254

have either predefined meanings or are reserved for future usage.

The reaction of the Availability Management Framework to these errors is described
for each CLC-CLI command in the next sections.
210 SAI-AIS-AMF-B.04.01 Section 4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4.6 INSTANTIATE Command
The Availability Management Framework must run the INSTANTIATE command
when it decides to instantiate a new instance of a local component, except for proxied
and contained components. This command must not be used for proxied or contained
components: a proxied component must be instantiated by its proxy component, and
a contained component must be instantiated by its associated container component.

The INSTANTIATE command may create none or several processes, files, shared
memory segments, and so on.

Note that some components may not have any processes and the INSTANTIATE
command may be limited to some administrative action such as configuring an IP
address on the local node or mounting a file system.

The INSTANTIATE command must report success if the component is already
instantiated when the command is run. If the INSTANTIATE command is completed
successfully, the component must be fully instantiated. The timeout associated with
the INSTANTIATE command is used to set a limit on the time the Availability Man-
agement Framework will give for the component instantiation to complete. This time
includes the completion of the INSTANTIATE command itself; for SA-aware compo-
nents, it also includes the extra time that may be needed by the component, after
INSTANTIATE returns, to register with the Availability Management Framework.
Hence, for SA-aware components, this timeout sets a time limit for the newly instanti-
ated component to register.

INSTANTIATE must return a nonzero exit status if the component is not instantiated
successfully. If INSTANTIATE returns a nonzero exit status (even if it is outside the
range valid for the Availability Management Framework, as described in Section 4.5),
or the instantiation of the component does not complete in the time period specified
by the INSTANTIATE timeout, the Availability Management Framework generates an
error report on the failed component and runs the CLEANUP command described in
Section 4.8 to perform all necessary cleanup.

The Availability Management Framework makes few attempts to recover from this
error by trying to reinstantiate the component if restart is not disabled. The Availability
Management Framework first makes a configurable number of attempts to immedi-
ately reinstantiate the component, followed by a configurable number of attempts to
reinstantiate the component with a configurable delay between each attempt. The fol-
lowing configuration attributes of the SaAmfComp object class (shown in
Section 8.13.2) are used to configure these number of attempts and the delay
between each attempt: saAmfCompNumMaxInstantiateWithoutDelay,
saAmfCompNumMaxInstantiateWithDelay, and
AIS Specification SAI-AIS-AMF-B.04.01 Section 4.6 211

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
saAmfCompDelayBetweenInstantiateAttempts, respectively.
An attempt to reinstantiate the component fails if the INSTANTIATE command
returns an error or fails to complete in the configured timeout period (specified by the
saAmfCompInstantiateTimeout configuration attribute of the SaAmfComp object
class, shown in Section 8.13.2).
If all these attempts fail, the Availability Management Framework has the possibility to
force a node failfast recovery action. This possibility is controlled by the
saAmfNodeFailfastOnInstantiationFailure configuration attribute of the
SaAmfNode object class, shown in Section 8.7. The node failfast includes an implicit
node reboot, which transitions the presence state of all local components of the node
(including its hardware components) to uninstantiated. For more details, see
Section 3.11.1.3.

If node reboot is disabled, or if a single reboot did not solve the problem, the Availabil-
ity Management Framework sets the operational state of the component to disabled
and its presence state to instantiation-failed. The presence state of the enclosing ser-
vice unit becomes also instantiation-failed (it may also become termination-failed if
other components of the service units failed to terminate successfully; note that the
termination-failed state overrides the instantiation-failed state in this case). The Avail-
ability Management Framework performs a service unit level recovery action if the
error occurred when some service instances were already assigned or being
assigned to the service unit; however, no further automatic repair for this service unit
beyond the already attempted node reboot is provided, and an explicit action from an
entity external to the Availability Management Framework is required to repair the
service unit (for more details, see Section 3.11.1.4 on page 197).

The following error code is recognized by the Availability Management Framework:

SAF_CLC_NO_RETRY (200): the error that occurred when attempting to instantiate
this component is persistent, and no retries or node reboot should be attempted.
212 SAI-AIS-AMF-B.04.01 Section 4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4.7 TERMINATE Command
The Availability Management Framework terminates an SA-aware or a proxied, pre-
instantiable component by invoking the saAmfComponentTerminateCallback()
callback function on the component itself or on its proxy component, respectively.
The Availability Management Framework terminates a proxied, non-pre-instantiable
component, by invoking the saAmfCSIRemoveCallback() function of its proxy
component for the CSI of the proxied component.

However, when the Availability Management Framework needs to stop a service pro-
vided by a non-proxied, non-SA-aware component, or needs to terminate such a
component, no callback can be invoked, and the Availability Management Framework
executes the TERMINATE command. The TERMINATE command should stop the ser-
vice being provided in such a way that the service can be resumed by another
instance of the same component or another component with minimal disruption.

This CLC-CLI command is mandatory for all local non-proxied, non-SA-aware com-
ponents and must not be used for SA-aware components and proxied components.

When the TERMINATE command completes successfully, it must leave the compo-
nent uninstantiated. The uninstantiated state of a local component can be defined as
the state of the component just after a node reboot and before the INSTANTIATE
command is run. TERMINATE should succeed if the component is not instantiated
when the command is run.

The TERMINATE command should release all resources allocated by the component.

The TERMINATE command must return an error if the component is not fully termi-
nated, or if some resources could not be released. If the TERMINATE command
returns an error or fails to complete in the configured timeout period (specified by the
saAmfCompTerminateTimeout configuration attribute of the SaAmfComp object
class, shown in Section 8.13.2), the Availability Management Framework runs the
CLEANUP command to perform all necessary cleanup actions.
AIS Specification SAI-AIS-AMF-B.04.01 Section 4.7 213

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
4.8 CLEANUP Command
When recovering from errors, the Availability Management Framework does not trust
erroneous components to execute any callbacks, but it still needs a method to termi-
nate the particular instance of a component with the minimum interaction with the
component itself. Such a method is also needed when either the callbacks or the
TERMINATE command (see Section 4.7) used to terminate the component fail. In this
case, the Availability Management Framework forces the cleanup of the component
by invoking the pertinent callback or by running the CLEANUP command (see
Table 37 in Appendix A).

The CLEANUP command is mandatory for all local components (proxied or non-prox-
ied), except for contained components, and it must not be used for external or con-
tained components.

When the CLEANUP command completes successfully, it must leave the component
uninstantiated. CLEANUP should succeed if the component is not instantiated when
the command is run.

CLEANUP should perform any cleanup of resources allocated by the component and
should execute under the assumption that the component may be in an erroneous
state in which it cannot actively perform any cleanup actions itself. CLEANUP must
return an error if the component is not fully terminated, or if some necessary cleanup
could not be performed. If the component has been configured with a monitor (see
AM_START in Section 4.9), the CLEANUP command also needs to clean up any
resources that the AM_STOP command may have failed to clean up.

If the CLEANUP command returns an error or fails to complete in the configured time-
out period (specified by the saAmfCompCleanupTimeout configuration attribute of
the SaAmfComp object class, shown in Section 8.13.2), the Availability Management
Framework has the possibility to force a node failfast recovery action. This possibility
is controlled by the saAmfNodeFailfastOnTerminationFailure configuration
attribute of the SaAmfNode object class, shown in Section 8.7. The node failfast
includes an implicit node reboot, which places all local components of the node
(including its hardware components) into the uninstantiated presence state. For more
details, see Section 3.11.1.3.

If the node reboot is not allowed by the configuration of the node, the Availability
Management Framework sets the component’s operational state to disabled and the
component’s presence state to termination-failed. The presence state of the enclos-
ing service unit becomes also termination-failed, and its operational state becomes
disabled. No further automatic repair is attempted by the Availability Management
Framework for that service unit, and an explicit action from an entity external to the
214 SAI-AIS-AMF-B.04.01 Section 4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
Availability Management Framework is required to repair the service unit (for more
details, see Section 3.11.1.4 on page 197).

If the component and any of its contained components (for a container component)
were assigned the active HA state for some component service instances when the
CLEANUP command was executed, and semantics of the redundancy model of its
enclosing service group guarantee that at a point in time only one component can be
in the active HA state for a given component service instance, the failure to terminate
that component prevents the Availability Management Framework from assigning to
another component the active HA state for these component service instances (and
by the same token prevents the assignment of the active HA state to other service
units for the service instances that contain the involved CSIs). In this case, the ser-
vice instances will stay unassigned until an administrative action is performed to ter-
minate the failed component.

4.9 AM_START Command
The Availability Management Framework executes the AM_START command after the
component has been successfully instantiated or to resume monitoring after the com-
mand has been stopped by some administrative operations. The monitor processes
started by AM_START should periodically assess the health of the component and
report any error by invoking the saAmfComponentErrorReport_4() function.

The AM_START command is optional for all local components and must not be used
for external components.

If the AM_START command returns an error or fails to complete in the configured tim-
eout period (specified by the saAmfCompAmStartTimeout configuration attribute of
the SaAmfComp object class, shown in Section 8.13.2), the Availability Management
Framework will retry a few times to start the monitor. If AM_START did not complete in
the configured timeout period, the Availability Management Framework runs
AM_STOP before running AM_START again. If after a configurable amount of retries
(the maximum number of retries is specified by the
saAmfCompNumMaxAmStartAttempts configuration attribute of the SaAmfComp
object class), the Availability Management Framework fails to start the monitor, the
Availability Management Framework reports an error on the component level.

4.10 AM_STOP Command
The Availability Management Framework runs the AM_STOP command when active
monitoring of the component must be stopped. The Availability Management Frame-
work stops active monitoring before terminating a component and when directed to
do so by administrative operations.
AIS Specification SAI-AIS-AMF-B.04.01 Section 4.9 215

Service AvailabilityTM Application Interface Specification
Component Life Cycle Management

1

5

10

15

20

25

30

35

40
The AM_STOP command is mandatory for components that have an AM_START com-
mand, and must not be used for components that do not have an AM_START com-
mand.

If the AM_STOP command returns an error or fails to complete in the configured time-
out period (specified by the saAmfCompAmStopTimeout configuration attribute of
the SaAmfComp object class, shown in Section 8.13.2), the Availability Management
Framework will retry a few times to stop the monitor. If AM_STOP is invoked in the
context of a component termination, and if AM_STOP still fails after all retries (the
maximum number of retries is given by the saAmfCompNumMaxAmStopAttempts
configuration attribute of the SaAmfComp object class), the Availability Management
Framework terminates the component and cleans it up to ensure that the monitor
eventually gets stopped. If AM_STOP fails while the Availability Management Frame-
work tries to terminate a component in the context of a recovery action, the Availabil-
ity Management Framework may skip the retries and go ahead immediately by
terminating the component.

4.11 Usage of CLC-CLI Commands Based on the Component Category

For further details on component categories, refer to Table 3 on page 50.

Table 19 Usage of CLC-CLI Commands Based on the Component Category

CLC-CLI
Command Mandatory Forbidden Optional

INSTANTIATE non-proxied, local compo-
nents, except for contained
components

contained and proxied
components

-

TERMINATE non-proxied, non-SA-aware
components

SA-aware and proxied
components

-

CLEANUP local components, except
for contained components

contained and external
components

-

AM_START
AM_STOP

- external components local components
216 SAI-AIS-AMF-B.04.01 Section 4.11 AIS Specification

Service AvailabilityTM Application Interface Specification
Proxied Components Management

1

5

10

15

20

25

30

35

40
5 Proxied Components Management
This chapter summarizes information presented in other chapters on the manage-
ment of proxy and proxied components and also provides additional information on
the management of these components.

For a comparison of the management of proxied components with the management
of contained components, refer to Section 6.4.

5.1 Properties of Proxy and Proxied Components
The following list summarizes the main properties of proxy and proxied components.

• A single proxy component can mediate between the Availability Management
Framework and multiple proxied components.

• Although the proxied/proxy approach is recommended when the proxied compo-
nents are not located on AMF nodes, it can also be applied when the proxied
components are contained in local service units.

• Pre-instantiable proxied components cannot be located in the same service unit
as their proxy components. This assumption is devised to prevent potential
cyclic dependencies when service units are instantiated.

• If the proxy and proxied local components are hosted in different service units,
these service units may reside on different AMF nodes.

• The configuration of proxy/proxied components must include information about
the association of a proxied component to the CSI through which the proxied
component will be proxied (termed proxy CSI). In other words, a proxied compo-
nent configuration has a configuration attribute (saAmfCompProxyCsi in the
SaAmfComp object class, shown in Section 8.13.2) which contains the name of
the CSI through which the proxied component will be proxied.

• A proxy CSI can be dedicated to “proxy” one or more proxied components.
• A proxy component can be configured to accept multiple CSIs; one or more for

“proxying” proxied components and others for providing non-proxy services.
Note that in terms of function there is no difference between a proxy CSIs and
other CSIs. The proxy CSI corresponds to the workload of “proxying” a proxied
component.

• Only the proxy component with the active HA assignment for a proxy CSI may
register the proxied components associated with the CSI.

• The redundancy model (for a discussion of this notion, refer to Section 3.6) of
the proxy component can be different from redundancy models of its proxied
components.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 5 217

Service AvailabilityTM Application Interface Specification
Proxied Components Management

1

5

10

15

20

25

30

35

40
5.2 Life Cycle Management of Proxied Components
By means of the proxy CSI configuration (see the preceding section), the Availability
Management Framework determines the associations amongst proxy and proxied
components.

After the Availability Management Framework successfully assigns a proxy CSI with
active HA state to a proxy component, the Availability Management Framework
requests this proxy component to instantiate the corresponding pre-instantiable prox-
ied components by invoking the
SaAmfProxiedComponentInstantiateCallbackT function.
This step is not applicable to non-pre-instantiable components, as the instantiation of
a non-pre-instantiable proxied component will be done by its proxy component when
the Availability Management Framework assigns the CSI with active HA state to the
proxied component.

After a proxied component is instantiated, the respective proxy component must reg-
ister the proxied component with the Availability Management Framework (see also
Section 7.1.1). Just like an SA-aware component, a proxied component is considered
to be fully instantiated only after the registration of the proxied component is success-
ful. After registration of a pre-instantiable proxied component, the Availability Man-
agement Framework can assign one or more CSIs to it (through the respective proxy
component) with appropriate HA states. If the instantiation of a proxied component
fails, that is, the proxy component returns an error to the instantiation request for a
pre-instantiable proxied component or to the assignment of a CSI with the HA active
state to a non-pre-instantiable proxied component, the Availability Management
Framework must attempt to revive the failed proxied component by cleaning it up and
reinstantiating it as it does for an SA-aware component. Refer also to Appendix C,
which uses a sample configuration to illustrate a typical proxy and pre-instantiable
proxied instantiation and registration sequence, as explained in this section.

When a component registers another component, the Availability Management
Framework shall verify if the component invoking the registration is a proxy and has
the active assignment for the CSI through which the component being registered can
be proxied. If not, the Availability Management Framework will assume that the call-
ing component does not have the authority to register the proxied component and will
return the error code SA_AIS_ERR_BAD_OPERATION (for the component registration
interface, refer to Section 7.6.1).
218 SAI-AIS-AMF-B.04.01 Section 5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Proxied Components Management

1

5

10

15

20

25

30

35

40
5.3 Proxy Component Failure Handling
If a proxy component fails, the Availability Management Framework may perform a
fail-over if fail-over is allowed by the redundancy model of the service group to which
the proxy belongs. During the proxy component fail-over procedure, the Availability
Management Framework implicitly unregisters all registered proxied components
associated with the failing proxy component. However, this implicit unregistration
should not be considered by the Availability Management Framework as a sign of a
proxied component failure. The implicit unregistration simply indicates that the proxy
component is unable to continue the “proxying” work, and the Availability Manage-
ment Framework should find another proxy component to take over the “proxying”
work.

If the Availability Management Framework can find another proxy component that is
capable of “proxying” the given proxied components, it will make an active assign-
ment of the proxy CSIs of the proxied components to this other proxy component.
The selection of the proxy component to take over the proxy job is based on the
redundancy model of the service group containing the proxy component. For exam-
ple, for a proxy component contained in a service unit that pertains to a service group
with the 2N redundancy model (termed here the proxy’s service group), the newly
selected proxy component should be the one that had standby HA assignment for the
proxy CSI (that is, the CSI through which the proxied components are proxied). A
similar procedure is followed during a switch-over in the proxy’s service group.
In this case, if the newly selected proxy component succeeds in taking over the prox-
ying task, it registers again the proxied component without an explicit instantiation
step. If the proxy component is unable to take over the proxying task due to the failure
of the proxied component, it must report an error on the proxied component, so the
Availability Management Framework can try to clean up the proxied component.

If the Availability Management Framework is unable to find another proxy component
to “proxy” a given proxied component, the given proxied component shall enter the
SA_AMF_PROXY_STATUS_UNPROXIED status (defined in Section 7.4.4.8), and an
appropriate alarm shall be issued by the Availability Management Framework (see
Section 11.2.1.5 on page 427) to indicate this situation. Whenever a proxied compo-
nent enters the SA_AMF_PROXY_STATUS_PROXIED status (defined in
Section 7.4.4.8), an appropriate notification (see Section 11.2.2.7 on page 434) will
be issued to indicate the change in the status of the proxied component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 5.3 219

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
6 Contained Components Management
This chapter summarizes information presented in other chapters on the manage-
ment of container and contained components and also provides additional informa-
tion on the management of these components.

6.1 Overview of Container and Contained Components
This section serves as a guideline for the features of container and contained compo-
nents.

6.1.1 Definitions

Refer to Section 3.1.2.1.1, which introduces the terms container component, con-
tained component, associated container component, associated contained compo-
nent, and collocated contained components. For the definition of the container CSI
term, refer to Section 3.1.3 and Section 6.2.

6.1.2 Component Category

Container and contained components are local SA-aware components. See also
Section 3.1.2.1.1.

6.1.3 Multiple Components per Process

Refer to Section 3.1.2.1.1.

6.1.4 Life Cycle Management of Contained Components

Refer to Section 6.2.

6.1.5 Container and Contained Components in Service Units and Service Groups

A service unit that contains a contained component can only contain collocated con-
tained components (that is, they all have the same associated container component).
For the association between these collocated contained components and the associ-
ated container component, a single container CSI is used (see Section 6.2).

Container components and contained components must not be located in the same
service unit. The rationale for not mixing container and contained components in a
service unit is that the container component must get its CSI assignments before
CSIs are assigned to the contained components, because this is the mechanism
used to determine the associated container component of a contained component, as
explained in Section 3.1.3 and Section 6.2.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 6 221

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
The rank of the service instance with the container CSI must not be lower than the
ranks of the service instances having component service instances assigned to the
associated contained components.

The rationale for not mixing contained components with components of other catego-
ries in a service unit is to be able to restart the associated container component as a
recovery action to handle failures in associated contained components.

As any service unit of a service group can be assigned any service instance pro-
tected by the service group (see Section 3.1.6), and as it makes no sense to assign
the container CSI configured for the contained components of a service unit to these
contained components, service units containing contained components and service
units containing container components must belong to different service groups.
Section 6.1.6 discusses the redundancy models that are supported for these service
groups.

The readiness state of a service unit containing contained components is affected by
the HA state of the associated container component for their container CSI, as
explained in Section 3.2.1.4.

AMF nodes and node groups configured for service units containing contained com-
ponents (or for the corresponding service groups) must not conflict with the AMF
nodes and with node groups configured for the service units containing container
components that can potentially drive the life cycle of these contained components
(or for the service groups containing these service units). This is because a container
component and its associated contained components must reside on the same AMF
node.
A service instance containing a container CSI should not contain any other compo-
nent service instance.

6.1.6 Redundancy Models

For a discussion of redundancy models, refer to Section 3.6.

The redundancy model of service groups having service units containing a container
component can be different from the redundancy model of service groups having ser-
vice units containing the associated contained components.

The only redundancy model supported for service groups having service units con-
taining a container component is the N-way active redundancy model. The reason for
this decision is that only container components with the active HA assignment for a
container CSI may handle the life cycle of contained components in cooperation with
the Availability Management Framework (that is, may act as associated containers).
222 SAI-AIS-AMF-B.04.01 Section 6.1.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
A service group containing contained components can be associated with any of the
redundancy models defined by the Availability Management Framework.

6.1.7 Administrative Operations and Container and Contained Components

The description of the Availability Management Framework administrative operations
is presented in Chapter 9. The peculiarities of these operations when container com-
ponents and container CSIs are affected are described in Section 9.4.3 for the lock
operation, in Section 9.4.6 for the shutdown operation, and in Section 9.4.7 for the
restart operation.

Regarding the order of recovery operations for service instances protected by service
groups containing container components and the order of recovery operations for
service instances protected by service groups containing associated contained com-
ponents, when certain administrative operations affect the container components,
refer to the recommendation in Section 6.3.

6.1.8 Failure Handling

Refer to Section 6.3.
AIS Specification SAI-AIS-AMF-B.04.01 Section 6.1.7 223

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
6.2 Life Cycle Management of Contained Components
The life cycle of contained components is handled by the Availability Management
Framework in cooperation with the associated container component. The associated
container component is responsible for instantiating and cleaning up associated con-
tained components, and the Availability Management Framework is responsible for
the termination of the contained components (see also Section 6.2.3).

6.2.1 Container CSI and Its Configuration

The Availability Management Framework supports the notion of container CSI. A
container CSI represents the special workload of managing the life cycle of contained
components.

A contained component must be configured with its container CSI, that is, the name
of the container CSI must be specified in the saAmfCompContainerCsi configura-
tion attribute of the SaAmfComp object class (shown in Section 8.13.2) of the con-
tained component configuration.

The container CSI can contain information to be passed by the associated container
component to the corresponding contained component. How this information is
passed to the contained component is a private interface between container and con-
tained components.

6.2.2 Assignment of the Container CSI

The Availability Management Framework determines—based on its configuration—
to which container components the container CSI is assigned.

A single container component can handle the life cycle of one or more contained
components in cooperation with the Availability Management Framework.

If there is just one container component on a node having the active HA state for a
particular container CSI, this container component will be the associated container
component of all contained components that are configured with this container CSI
on this node, regardless of whether the contained components reside in one or multi-
ple service units.

If the administrator wants to configure multiple service units containing contained
components on a node, for example, SU1, SU2, and SU3, and these service units
should be associated with the container components ContainerC1, ContainerC2, and
ContainerC3 (on the same node), respectively, the administrator can proceed as fol-
lows:
224 SAI-AIS-AMF-B.04.01 Section 6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
• Configure all components of SU1 with the container CSI ContainerCSI1. Config-
ure similarly all components of SU2 with ContainerCSI2 and all components of
SU3 with ContainerCSI3.

• Create three service groups ContainerSG1, ContainerSG2, and ContainerSG3,
which have each one service unit on this node, and which are termed
ContainerSU1, ContainerSU2, and ContainerSU3, respectively. The service
units ContainerSU1, ContainerSU2, and ContainerSU3 contain the container
components ContainerC1, ContainerC2, and ContainerC3, respectively.

• Configure the following CSI assignments: ContainerCSI1 to ContainerC1,
ContainerCSI2 to ContainerC2, and ContainerCSI3 to ContainerC3.

If there are multiple container components on a node which have the active HA state
for a particular container CSI, and one or more service units on the same node whose
contained components are configured with the same container CSI, it is implementa-
tion-defined how the Availability Management Framework selects container compo-
nents to handle the life cycle of the contained components of these service units.
However, all contained components of a service unit must have the same associated
container component.

Note that a container component can be configured to have multiple CSI assign-
ments, one or more for handling contained components (container CSI) and others
for providing other services. In terms of functionality and syntax, there is no difference
between a container CSI used to determine the associated container component and
CSI assignments corresponding to the workload of other services.

Actions taken by the Availability Management Framework when it changes or
removes the HA state of a container component for a container CSI are described on
page 81.

6.2.3 Life Cycle Callbacks

Two callback functions are invoked by the Availability Management Framework to
control the life cycle of contained components.

• SaAmfContainedComponentInstantiateCallbackT (see Section 7.10.4)
and

• SaAmfContainedComponentCleanupCallbackT (see Section 7.10.5).

The Availability Management Framework invokes the
SaAmfComponentTerminateCallbackT callback function (see Section 7.10.1)
directly on the associated contained component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 6.2.3 225

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
6.3 Failure Handling for Container and Contained Components

Changes of the operational state of a container component do not directly affect the
operational state of its associated contained components. Note, however, that the
change of the operational state of the container component can affect the associated
contained components indirectly: if, for example, the operational state of a container
component changes to disabled, the container component will be terminated, and this
termination will affect the associated contained components, which will also be termi-
nated.

Changes of the operational state of a contained component do not affect the opera-
tional state of either its associated container component or of its collocated contained
components.

In case of a failure of a container component, the Availability Management Frame-
work abruptly terminates the container component and assumes that the termination
of the container component also forces the termination of all associated contained
components. The Availability Management Framework does not individually termi-
nate the associated contained components of a failed container component.

A failure of a container component is handled according to its own redundancy
model, and the contained components are handled according to their own redun-
dancy model. Note that the container and contained components can have different
redundancy models.

If a contained component fails, it is the task of its associated container component to
report an error on the failed component.

Recommendation: It is recommended that implementations of the Availability Man-
agement Framework recover the service instances that are protected by service
groups containing contained components before attempting to recover the service
instances protected by service groups containing the associated container compo-
nents in case of fail-over, switch-over, and other scenarios that require a reassign-
ment of service instances. This order is recommended to ensure minimal disruption
of the service being provided by the contained components.
226 SAI-AIS-AMF-B.04.01 Section 6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Contained Components Management

1

5

10

15

20

25

30

35

40
6.4 Proxied and Contained Components: Similarities and Differences
The main differences and similarities in how the Availability Management Framework
handles proxy and proxied components on the one hand and container and con-
tained component on the other hand are presented in the following list. To simplify the
description, it is assumed that the proxy component is no container component.

• Error Containment: if a container component fails, the Availability Management
Framework assumes that the termination of the container component also forces
the termination of all associated contained components.
The termination of a proxy component does not imply the termination of its prox-
ied components.

• SA-Aware components: though the life cycle of a contained component is han-
dled by the associated container in cooperation with the Availability Manage-
ment Framework, a contained component is an SA-aware component, and it
communicates directly with the Availability Management Framework.
A proxied component is a non-SA-aware component, and it communicates with
the Availability Management Framework only through its proxy component.

• Recommended recovery: contained components can specify the
SA_AMF_CONTAINER_RESTART as a recommended recovery, which is a conve-
nience method for contained components to recommend the component restart
of their container. A counterpart for proxy components does not exist.

• Limitations in the service unit configuration: all contained components in a
service unit need to be configured with the same container CSI. It is not permit-
ted to configure contained components and non-contained components in the
same service unit.
A non-pre-instantiable proxied component and its proxy component can be
located in the same service unit. A pre-instantiable proxied component and its
proxy component must not be located in the same service unit.

• Local Components: both container and contained components are local com-
ponents.
A proxied component can be either a local or an external component.

• Registration: container and contained components register directly with the
Availability Management Framework.
Only the proxy component with the active HA assignment for a proxy CSI may
register proxied components associated with the proxy CSI.
AIS Specification SAI-AIS-AMF-B.04.01 Section 6.4 227

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7 Availability Management Framework API
The Availability Management Framework API described in this chapter is based on
the system description and the system model presented in Chapter 3. It provides the
following services to application components.

• Library life cycle
• Component registration and unregistration
• Passive monitoring of processes of a component
• Component health monitoring
• Component service instance management
• Component life cycle
• Protection group management
• Error reporting
• Component response to Availability Management Framework requests

A component exists in a single service unit, and it typically consists of one or more
processes executing on a node. It is the responsibility of the component to monitor
and isolate faults within its scope and to generate error reports accordingly. As a func-
tion of these error reports, cluster membership changes, health monitor reports, and
administrative operations, the Availability Management Framework manages inter-
nally the readiness state of the affected components. The Availability Management
Framework drives the HA state of components on behalf of component service
instances to provide service availability.

The function calls described in this chapter cover only the interactions between an
SA-aware or a proxied component (through its proxy component) and the Availability
Management Framework, and it does not cover operational or administrative aspects.
Consequently, the logical entities that are represented in the parameters of the calls
are limited to:

• SA-aware components
• Proxy components
• Proxied components (local or external)
• Component service instances
• Protection groups
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 7 229

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
The other logical entities, such as service units, service groups (including their redun-
dancy model), and service instances are used when configuring the relationships
among the components which must be maintained by the Availability Management
Framework.

7.1 Availability Management Framework Model for the APIs

7.1.1 Callback Semantics and Component Registration and Unregistration

The Availability Management Framework issues requests to a component by invoking
the callback functions provided by the component. A process of an SA-aware compo-
nent intending to use the API functions of the Availability Management Framework
must first initialize the Availability Management Framework library by invoking the
saAmfInitialize_4() function, which is described in Section 7.5.1 on page 264.
A handle is returned to the invoking process denoting this particular initialization of
the Availability Management Framework library. One of the input parameters of the
saAmfInitialize_4() function is the set of callback functions associated with this
initialization.

One process of an SA-aware component registers with the Availability Management
Framework for the component that it represents by invoking the
saAmfComponentRegister() function (described in Section 7.6.1 on page 272)
with the handle returned by the saAmfInitialize_4() function.

In addition, a contained component or a proxied component can be registered by one
process of its container component or of its proxy component, respectively; the regis-
tration is done by invoking the saAmfComponentRegister() function and using
either a newly initialized handle or the same handle used to register another compo-
nent.
At most one process can register with the Availability Management Framework for a
given component. This process is called the registered process for the compo-
nent.

The registered process for a contained component may be the same registered pro-
cess for its container component or a different process.
The registered process for a proxied component may be the same registered process
for its proxy component or a different process.

Proxy and container components must be first registered before their proxied and
contained components are registered.
230 SAI-AIS-AMF-B.04.01 Section 7.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
There is no API function for a process to explicitly unregister a component. Unregis-
tration of components is done automatically by the Availability Management Frame-
work in the following situations:

⇒ When the presence state of the component becomes uninstantiated because the
component has been terminated. This happens typically:
• after a successful execution of the

SaAmfComponentTerminateCallbackT callback or the CLEANUP com-
mand for an SA-aware component or a proxied component, or

• when the active assignment of a component service instance is removed from
a non-pre-instantiable proxied component.

⇒ When the Availability Management Framework successfully removes the active
assignment of a proxy CSI from a proxy component. In this case, the Availability
Management Framework unregisters all proxied components that had been reg-
istered by this proxy component while the proxy component was assigned the
active HA state for the proxy CSI configured for these proxied components.

The Availability Management Framework also unregisters all components that are
still registered with a particular handle when that handle is finalized explicitly by
invoking the saAmfFinalize() function or implicitly when the process that initial-
ized the handle exits. However, if an SA-aware component finalizes a handle that still
has some registered components associated to it, the Availability Management
Framework treats this finalization as an error of the SA-aware component. An SA-
aware component should only finalize a handle when the previously associated regis-
tered components have automatically been unregistered by the Availability Manage-
ment Framework, as indicated above.

A process that is part of a proxy component and that registers several proxied com-
ponents may issue several calls to the saAmfInitialize_4() function to provide
different sets of callback functions and obtain different handles that can be used to
register the various proxied components.

Some of the callback functions are called by the Availability Management Framework
only in the context of the registered process for a component. Additionally, there are
other API functions that may be called only by the registered process for a compo-
nent. The descriptions of the APIs of the Availability Management Framework in this
chapter state these restrictions explicitly. Additionally, Appendix B provides a table
showing which API functions can only be invoked by the registered process for a
component and which API callback functions may only be invoked for such pro-
cesses.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.1 231

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
When the Availability Management Framework issues a request to a particular com-
ponent, it triggers the invocation of a callback function. Some of the callback calls
require a response from the component. In these cases, the component invokes the
saAmfResponse_4() function (described in Section 7.13.1 on page 333) when it
has successfully completed the action or has failed to perform the action.

More precisely, the following principles are applied in the Availability Management
Framework/component interactions:

• The process is not required to complete the action requested by the Availability
Management Framework within the invocation of the callback function. It may
return from the callback function and complete the action later.

• The process is expected to notify the completion of the action (or any error that
prevented it from performing the action) by invoking the saAmfResponse_4()
function. The saAmfResponse_4() function must identify the callback action
with which it is associated by providing the value of the invocation parameter
that the Availability Management Framework supplied in the callback.

• Any function of the Availability Management Framework API, including
saAmfResponse_4(), can be invoked from callback functions.

7.1.2 Component Healthcheck Monitoring

7.1.2.1 Overview

A component (or more specifically, each of its processes) is allowed to dynamically
start and stop a specific healthcheck. Each healthcheck has an identification
(healthcheck key) that is associated with a set of configuration attributes.

Healthchecks can be invoked by the Availability Management Framework or by the
component.

The issue of potential transient overload caused by healthcheck invocations is not
considered in this proposal. Overload is a global issue, and should be handled in a
consistent global level; it will be considered in a future version of the AIS specifica-
tion.
232 SAI-AIS-AMF-B.04.01 Section 7.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.1.2.2 Variants of Healthchecks

There are two variants of healthcheck, depending on the invoker of the health-
check:

• Framework-invoked healthcheck: for this variant of healthcheck, the Availabil-
ity Management Framework invokes the saAmfHealthcheckCallback()
callback periodically according to the healthcheck configuration attributes,
described in Section 7.1.2.4. The Availability Management Framework expects
the component to reply to an invoked healthcheck by calling
saAmfResponse_4().

• Component-invoked healthcheck: this variant of healthcheck is invoked by the
component itself (according to its configured parameters, see Section 7.1.2.4),
and the component reports the result of the healthcheck to the Availability Man-
agement Framework by calling saAmfHealthcheckConfirm().

7.1.2.3 Starting and Stopping Healthchecks

Healthchecks are started when a process invokes the saAmfHealthcheckStart()
function; they are stopped when a process invokes the saAmfHealthcheckStop()
function. There is no default healthcheck that is invoked by the Availability Manage-
ment Framework without an explicit start request by the component.

Multiple processes of a component can start healthcheck and each one can decide
which healthcheck should be performed. Moreover, when a process starts a health-
check, it can also specify the recommended recovery action to be applied by the
Availability Management Framework when it reports an error on the component if its
healthcheck reports to the Availability Management Framework are not made in a
timely manner.

The start of healthchecks is independent from the component registration, that is, it is
possible to start healthchecks before the component is registered.

7.1.2.4 Healthcheck Configuration Issues

The Availability Management Framework supports the notion of a healthcheck type. A
number of healthcheck types can be defined for a component type, and each health-
check type is identified by a healthcheck key.

A healthcheck type configuration must be provided for each healthcheck key that the
component uses to start a healthcheck. All components of the same type share the
healthcheck attribute values defined in the healthcheck type configuration.

The healthcheck attributes provided in the healthcheck type for a certain healthcheck
key can be overridden in the healthcheck configuration for the component for the
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.2.2 233

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
same healthcheck key.
The healthcheck configuration for the component can only specify healthcheck keys
for which there is a healthcheck type configuration for its component type.

Further details on the healthcheck configuration are presented in Chapter 8 and [7].

The Availability Management Framework retrieves the healthcheck configuration
based on the healthcheck key referred to by the healthcheckKey parameter of the
healthcheck API calls. The scope of the healthcheck key is limited to the component
and is not cluster-wide.

It is assumed that the component configuration retrieved by the Availability Manage-
ment Framework has passed a series of sanity checks and validations before the
cluster startup. Hence, this rules out errors like specifying too frequent healthcheck in
the configuration. Thus, based on these validations, the Availability Management
Framework may reject a healthcheck start request only if some of the given parame-
ters, such as component name or healthcheckKey, are invalid.

A healthcheck configuration comprises two attributes:

• period: this attribute indicates the period at which the corresponding health-
check should be initiated. This attribute is defined for both framework-invoked
and component-invoked healthchecks; however, it has different meanings for
these two variants of healthchecks, as will be explained next. The name of this
configuration attribute is either saAmfHealthcheckPeriod (contained in the
SaAmfHealthcheck configuration object class), if the healthcheck is config-
ured specifically for the component or saAmfHctDefPeriod (contained in the
SaAmfHealthcheckType configuration object class), if the healthcheck is con-
figured for the component type. These configuration object classes are shown in
Section 8.14.

• maximum-duration: this attribute indicates the time-limit after which the Avail-
ability Management Framework will report an error on the component if no
response for a healthcheck is received by the Availability Management Frame-
work in this time frame. This attribute applies only to the framework-invoked
healthcheck variant. The name of this configuration attribute is either
saAmfHealthcheckMaxDuration (contained in the SaAmfHealthcheck
configuration object class), if the healthcheck is configured specifically for the
component or saAmfHctDefMaxDuration (contained in the
SaAmfHealthcheckType configuration object class), if the healthcheck is con-
figured for the component type. These configuration object classes are shown in
Section 8.14.
234 SAI-AIS-AMF-B.04.01 Section 7.1.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
The component developer is aware of the healthcheck variant supported by a compo-
nent, and the component developer specifies this healthcheck variant in the corre-
sponding healthcheck API calls.

7.1.2.4.1 Role of Period and Maximum-Duration in Framework-Invoked Healthchecks

• period: for a given framework-invoked healthcheck started by a process and
for every "period", the Availability Management Framework will invoke the corre-
sponding healthcheck callback; however, if the process does not respond to a
given healthcheck callback before the start of the next healthcheck period, the
Availability Management Framework will not trigger the next invocation of the
healthcheck callback until the response to the previous invocation is received. In
other words, at any given time and for each healthcheck, there is at most one
callback invocation for which the response is pending. Of course, as a process
may have started several healthchecks in parallel, the Availability Management
Framework will invoke callbacks for these different healthchecks independently.
How the Availability Management Framework reacts if the process does not
respond timely to a framework-invoked healthcheck is explained in the next bul-
let.

• maximum-duration: to correctly specify the value for the period of a health-
check, the deployer has to make sure that the period is set larger than the aver-
age duration of the interval between the Availability Management Framework
triggering a callback invocation and receiving the corresponding response. This
setting guarantees that in normal conditions, with expected load, the response of
a healthy process for the invoked healthcheck callbacks will arrive at the Avail-
ability Management Framework timely (and before the Availability Management
Framework attempts to issue another callback for the same healthcheck). How-
ever, it may not be very easy for the deployer to estimate the expected normal
condition and load on the cluster. Therefore, the Availability Management
Framework should wait somewhat longer than this average time before conclud-
ing that the process is unable to respond to the healthcheck. The
maximum-duration attribute is defined for such a purpose: the Availability
Management Framework will wait for maximum-duration to receive a
response from the process (component) for a given callback invocation. The
deployer should allow enough slack in the maximum-duration attribute, so
that the response of the healthy process (component) will definitely arrive at the
Availability Management Framework before maximum-duration expires, even
in presence of situations such as high-load on the network and/or high-load on
the processing resources of nodes in the cluster.

In short, one has to consider the following trade-off in defining values for period and
maximum-duration for the framework-invoked healthchecks:
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.2.4.1 235

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• period: this value should be set as short as possible, but it should be larger
than the average time-duration accounted for the arrival of the corresponding
reply to the Availability Management Framework. If period is set too short, the
Availability Management Framework may consider the component of a healthy
process that runs in highly load environment as faulty. On the other hand, if
period is set too large, the process may be checked too sparsely, and thus the
latency in detecting process (component) failures (mostly latent fault detection)
becomes larger.

• maximum-duration: as discussed earlier, maximum-duration should be
larger than the average time-duration accounted for the response of a process to
a callback invocation. The maximum-duration attribute should also include
enough slack time, so that, even in the presence of anomalies other than com-
ponent failures, the healthcheck response arrives at the Availability Management
Framework before maximum-duration expires. If maximum-duration is set
too short, it is possible that a healthy process (component) has not been given
enough time to respond to the healthcheck. In this case, the Availability Manage-
ment Framework will falsely assume that the component is faulty. On the other
hand, if maximum-duration is set too large, the latency for the detection of a
faulty component being healthchecked may be increased.

7.1.2.4.2 Role of Period in Component-Invoked Healthchecks

As already explained, component-invoked healthchecks do not have the
maximum-duration attribute (if it is provided, it will be ignored by the Availability
Management Framework). When a process informs the Availability Management
Framework of its intention of starting a component-invoked healthcheck (by calling
saAmfHealthcheckStart()), the Availability Management Framework expects
that the process invokes periodically saAmfHealthcheckConfirm() no later than
at the end of every period. More specifically, the Availability Management Framework
reports an error on the component if the Availability Management Framework does
not receive a healthcheck confirmation from the component before the end of every
period. The recommended recovery for this error is specified by the process when it
invoked the saAmfHealthcheckStart() call. The deployer should add enough
slack time to period, so that the healthcheck invoked by a healthy process can
reach the Availability Management Framework on time.
236 SAI-AIS-AMF-B.04.01 Section 7.1.2.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.1.2.4.3 Modification of Healthcheck Parameters

Modifications of the period and maximum-duration healthcheck attributes for
Framework-invoked healthchecks in the Availability Management Framework config-
uration take place immediately. In contrast, modifications of the period healthcheck
attribute for component-invoked healthchecks in the Availability Management Frame-
work configuration will be effective the next time the healthcheck is started by invok-
ing the saAmfHealthcheckStart() function.

7.1.3 Component Service Instance Management

The basic concepts have been explained in Chapter 3.

Administrative, operational, and presence states are managed by the Availability
Management Framework, but they are not exposed to the components. The readi-
ness state of a component is a private state managed by the Availability Management
Framework. It is neither exposed to components nor to system management, and it is
solely used to determine the eligibility of components to receive component service
instance assignments.

The APIs exposed by the Availability Management Framework are limited to the man-
agement of the HA state and the HA readiness state for components.

The Availability Management Framework uses callbacks to request components to

• add or remove component service instances from components that are in the in-
service state and to

• change the HA state of a component on behalf of a component service instance
(active, standby, quiescing, quiesced).

The registered process for a pre-instantiable component uses the
saAmfHAReadinessStateSet() API function to inform the Availability Manage-
ment Framework about any change in the HA readiness states of the component for
the component service instances that can be assigned to it (see Section 3.2.2.5). The
Availability Management Framework must take into account these changes immedi-
ately and, if necessary, change the HA state of the component for its assigned com-
ponent service instances (possibly re-assigning the affected component service
instances to other components). The registered process for a pre-instantiable compo-
nent is responsible for the timely and accurate update of the HA readiness states for
the component service instances that can be assigned to it.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.2.4.3 237

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
The Availability Management Framework enforces that there are no overlapping
requests to set the state of a component at any specific time. Two state change
requests are said to overlap if the Availability Management Framework requests a
component to enter the new state, before the component acknowledges the first
request, which is done when the component invokes the saAmfResponse_4() API
function, as described in Section 7.13.1. The rationale for avoiding overlapping
requests is that it is simpler to program a component when overlapping requests are
prohibited than when the component must check and report such overlapping.

Component service instances can be assigned to a component only if the component
is in the in-service readiness state, and its HA readiness state for the component ser-
vice instance allows for its assignment in the intended HA state. For details, refer to
the readiness state in Section 3.2.2.3, to the HA state in Section 3.2.2.4, and to the
HA readiness state in Section 3.2.2.5.

The component service instance management comprises data structures and APIs.
The API functions are described in Section 7.9 on page 293.

7.1.4 Component Life Cycle Management

The API functions of the component life cycle management are described in
Section 7.10 on page 307. They comprise the callback function to request a compo-
nent to terminate and the callback functions that proxy and container components
export to enable the Availability Management Framework to manage proxied and
contained components.

7.1.5 Protection Group Management

The basic concepts have been explained in Chapter 3. For the API functions, refer to
Section 7.11 on page 316.

7.1.6 Error Reporting

For the API interfaces, refer to Section 7.12 on page 325.
238 SAI-AIS-AMF-B.04.01 Section 7.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.1.7 Correlation of Notifications

Some events such as errors or administrative operations may trigger extensive
changes in the cluster and hence generate a large number of related notifications.

These notifications can be organized in a tree structure, the root of which is the notifi-
cation for the triggering event. To allow a management application to reconstruct this
tree, notifications are correlated using their notification identifiers. In case of the Avail-
ability Management Framework, this functionality is enabled by including in the error
reporting APIs the data structure defined by the SA Forum Notification Service ([3])
for this purpose.

Whenever applicable, it is recommended that a process reporting an error condition,
for which one or more notifications have already been generated, includes as corre-
lated notifications the identifiers of the root and parent notifications within the notifica-
tion tree structure.
The Availability Management Framework will generate an error report notification as
a result of the error report and use any correlated notifications the caller process indi-
cated. The Availability Management Framework will also return the identifier of the
generated error report notification to the caller.

When a process invokes the API to clear the error condition, it shall provide the root
and parent notification identifiers that connect the current action to the tree of other
related events.
As a result of the invocation, the Availability Management Framework will generate
an error clear notification which includes these two notification identifiers along with
all identifiers of error report notifications previously sent for the error being cleared.
The Availability Management Framework will also return the identifier of the gener-
ated error clear notification to the caller process.

Applications may generate notifications on their own as a result of different callbacks
received from the Availability Management Framework. Each of these callbacks is
identified by an invocation parameter. The invoked process may invoke the
saAmfCorrelationIdsGet() API function (see Section 7.12.3) with this parame-
ter to obtain any relevant correlated notification identifiers for the event that triggered
the particular Availability Management Framework's callback request.

7.1.8 Component Response to Framework Requests

For the API interfaces, refer to Section 7.13 on page 333.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.7 239

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.1.9 API Usage Illustrations

This section illustrates the usage of the Availability Management Framework API by
different categories of components.

FIGURE 24 shows an example of an SA-aware component consisting of a single pro-
cess. The numbers in circles indicate the sequence of events in time.

FIGURE 24 SA-Aware Component Consisting of a Single Process

Save the compo-
nent name to pass
it to API calls
requiring them.

SA-aware Component

AMF manages the life cycle
of the component

Application Code

AMF

Local
Component Name

saAmfComponentRegister

state change
callbacksLibrary saAmfInitialize_4()

saAmfComponentNameGet

Registered Process for the Component

API calls

1 2

3

5 64
240 SAI-AIS-AMF-B.04.01 Section 7.1.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
FIGURE 25 shows an example of an SA-aware component consisting of multiple pro-
cesses. The numbers in circles indicate the sequence of events in time.

FIGURE 25 SA-Aware Component Consisting of Multiple Processes

SA-aware Component

Application Code

AMF

Local
Component Name

saAmfInitialize_4

AMF manages the life cycle
of the component

Application Code

AMF

Local
Component Name

saAmfComponentRegister

state change
callbacks

Library

saAmfComponentNameGet

Save the component
name to pass it to
API calls requiring it.

Library
saAmfInitialize_4

saAmfComponentNameGet

Save the compo-
nent name to pass it
to API calls requir-
ing it.

Same Component Name
 Process A (Registered Process for the Component)

 Process C Process B

1

7 8

9

2

3

4

API calls

5 6

API calls

10

Application Code

AMF

Local
Component Name

saAmfInitialize_4
Library

saAmfComponentNameGet

Save the component
name to pass it to
API calls requiring it.

API calls

14
11 12

13
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.1.9 241

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
FIGURE 26 shows an example of a single-process proxy component that registers
itself (in step 4) and two proxied components with the Availability Management
Framework. The proxy component registers the proxied components (in steps 6 and
9) before it replies to the callbacks to instantiate the proxied components (in steps 7
and 10). The numbers in circles indicate the sequence of events in time.

FIGURE 26 A Single-Process Proxy Component and Two Proxied Components

Proxy Component

AMF manages the life cycle
of the proxy component

Application Code

AMF Library

Proxy
Component Name

saAmfComponentRegister

state change call-
backs for all three
componentssaAmfInitialize_4

saAmfComponentNameGet

Save the proxy compo-
nent name to pass it to
API calls requiring it.

Registered Process for the Proxy and the Proxied Components

Proxied
Component Name

Proxied
Component Name

Local or External
Proxied Component

Refers toRefers to

Local or External
Proxied Component

1 2

Register first
proxied com-
ponent

3

7

API calls

8

saAmfComponentRegister

4

saAmfProxiedComponentInstantiateCallback saAmfProxiedComponentInstantiateCallback

saAmfResponse saAmfResponse

5 6

saAmfComponentRegister

9

Register sec-
ond proxied
component

10 11 12
242 SAI-AIS-AMF-B.04.01 Section 7.1.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.2 Unavailability of the AMF API on a Non-Member Node

The following subsection describes the behavior of the Availability Management
Framework under various conditions that cause the Availability Management Frame-
work to be unavailable on a node. Section 7.2.2 contains guidelines for Availability
Management Framework implementers for dealing with a temporary unavailability of
the service.

7.2.1 A Member Node Leaves or Rejoins the Cluster Membership

As described in Section 3.1.1.1, the Availability Management Framework does not
provide service to processes on cluster nodes that are not in the cluster membership
(see [4]).

The Availability Management Framework is notified by the Cluster Membership Ser-
vice about cluster membership changes. How the Availability Management Frame-
work reacts to these changes is explained in detail in Appendix D. In this section, only
the behavior from the perspective of a process is described.

When the Availability Management Framework detects that the CLM node to which
an AMF node is mapped has unexpectedly left the cluster membership, the Availabil-
ity Management Framework abruptly terminates all components hosted by this AMF
node by executing the CLEANUP CLC-CLI command (see Section 4.8) for all its local
components. Thus, when a node has left the cluster membership, no processes
belonging to components should be running on the node. However, there are a few
special situations in which processes may call Availability Management Framework
API functions.

• An Availability Management Framework API function is called by a process
nearly at the same time when the node exits the cluster and the Availability Man-
agement Framework area server on the node has not yet terminated the pro-
cess.

• The Availability Management Framework encounters an error when attempting
to terminate all of the processes belonging to components, so there may still be
processes running.

• The cleanup operation of a component (see Table 37 in Appendix A) does not
properly terminate all its processes.

• A process using the Availability Management Framework API, but which is not
part of a component, is running on the AMF node, and since the Availability Man-
agement Framework has no knowledge of the process, the Availability Manage-
ment Framework will not attempt to clean it up.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.2 243

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
In the few special situations described above, the Availability Management Frame-
work behaves as follows towards processes residing on that node and using or
attempting to use the service:

• Calls to saAmfInitialize_4() will fail with SA_AIS_ERR_UNAVAILABLE.
• All Availability Management Framework APIs that are invoked by the process

and that operate on handles already acquired by the process will fail with
SA_AIS_ERR_UNAVAILABLE with the exception of saAmfFinalize(), which
is used to free the library handles and all resources associated with these han-
dles.

• Any outstanding SaAmfProtectionGroupTrackCallbackT_4 callback will
provide SA_AIS_ERR_UNAVAILABLE in the error parameter.

• No other callbacks will be called.

If the node rejoins the cluster membership, the Availability Management Framework
instantiates service units on this node based on the configuration of the service
groups that contain service units hosted by that node. Processes belonging to com-
ponents of these service units can access the Availability Management Framework
API functions without restrictions. However, the left-over processes of the few special
situations above will still be denied service as explained.

When the node leaves the membership, the Availability Management Framework
executing on the remaining nodes of the cluster behaves as if all processes belong-
ing to components residing on the leaving node had been terminated.

As AMF engages procedures to terminate all components on the leaving node, AMF
sets the presence state of all components and all service units on this node to unin-
stantiated. The readiness state of all service units and all components on this node is
set to out-of-service.

7.2.2 Guidelines for Availability Management Framework Implementers

The implementation of the Availability Management Framework must leverage the SA
Forum Cluster Membership Service (see [4]) to determine the membership status of a
node. If the Cluster Membership Service considers a node as a member of the cluster
but the Availability Management Framework experiences difficulty in providing ser-
vice to its clients because of transport, communication, or other issues, it must
respond to the API calls invoked by a process with SA_AIS_ERR_TRY_AGAIN.
244 SAI-AIS-AMF-B.04.01 Section 7.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.3 Include File and Library Names
The following statements containing declarations of data types and function proto-
types must be included in the source of an application using the Availability Manage-
ment Framework API:

#include <saAmf.h>

and

#include <saNtf.h>

The latter statement is needed for the functions
saAmfComponentErrorReport_4(), saAmfComponentErrorClear_4(),
saAmfCorrelationIdsGet(), saAmfHAReadinessStateSet(), and
saAmfResponse_4().

To use the Availability Management Framework API, an application must be bound
with the following library:

libSaAmf.so

7.4 Type Definitions
The Availability Management Framework uses the types described in the following
sections.

7.4.1 SaAmfHandleT

typedef SaUint64T SaAmfHandleT;

A process acquires this handle to the Availability Management Framework by invok-
ing the saAmfInitialize_4() function and uses it in subsequent invocations of
the functions of the Availability Management Framework.

7.4.2 Component Process Monitoring

This section describes the data types that the Availability Management Framework
requires for the passive monitoring of processes of a component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.3 245

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.2.1 SaAmfPmErrorsT Type

#define SA_AMF_PM_ZERO_EXIT 0x1

#define SA_AMF_PM_NON_ZERO_EXIT 0x2

#define SA_AMF_PM_ABNORMAL_END 0x4

typedef SaUint32T SaAmfPmErrorsT;

7.4.2.2 SaAmfPmStopQualifierT Type

typedef enum {

SA_AMF_PM_PROC = 1,

SA_AMF_PM_PROC_AND_DESCENDENTS = 2,

SA_AMF_PM_ALL_PROCESSES = 3

} SaAmfPmStopQualifierT;

For the explanation of the enum values in SaAmfPmStopQualifierT, refer to
Section 7.7.2 on page 280.

7.4.3 Component Healthcheck Monitoring

7.4.3.1 SaAmfHealthcheckInvocationT

typedef enum {

SA_AMF_HEALTHCHECK_AMF_INVOKED = 1,

SA_AMF_HEALTHCHECK_COMPONENT_INVOKED = 2

} SaAmfHealthcheckInvocationT;

The values of the SaAmfHeathcheckInvocationT enumeration type are:

• SA_AMF_HEALTHCHECK_AMF_INVOKED - The healthchecks are invoked by
the Availability Management Framework.

• SA_AMF_HEALTHCHECK_COMPONENT_INVOKED - The healthchecks are
invoked by the component.
246 SAI-AIS-AMF-B.04.01 Section 7.4.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.3.2 SaAmfHealthcheckKeyT

#define SA_AMF_HEALTHCHECK_KEY_MAX 32

typedef struct {

SaUint8T key[SA_AMF_HEALTHCHECK_KEY_MAX];

SaUint16T keyLen;

} SaAmfHealthcheckKeyT;

7.4.4 Types for State Management

7.4.4.1 HA State

typedef enum {

SA_AMF_HA_ACTIVE = 1,

SA_AMF_HA_STANDBY = 2,

SA_AMF_HA_QUIESCED = 3,

SA_AMF_HA_QUIESCING = 4

} SaAmfHAStateT;

The HA state is active, standby, quiesced, or quiescing.

7.4.4.2 Readiness State

typedef enum {

SA_AMF_READINESS_OUT_OF_SERVICE = 1,

SA_AMF_READINESS_IN_SERVICE = 2,

SA_AMF_READINESS_STOPPING = 3

} SaAmfReadinessStateT;

The readiness state is out-of-service, in-service, or stopping.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.3.2 247

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.4.3 Presence State

typedef enum {

SA_AMF_PRESENCE_UNINSTANTIATED = 1,

SA_AMF_PRESENCE_INSTANTIATING = 2,

SA_AMF_PRESENCE_INSTANTIATED = 3,

SA_AMF_PRESENCE_TERMINATING = 4,

SA_AMF_PRESENCE_RESTARTING = 5,

SA_AMF_PRESENCE_INSTANTIATION_FAILED = 6,

SA_AMF_PRESENCE_TERMINATION_FAILED = 7

} SaAmfPresenceStateT;

The presence state is uninstantiated, instantiating, instantiated, terminating,
restarting, instantiation-failed, or termination-failed.

7.4.4.4 Operational State

typedef enum {

SA_AMF_OPERATIONAL_ENABLED = 1,

SA_AMF_OPERATIONAL_DISABLED = 2

} SaAmfOperationalStateT;

The operational state is enabled or disabled.

7.4.4.5 Administrative State

typedef enum {

SA_AMF_ADMIN_UNLOCKED = 1,

SA_AMF_ADMIN_LOCKED = 2,

SA_AMF_ADMIN_LOCKED_INSTANTIATION = 3,

SA_AMF_ADMIN_SHUTTING_DOWN = 4

} SaAmfAdminStateT;

The administrative state is unlocked, locked, locked-instantiation, or shutting-down.
248 SAI-AIS-AMF-B.04.01 Section 7.4.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.4.6 Assignment State

typedef enum {

SA_AMF_ASSIGNMENT_UNASSIGNED = 1,

SA_AMF_ASSIGNMENT_FULLY_ASSIGNED = 2,

SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED = 3

} SaAmfAssignmentStateT;

The assignment state of an SI is unassigned, fully-assigned, or partially-assigned.

7.4.4.7 HA Readiness State

typedef enum {

SA_AMF_HARS_READY_FOR_ASSIGNMENT = 1,

SA_AMF_HARS_READY_FOR_ACTIVE_DEGRADED = 2,

SA_AMF_HARS_NOT_READY_FOR_ACTIVE = 3,

SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT = 4

} SaAmfHAReadinessStateT;

The HA readiness state is ready-for-assignment, ready-for-active-degraded,
not-ready-for-active, or not-ready-for-assignment.

7.4.4.8 Proxy Status

typedef enum {

SA_AMF_PROXY_STATUS_UNPROXIED = 1,

SA_AMF_PROXY_STATUS_PROXIED = 2

} SaAmfProxyStatusT;

The proxy status of a component is proxied (SA_AMF_PROXY_STATUS_PROXIED) or
unproxied (SA_AMF_PROXY_STATUS_UNPROXIED). If the proxy status is
SA_AMF_PROXY_STATUS_PROXIED, a proxy component is currently “proxying” the
component. If the proxy status is SA_AMF_PROXY_STATUS_UNPROXIED, no proxy
component is currently assigned to “proxy” the component, possibly because the pre-
vious proxy component failed, and the Availability Management Framework could not
engage another component to assume the mediation responsibility for the compo-
nent.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.4.6 249

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.4.9 All Defined States

typedef enum {

SA_AMF_READINESS_STATE = 1,

SA_AMF_HA_STATE = 2,

SA_AMF_PRESENCE_STATE = 3,

SA_AMF_OP_STATE = 4,

SA_AMF_ADMIN_STATE = 5,

SA_AMF_ASSIGNMENT_STATE = 6,

SA_AMF_PROXY_STATUS = 7,

SA_AMF_HA_READINESS_STATE = 8

} SaAmfStateT;

This enum defines all states (readiness, HA state, presence, operational, administra-
tive, assignment, and HA readiness) and the additional proxy status.

7.4.5 Component Service Types

7.4.5.1 SaAmfCSIFlagsT

#define SA_AMF_CSI_ADD_ONE 0X1

#define SA_AMF_CSI_TARGET_ONE 0X2

#define SA_AMF_CSI_TARGET_ALL 0X4

typedef SaUint32T SaAmfCSIFlagsT;

The values for the SaAmfCSIFlagsT are the following:

• SA_AMF_CSI_ADD_ONE - A new component service instance is assigned to
the component. The component is requested to assume a particular HA state
for the new component service instance.

• SA_AMF_CSI_TARGET_ONE - The request made to the component targets
only one of its component service instances.

• SA_AMF_CSI_TARGET_ALL - The request made to the component targets all
of its component service instances. This flag is used for cases in which all
component service instances are managed as a bundle: the component is
assigned the same HA state for all component service instances at the same
time, or all component service instances are removed at the same time. This
flag is used for removing all component service instances at once, if it makes
sense.
250 SAI-AIS-AMF-B.04.01 Section 7.4.4.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
These values are mutually exclusive. Only one value can be set in
SaAmfCSIFlagsT.

7.4.5.2 SaAmfCSITransitionDescriptorT

typedef enum {

SA_AMF_CSI_NEW_ASSIGN = 1,

SA_AMF_CSI_QUIESCED = 2,

SA_AMF_CSI_NOT_QUIESCED = 3,

SA_AMF_CSI_STILL_ACTIVE = 4

} SaAmfCSITransitionDescriptorT;

This enumeration type provides information on the component that was or still is
active for the specified component service instance. The values of the
SaAmfCSITransitionDescriptorT enumeration type have the following interpre-
tation:

• SA_AMF_CSI_NEW_ASSIGN - This assignment is not the result of a switch-
over or fail-over of the specified component service instance from another
component to this component. No component was previously active for this
component service instance.

• SA_AMF_CSI_QUIESCED - This assignment is the result of a switch-over of
the specified component service instance from another component to this
component. The component that was previously active for this component
service instance has been quiesced.

• SA_AMF_CSI_NOT_QUIESCED - This assignment is the result of a fail-over of
the specified component service instance from another component to this
component. The component that was previously active for this component
service instance has not been quiesced.

• SA_AMF_CSI_STILL_ACTIVE - This value is only used in the N-way active
redundancy model when the assignment is not the result of a switchover or a
failover of the specified component service instance from another component
to this component, and at least one other component is already assigned
active for that component service instance.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.5.2 251

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.5.3 SaAmfCSIStateDescriptorT

typedef struct {

SaAmfCSITransitionDescriptorT transitionDescriptor;

SaNameT activeCompName;

} SaAmfCSIActiveDescriptorT;

The fields of the SaAmfCSIActiveDescriptorT structure have the following inter-
pretation:

• transitionDescriptor - This descriptor provides information on the com-
ponent that was or is still active for the one or all of the specified component
service instances (see previous section).

• activeCompName - The name of the component that was previously active
for the specified component service instance.

When a component is requested to assume the active HA state for one or for all com-
ponent service instances assigned to the component,
SaAmfCSIActiveDescriptorT holds the following information:

• The Availability Management Framework uses the transitionDescriptor
that is appropriate for the redundancy model of the service group to which this
component belongs.

• If transitionDescriptor is set to SA_AMF_CSI_NOT_QUIESCED or
SA_AMF_CSI_QUIESCED, activeCompName holds the name of the component
that was previously assigned the active state for the component service
instances and no longer has that assignment.

• If transitionDescriptor is set to SA_AMF_CSI_NEW_ASSIGN,
activeCompName is not used.

• If transitionDescriptor is set to SA_AMF_CSI_STILL_ACTIVE,
activeCompName holds the name of one of the components that are still
assigned the active HA state for all targeted component service instances. Any
of these components can be arbitrarily selected.

typedef struct {

SaNameT activeCompName;

SaUint32T standbyRank;

} SaAmfCSIStandbyDescriptorT;
252 SAI-AIS-AMF-B.04.01 Section 7.4.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
The fields of the SaAmfCSIStandbyDescriptorT structure have the following
interpretation:

• activeCompName - Name of the component that is currently active for the
one or all of the specified component service instances. This name is empty if
no active component exists.

• standbyRank - Rank of the component for assignments of the standby HA
state to the component for the one or all of the specified component service
instances.

When a component is requested to assume the standby HA state for one or for all
component service instances assigned to the component,
SaAmfCSIStandbyDescriptorT holds in activeCompName the name of the com-
ponent that is currently assigned the active state for the one or all these component
service instances. In redundancy models in which several components may assume
the standby HA state for the same component service instance at the same time,
standbyRank indicates to the component the rank it must assume. When the Avail-
ability Management Framework selects a component to assume the active HA state
for a component service instance, the component assuming the standby state for that
component service instance with the lowest standbyRank value is chosen.

typedef union {

SaAmfCSIActiveDescriptorT activeDescriptor;

SaAmfCSIStandbyDescriptorT standbyDescriptor;

} SaAmfCSIStateDescriptorT;

The SaAmfCSIStateDescriptorT holds additional information about the assign-
ment of a component service instance to a component when the component is
requested to assume the active or standby HA state for this component service
instance.

7.4.5.4 SaAmfCSIAttributeListT

typedef struct {

SaUint8T *attrName;

SaUint8T *attrValue;

} SaAmfCSIAttributeT;

SaAmfCSIAttributeT represents a single component service instance attribute by
its name and value strings. Each string consists of UTF-8 encoded characters and is
terminated by the NULL character.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.5.4 253

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
typedef struct {

SaAmfCSIAttributeT *attr;

SaUint32T number;

} SaAmfCSIAttributeListT;

SaAmfCSIAttributeListT represents the list of all attributes of a single compo-
nent service instance. The attr pointer points to an array of number elements of
SaAmfCSIAttributeT attribute descriptors.

7.4.5.5 SaAmfCSIDescriptorT

typedef struct {

SaAmfCSIFlagsT csiFlags;

SaNameT csiName;

SaAmfCSIStateDescriptorT csiStateDescriptor;

SaAmfCSIAttributeListT csiAttr;

} SaAmfCSIDescriptorT;

SaAmfCSIDescriptorT provides information about the component service
instances targeted by the saAmfCSISetCallback() callback API.

When SA_AMF_CSI_TARGET_ALL is set in csiFlags, csiName is not used; other-
wise, csiName contains the name of the component service instance targeted by the
callback.

When SA_AMF_CSI_ADD_ONE is set in csiFlags, csiAttr refers to the attributes
of the newly assigned component service instance; otherwise, no attributes are pro-
vided, and csiAttr is not used.

When the component is requested to assume the active or standby state for the tar-
geted service instances, csiStateDescriptor holds additional information rela-
tive to that state transition; otherwise, csiStateDescriptor is not used.
254 SAI-AIS-AMF-B.04.01 Section 7.4.5.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.6 Types for Protection Group Management

7.4.6.1 SaAmfProtectionGroupMemberT_4

typedef struct {

SaNameT compName;

SaAmfHAStateT haState;

SaAmfHAReadinessStateT haReadinessState;

SaUint32T rank;

} SaAmfProtectionGroupMemberT_4;

The fields of the SaAmfProtectionGroupMemberT_4 structure have the following
interpretation:

• compName - The name of the component that is a member of the protection
group.

• haState - The HA state of the member component for the component ser-
vice instance supported by the member component.

• haReadinessState - The HA readiness state of the member component for
the component service instance protected by the protection group.

• rank - The standby rank of the member component in the protection group if
haState is standby.

7.4.6.2 SaAmfProtectionGroupChangesT

typedef enum {

SA_AMF_PROTECTION_GROUP_NO_CHANGE = 1,

SA_AMF_PROTECTION_GROUP_ADDED = 2,

SA_AMF_PROTECTION_GROUP_REMOVED = 3,

SA_AMF_PROTECTION_GROUP_STATE_CHANGE = 4

} SaAmfProtectionGroupChangesT;

The values of the SaAmfProtectionGroupChangesT enumeration type have the
following interpretation:

• SA_AMF_PROTECTION_GROUP_NO_CHANGE - This value is used when the
trackFlags parameter of the saAmfProtectionGroupTrack_4() func-
tion (as defined in Section 7.11.1) is either

⇒ SA_TRACK_CURRENT or
⇒ SA_TRACK_CHANGES, and all the following conditions hold:
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.6 255

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• The member component was already a member of the protection
group in the previous saAmfProtectionGroupTrackCallback()
callback call.

• The component service instance has not been removed from the mem-
ber component.

• Neither haState, haReadinessState, nor rank of the
SaAmfProtectionGroupMemberT_4 structure of this member com-
ponent has changed.

• SA_AMF_PROTECTION_GROUP_ADDED - The associated component service
instance has been added to the member component.

• SA_AMF_PROTECTION_GROUP_REMOVED - The associated component ser-
vice instance has been removed from the member component.

• SA_AMF_PROTECTION_GROUP_STATE_CHANGE - Any of the elements
haState, haReadinessState, or rank of the
SaAmfProtectionGroupMemberT_4 structure for the member component
have changed.

7.4.6.3 SaAmfProtectionGroupNotificationT_4

typedef struct {

SaAmfProtectionGroupMemberT_4 member;

SaAmfProtectionGroupChangesT change;

} SaAmfProtectionGroupNotificationT_4;

The fields of the SaAmfProtectionGroupNotificationT_4 structure have the
following interpretation:

• member - The information associated with the component member of the pro-
tection group.

• change - The kind of change in the associated component member.

7.4.6.4 SaAmfProtectionGroupNotificationBufferT_4

typedef struct {

SaUint32T numberOfItems;

SaAmfProtectionGroupNotificationT_4 *notification;

} SaAmfProtectionGroupNotificationBufferT_4;

The fields of the SaAmfProtectionGroupNotificationBufferT_4 structure
have the following interpretation:
256 SAI-AIS-AMF-B.04.01 Section 7.4.6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• numberOfItems - Number of elements of type
SaAmfProtectionGroupNotificationT_4 in the array to which
notification points.

• notification - Pointer to the notification array.

7.4.7 SaAmfRecommendedRecoveryT

typedef enum {

SA_AMF_NO_RECOMMENDATION = 1,

SA_AMF_COMPONENT_RESTART = 2,

SA_AMF_COMPONENT_FAILOVER = 3,

SA_AMF_NODE_SWITCHOVER = 4,

SA_AMF_NODE_FAILOVER = 5,

SA_AMF_NODE_FAILFAST = 6,

SA_AMF_CLUSTER_RESET = 7,

SA_AMF_APPLICATION_RESTART = 8,

SA_AMF_CONTAINER_RESTART = 9

} SaAmfRecommendedRecoveryT;

A short explanation of the values of this enumeration is given next. Additional details
are provided in Section 3.11.1.3 and subsections:

• SA_AMF_NO_RECOMMENDATION - This report makes no recommendation for
recovery. However, the Availability Management Framework should engage
the configured per-component recovery policy (refer to Section 3.11.1.3) in
such a scenario.

• SA_AMF_COMPONENT_RESTART - The erroneous component should be ter-
minated and reinstantiated.

• SA_AMF_COMPONENT_FAILOVER - The error is related to the execution envi-
ronment of the component on the current node. Depending on the redun-
dancy model used, either the component or the service unit containing the
component should fail over to another node.

• SA_AMF_NODE_SWITCHOVER - The error has been identified as being at the
node level, and no service instance should be assigned to service units on
that node. Service instances containing component service instances
assigned to the failed component are failed over while other service instances
are switched over to other nodes (component service instances are not
abruptly removed; instead, they are brought to the quiesced state before
being removed).
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.7 257

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• SA_AMF_NODE_FAILOVER - The error has been identified as being at the
node level, and no service instance should be assigned to service units on
that node. All service instances assigned to service units contained in the
node are failed over to other nodes (by an abrupt termination of all node-local
components).

• SA_AMF_NODE_FAILFAST - The error has been identified as being at the
node level, and components should not be in service on the node. The node
should be rebooted using a low-level interface.

• SA_AMF_APPLICATION_RESTART - The application should be completely
terminated and then started again by first terminating all of its service units
and then starting them again, ensuring that—during the termination phase of
the restart procedure—service instances of the application are not reas-
signed (refer additionally to Section 9.4.7 on page 383).

• SA_AMF_CLUSTER_RESET - The cluster should be reset. In order to execute
this function, the Availability Management Framework reboots all nodes that
are part of the cluster by using a low level interface without trying to terminate
the components individually. To be effective, this operation must be performed
such that all AMF nodes are first terminated before any of the AMF nodes
starts to instantiate again.

• SA_AMF_CONTAINER_RESTART - Terminate all contained components and
the container component abruptly and then instantiate them again.

7.4.8 SaAmfCompCategoryT

#define SA_AMF_COMP_SA_AWARE 0x0001

#define SA_AMF_COMP_PROXY 0x0002

#define SA_AMF_COMP_PROXIED 0x0004

#define SA_AMF_COMP_LOCAL 0x0008

#define SA_AMF_COMP_CONTAINER 0x0010

#define SA_AMF_COMP_CONTAINED 0x0020

#define SA_AMF_COMP_PROXIED_NPI 0x0040

typedef SaUint32T SaAmfCompCategoryT;

Based on Table 3 on page 50, all possible “ORing” of values are shown in the follow-
ing table:
258 SAI-AIS-AMF-B.04.01 Section 7.4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Table 20 Possible Combinations of Values in SaAmfCompCategoryT

Components with the following category values are non-pre-instantiable components:

• SA_AMF_COMP_LOCAL (local, non-proxied, non-SA-aware)
• SA_AMF_COMP_LOCAL and SA_AMF_COMP_PROXIED_NPI (local, non-pre-

instantiable proxied)
• SA_AMF_COMP_PROXIED_NPI (external, non-pre-instantiable proxied)

All other valid component category values represent pre-instantiable components.

Component Mandatory Values Optional Values

regular SA-aware SA_AMF_COMP_SA_AWARE SA_AMF_COMP_LOCAL

proxy, non-container SA_AMF_COMP_PROXY SA_AMF_COMP_LOCAL
SA_AMF_COMP_SA_AWARE

container, non-proxy SA_AMF_COMP_CONTAINER SA_AMF_COMP_LOCAL,
SA_AMF_COMP_SA_AWARE

container, proxy SA_AMF_COMP_CONTAINER.
and SA_AMF_COMP_PROXY

SA_AMF_COMP_LOCAL,
SA_AMF_COMP_SA_AWARE

contained SA_AMF_COMP_CONTAINED SA_AMF_COMP_LOCAL,
SA_AMF_COMP_SA_AWARE

local, non-SA-aware,
proxied, pre-instantiable

SA_AMF_COMP_LOCAL and
SA_AMF_COMP_PROXIED

-

local, non-SA-aware,
proxied, non-pre-instantiable

SA_AMF_COMP_LOCAL and
SA_AMF_COMP_PROXIED_NPI

-

local, non-SA-aware,
non-proxied

SA_AMF_COMP_LOCAL -

external, pre-instantiable - SA_AMF_COMP_PROXIED

external, non-pre-instantiable SA_AMF_COMP_PROXIED_NPI -
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.8 259

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.9 SaAmfRedundancyModelT

typedef enum {

SA_AMF_2N_REDUNDANCY_MODEL = 1,

SA_AMF_NPM_REDUNDANCY_MODEL = 2,

SA_AMF_N_WAY_REDUNDANCY_MODEL = 3,

SA_AMF_N_WAY_ACTIVE_REDUNDANCY_MODEL = 4,

SA_AMF_NO_REDUNDANCY_MODEL = 5

} SaAmfRedundancyModelT;

For a description of the various redundancy models enumerated in this type, refer to
Section 3.6 on page 109.

7.4.10 SaAmfCompCapabilityModelT

typedef enum {

SA_AMF_COMP_X_ACTIVE_AND_Y_STANDBY = 1,

SA_AMF_COMP_X_ACTIVE_OR_Y_STANDBY = 2,

SA_AMF_COMP_ONE_ACTIVE_OR_Y_STANDBY = 3,

SA_AMF_COMP_ONE_ACTIVE_OR_ONE_STANDBY = 4,

SA_AMF_COMP_X_ACTIVE = 5,

SA_AMF_COMP_1_ACTIVE = 6,

SA_AMF_COMP_NON_PRE_INSTANTIABLE = 7

} SaAmfCompCapabilityModelT;

For a description of the values shown in this enum, refer to Section 3.5 on page 107.
260 SAI-AIS-AMF-B.04.01 Section 7.4.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.11 Notifications-Related Types

7.4.11.1 SaAmfNotificationMinorIdT

typedef enum {

/* alarms */

SA_AMF_NTFID_COMP_INSTANTIATION_FAILED = 0x02,

SA_AMF_NTFID_COMP_CLEANUP_FAILED = 0x03,

SA_AMF_NTFID_CLUSTER_RESET = 0x04,

SA_AMF_NTFID_SI_UNASSIGNED = 0x05,

SA_AMF_NTFID_COMP_UNPROXIED = 0x06,

/* state change */

SA_AMF_NTFID_NODE_ADMIN_STATE = 0x065,

SA_AMF_NTFID_SU_ADMIN_STATE = 0x066,

SA_AMF_NTFID_SG_ADMIN_STATE = 0x067,

SA_AMF_NTFID_SI_ADMIN_STATE = 0x068,

SA_AMF_NTFID_APP_ADMIN_STATE = 0x069,

SA_AMF_NTFID_CLUSTER_ADMIN_STATE = 0x06A,

SA_AMF_NTFID_NODE_OP_STATE = 0x06B,

SA_AMF_NTFID_SU_OP_STATE = 0x06C,

SA_AMF_NTFID_SU_PRESENCE_STATE = 0x06D,

SA_AMF_NTFID_SU_SI_HA_STATE = 0x06E,

SA_AMF_NTFID_SI_ASSIGNMENT_STATE = 0x06F,

SA_AMF_NTFID_COMP_PROXY_STATUS = 0x070,

SA_AMF_NTFID_SU_SI_HA_READINESS_STATE = 0x071,

/* miscellaneous */

SA_AMF_NTFID_ERROR_REPORT = 0x0191,

SA_AMF_NTFID_ERROR_CLEAR = 0x0192

} SaAmfNotificationMinorIdT;

This type provides the values for the minorId field of notification class identifiers
used in notifications of the Availability Management Framework.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.11 261

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.11.2 SaAmfAdditionalInfoIdT

typedef enum {

SA_AMF_NODE_NAME = 1,

SA_AMF_SI_NAME = 2,

SA_AMF_MAINTENANCE_CAMPAIGN_DN = 3,

SA_AMF_AI_RECOMMENDED_RECOVERY = 4,

SA_AMF_AI_APPLIED_RECOVERY = 5

}SaAmfAdditionalInfoIdT;

The preceding types are used in Availability Management Framework alarms and
notifications (refer to Chapter 11) to convey additional information elements in the
“Additional Information” field associated with alarms and notifications.
262 SAI-AIS-AMF-B.04.01 Section 7.4.11.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.4.12 SaAmfCallbacksT_4

typedef struct {

SaAmfHealthcheckCallbackT

saAmfHealthcheckCallback;

SaAmfComponentTerminateCallbackT

saAmfComponentTerminateCallback;

SaAmfCSISetCallbackT

saAmfCSISetCallback;

SaAmfCSIRemoveCallbackT

saAmfCSIRemoveCallback;

SaAmfProtectionGroupTrackCallbackT_4

saAmfProtectionGroupTrackCallback;

SaAmfProxiedComponentInstantiateCallbackT

saAmfProxiedComponentInstantiateCallback;

SaAmfProxiedComponentCleanupCallbackT

saAmfProxiedComponentCleanupCallback;

SaAmfContainedComponentInstantiateCallbackT

saAmfContainedComponentInstantiateCallback;

SaAmfContainedComponentCleanupCallbackT

saAmfContainedComponentCleanupCallback;

} SaAmfCallbacksT_4;

The SaAmfCallbacksT_4 structure defines the various callback functions that the
Availability Management Framework may invoke on a component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.4.12 263

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.5 Library Life Cycle

7.5.1 saAmfInitialize_4()

Prototype

SaAisErrorT saAmfInitialize_4(

SaAmfHandleT *amfHandle,

const SaAmfCallbacksT_4 *amfCallbacks,

SaVersionT *version

);

Parameters

amfHandle - [out] A pointer to the handle which identifies this particular initialization
of the Availability Management Framework, and which is to be returned by the Avail-
ability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

amfCallbacks - [in] If amfCallbacks is set to NULL, no callbacks are registered;
if amfCallbacks is not set to NULL, it is a pointer to an SaAmfCallbacksT_4
structure which contains the callback functions of the process that the Availability
Management Framework may invoke. Only non-NULL callback functions in this struc-
ture will be registered. The SaAmfCallbacksT_4 is defined in
Section 7.4.12 on page 263.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required Availability Management Framework version. In this case,
minorVersion is ignored and should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Availability Management Framework. The SaVersionT
type is defined in [2].

Description

This function initializes the Availability Management Framework for the invoking pro-
cess and registers the various callback functions. This function must be invoked prior
to the invocation of any other Availability Management Framework API function. The
handle pointed to by amfHandle is returned by the Availability Management Frame-
work as the reference to this association between the process and the Availability
Management Framework. The process uses this handle in subsequent communica-
tion with the Availability Management Framework.
264 SAI-AIS-AMF-B.04.01 Section 7.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If the invoking process exits after having successfully returned from the
saAmfInitialize_4() function and before invoking saAmfFinalize() to final-
ize the handle amfHandle (see Section 7.5.4 on page 270), the Availability Manage-
ment Framework automatically finalizes this handle when it detects the death of the
process.

The amfCallbacks parameter points to a structure the contains the callbacks that
the Availability Management Framework can invoke.

If the implementation supports the version of the Availability Management Framework
API specified by the releaseCode and majorVersion fields of the structure
pointed to by the version parameter, SA_AIS_OK is returned. In this case, the
structure pointed to by the version parameter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the version to which the version parameter points is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.5.1 265

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
a process that is providing the service is out of memory and cannot provide the ser-
vice.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Availability Man-
agement Framework implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saAmfSelectionObjectGet(), saAmfDispatch(), saAmfFinalize()
266 SAI-AIS-AMF-B.04.01 Section 7.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.5.2 saAmfSelectionObjectGet()

Prototype

SaAisErrorT saAmfSelectionObjectGet(

SaAmfHandleT amfHandle,

SaSelectionObjectT *selectionObject

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

selectionObject - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [2].

Description

This function returns the operating system handle associated with the handle
amfHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking the saAmfDispatch() function
for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The operating system handle returned by saAmfSelectionObjectGet() is valid
until saAmfFinalize() is invoked on the same handle amfHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.5.2 267

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfInitialize_4(), saAmfDispatch()

7.5.3 saAmfDispatch()

Prototype

SaAisErrorT saAmfDispatch(

SaAmfHandleT amfHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saAmfDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [2].
268 SAI-AIS-AMF-B.04.01 Section 7.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

In the context of the calling thread, this function invokes pending callbacks for the
handle amfHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle amfHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfInitialize_4(), saAmfSelectionObjectGet()
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.5.3 269

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.5.4 saAmfFinalize()

Prototype

SaAisErrorT saAmfFinalize(

SaAmfHandleT amfHandle

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

Description

The saAmfFinalize() function closes the association represented by the
amfHandle parameter between the invoking process and the Availability Manage-
ment Framework. The process must have invoked saAmfInitialize_4() before it
invokes this function. A process must call this function once for each handle it
acquired by invoking saAmfInitialize_4().

If the saAmfFinalize() function completes successfully, it releases all resources
acquired when saAmfInitialize_4() was called. Moreover, it unregisters all
components registered for the particular handle. Furthermore, it stops any tracking
associated with the particular handle and cancels all pending callbacks related to the
particular handle.
Note that because the callback invocation is asynchronous, it is still possible that
some callback calls are processed after this call returns successfully.

After saAmfFinalize() completes successfully, the handle amfHandle and the
selection object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
270 SAI-AIS-AMF-B.04.01 Section 7.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saAmfInitialize_4()
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.5.4 271

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.6 Component Registration
The functions in this section are used to register a component with the Availability
Management Framework and to obtain the name of a component.

7.6.1 saAmfComponentRegister()

Prototype

SaAisErrorT saAmfComponentRegister(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *proxyCompName

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The Availability Management Framework
must maintain the list of components registered with each such handle. The
SaAmfHandleT type is defined in Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component to be registered. The
SaNameT type is defined in [2].

proxyCompName - [in] A pointer to the name of the proxy component that is register-
ing the proxied component which is identified by the name to which compName
points. The proxyCompName parameter is used only when a proxied component is
being registered by a proxy component; otherwise, it must be set to NULL. The
SaNameT type is defined in [2].

Description

This function registers the component identified by the name pointed to by the
compName parameter with the Availability Management Framework. Registering a
component informs the Availability Management Framework that the component is
successfully instantiated and ready to take component service instance assignments.

If the registration succeeds, the invoking process becomes the registered process for
the component identified by the name pointed to by the compName parameter (see
Section 7.1.1).
272 SAI-AIS-AMF-B.04.01 Section 7.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
A process of a proxy component may invoke this function to register one of its proxied
components as a consequence of the Availability Management Framework having
invoked a callback

• to request the proxy component either to instantiate a pre-instantiable proxied
component or to assign a CSI to a non-pre-instantiable proxied component or

• to re-assign to the proxy component the active HA state for the proxy CSI for an
already instantiated proxied component.

In these preceding cases, the registration of the proxied component must take place
before the proxy component responds to the callback request by invoking the
saAmfResponse_4() function.

To register itself, a contained component invokes this function from a process of its
associated container component.

The registered process for a regular SA-aware component or for a contained compo-
nent must have supplied in its saAmfInitialize_4() call the
saAmfCSISetCallback(), saAmfCSIRemoveCallback(), and
saAmfComponentTerminateCallback() callback functions.

The registered process for a container component must have supplied in its
saAmfInitialize_4() call the saAmfCSISetCallback(),
saAmfCSIRemoveCallback(), saAmfComponentTerminateCallback(),
saAmfContainedComponentInstantiateCallback(), and
saAmfContainedComponentCleanupCallback() callback functions.

Depending on the category of the proxied component it is configured to proxy, the
registered process for a proxy component may need to supply in its
saAmfInitialize_4() call additional callback functions to those mandatory for a
regular SA-aware component. If the proxy component is configured to proxy a pre-
instantiable proxied component, the registered process for the proxy component must
supply the saAmfProxiedComponentInstantiateCallback() callback func-
tion.

If a proxy component is configured to proxy an external proxied component, the pro-
cess (of the proxy component) that registers the proxied component must have sup-
plied in its saAmfInitialize_4() call the
saAmfProxiedComponentCleanupCallback() callback function in addition to
those callbacks mandatory for a regular SA-aware component.

A component (SA-aware or proxied) must not register or (be registered) twice before
having been unregistered, even if a different handle obtained by another invocation of
the saAmfInitialize_4() call is used.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.6.1 273

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If an SA-aware component fails, it is implicitly unregistered by the Availability Man-
agement Framework. The same is true for a proxied component if its proxy fails, but
the proxied component itself does not fail. If the proxied component fails, it is the task
of its proxy to report an error on the failed component.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saAmfInitialize_4() to initial-
ize the Availability Management Framework was incomplete, as one or more of the
callback functions that are listed next were not supplied:

• If a regular SA-aware or contained component registers itself:
saAmfComponentTerminateCallback(), saAmfCSISetCallback(), and
saAmfCSIRemoveCallback().

• If a container component registers itself:
saAmfComponentTerminateCallback(), saAmfCSISetCallback(),
saAmfCSIRemoveCallback(),
saAmfContainedComponentInstantiateCallback(), and
saAmfContainedComponentCleanupCallback().

• If a proxy component registers itself:
saAmfComponentTerminateCallback(), saAmfCSISetCallback(),
saAmfCSIRemoveCallback(), and if the proxy is configured to proxy a pre-
instantiable proxied component:
saAmfProxiedComponentInstantiateCallback().

• If a proxy component registers an external proxied component:
saAmfProxiedComponentCleanupCallback().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if the value pointed to by compName is not the name of a configured
component, or the names pointed to by compName or proxyCompName are not valid
component DNs.
274 SAI-AIS-AMF-B.04.01 Section 7.6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The proxy component identified by the name to which
proxyCompName refers has not been registered previously.

SA_AIS_ERR_EXIST - The component identified by the name to which compName
refers has been registered previously with either the amfHandle handle or another
handle obtained by a previous invocation of the saAmfInitialize_4() call.

SA_AIS_ERR_BAD_OPERATION - The proxy component which is identified by the
name referred to by proxyCompName and which is registering a proxied component
has not been assigned the proxy CSI with the active HA state through which the prox-
ied component being registered is supposed to be proxied.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfCSISetCallbackT, SaAmfCSIRemoveCallbackT,
SaAmfComponentTerminateCallbackT,
SaAmfProxiedComponentInstantiateCallbackT,
SaAmfProxiedComponentCleanupCallbackT,
SaAmfContainedComponentInstantiateCallbackT,
SaAmfContainedComponentCleanupCallbackT, saAmfInitialize_4()
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.6.1 275

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.6.2 saAmfComponentNameGet()

Prototype

SaAisErrorT saAmfComponentNameGet(

SaAmfHandleT amfHandle,

SaNameT *compName

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [out] A pointer to the name of the component to which the invoking pro-
cess belongs. The SaNameT type is defined in [2].

Description

This function returns the name of the component to which the invoking process
belongs. This function can be invoked by the process before its component has been
registered with the Availability Management Framework by calling
saAmfComponentRegister(). The component name provided by
saAmfComponentNameGet() should be used by a process when it registers its
local component.

As the Availability Management Framework does not control the creation of all pro-
cesses that constitute a component, some conventions must be respected by the cre-
ators of these processes to allow the saAmfComponentNameGet() function to work
properly in the different processes that constitute a component.

On operating systems supporting the concept of environment variables, the Availabil-
ity Management Framework ensures that the SA_AMF_COMPONENT_NAME environ-
ment variable is properly set when it runs the INSTANTIATE command to create a
component. It is the responsibility of the INSTANTIATE command, and more gener-
ally of any entity that creates processes for a component (also when the components
are not instantiated by the Availability Management Framework), to ensure that the
SA_AMF_COMPONENT_NAME environment variable is properly set to contain the com-
ponent name when creating new processes. For more information about the environ-
ment variables supported by the Availability Management Framework, refer to
Section 4.3 on page 209.
276 SAI-AIS-AMF-B.04.01 Section 7.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Note: It is not guaranteed that saAmfComponentNameGet() works for contained
components. If it is not supported by the Availability Management Framework
implementation, SA_AIS_ERR_NOT_SUPPORTED is returned.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The Availability Management Framework is not aware of
any component associated with the invoking process.

SA_AIS_ERR_NOT_SUPPORTED - The Availability Management Framework returns
this value if the saAmfComponentNameGet() function is not supported for con-
tained components.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfComponentRegister(), saAmfInitialize_4()
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.6.2 277

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.7 Passive Monitoring of Processes of a Component
This section describes the API functions that enable components to request the Avail-
ability Management Framework to perform passive monitoring of their processes.

7.7.1 saAmfPmStart_3()

Prototype

SaAisErrorT saAmfPmStart_3(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaInt64T processId,

SaInt32T descendentsTreeDepth,

SaAmfPmErrorsT pmErrors,

SaAmfRecommendedRecoveryT recommendedRecovery

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component to which the monitored pro-
cesses belong. The SaNameT type is defined in [2].

processId - [in] Identifier of a process to be monitored. The SaInt64T type is
defined in [2].

descendentsTreeDepth - [in] Depth of the tree of descendents of the process
identified by processId and that are also to be monitored. This parameter is of the
SaInt32T type (defined in [2]) and can have the following values:

• A value of 0 indicates that no descendents of the designated process will be
monitored.

• A value of 1 indicates that direct children of the designated process will be moni-
tored.

• A value of 2 indicates that direct children and grand children of the designated
process will be monitored, and so on.
278 SAI-AIS-AMF-B.04.01 Section 7.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• A value of –1 indicates that descendents at any level in the descendents tree will
be monitored.

pmErrors - [in] Specifies the type of process errors to monitor. Monitoring for sev-
eral errors can be requested in a single call by “ORing” different SaAmfPmErrorsT
values (this type is defined in Section 7.4.2.1 on page 246):

• SA_AMF_PM_NON_ZERO_EXIT requests the monitoring of processes exiting
with a nonzero exit status.

• SA_AMF_PM_ZERO_EXIT requests the monitoring of processes exiting with a
zero exit status.

recommendedRecovery - [in] Recommended recovery to be performed by the
Availability Management Framework. For details, refer to Section 7.4.7 on page 257
on the SaAmfRecommendedRecoveryT type.

Description

The saAmfPmStart_3() function requests the Availability Management Framework
to start passive monitoring of specific errors that may occur to a process and to its
descendents. Currently, only death of processes can be monitored. If one of the
errors being monitored occurs for the process or for one of its descendents, the Avail-
ability Management Framework will automatically report an error on the component
identified by the name to which compName refers (for details regarding error reports,
see saAmfComponentErrorReport_4()). The recommended recovery action will
be set according to the recommendedRecovery parameter.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.7.1 279

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The component identified by the name to which compName refers is not config-
ured in the Availability Management Framework to execute on the local node.

• The process identified by processId does not exist on the local node.

SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfPmStop(), saAmfComponentErrorReport_4(),
saAmfInitialize_4()

7.7.2 saAmfPmStop()

Prototype

SaAisErrorT saAmfPmStop(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaAmfPmStopQualifierT stopQualifier,

SaInt64T processId,

SaAmfPmErrorsT pmErrors

);
280 SAI-AIS-AMF-B.04.01 Section 7.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component to which the monitored pro-
cesses belong. The SaNameT type is defined in [2].

stopQualifier - [in] Qualifies which processes should stop being monitored. This
parameter is of the SaAmfPmStopQualifierT type (defined in
Section 7.4.2.2 on page 246) and can have the following values:

• SA_AMF_PM_PROC: the Availability Management Framework stops monitoring
the process identified by processId.

• SA_AMF_PM_PROC_AND_DESCENDENTS: the Availability Management Frame-
work stops monitoring the process identified by processId and all its descen-
dents.

• SA_AMF_PM_ALL_PROCESSES: the Availability Management Framework stops
monitoring all processes that belong to the component identified by the name to
which compName refers.

processId - [in] Identifier of the process for which passive monitoring is to be
stopped. The SaInt64T type is defined in [2].

pmErrors - [in] Specifies the type of process errors that the Availability Manage-
ment Framework should stop monitoring for the designated processes. Stopping the
monitoring for several errors can be requested in a single call by “ORing” different
SaAmfPmErrorsT values (this type is defined in Section 7.4.2.1 on page 246).

Description

The saAmfPmStop() function requests the Availability Management Framework to
stop passive monitoring of specific errors that may occur to a set of processes
belonging to a component.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.7.2 281

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - Either one, two, or all cases that follow apply:

• The component identified by the name to which compName refers is not config-
ured in the Availability Management Framework to execute on the local node.

• The process identified by processId does not execute on the local node.
• The process identified by processId was not monitored by the Availability

Management Framework for errors specified by pmErrors.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfInitialize_4(), saAmfPmStart_3()
282 SAI-AIS-AMF-B.04.01 Section 7.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.8 Component Health Monitoring
The following calls are used to monitor the health of a component.

7.8.1 saAmfHealthcheckStart()

Prototype

SaAisErrorT saAmfHealthcheckStart(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey,

SaAmfHealthcheckInvocationT invocationType,

SaAmfRecommendedRecoveryT recommendedRecovery

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component to be healthchecked. The
SaNameT type is defined in [2].

healthcheckKey - [in] A pointer to the key of the healthcheck to be executed.
Based on this key, the Availability Management Framework can retrieve the corre-
sponding healthcheck parameters. The SaAmfHealthcheckKeyT type is defined in
Section 7.4.3.2 on page 247.

invocationType - [in] This parameter indicates whether the Availability Manage-
ment Framework or the process itself will invoke the healthcheck calls. The
SaAmfHealthcheckInvocationT type is defined in Section 7.4.3.1 on page 246.

recommendedRecovery - [in] Recommended recovery to be performed by the
Availability Management Framework if the component fails a healthcheck. For details,
refer to Section 7.4.7 on page 257 where the SaAmfRecommendedRecoveryT type
is defined.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.8 283

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

This function starts healthchecks for the component designated by the name pointed
to by compName. The variant of the healthcheck (component-invoked or framework-
invoked) is specified by invocationType. If invocationType is
SA_HEALTHCHECK_AMF_INVOKED, the saAmfHealthcheckCallback() callback
function must have been supplied when the process invoked the
saAmfInitialize_4() call.

If the component identified by the name to which the compName parameter points is a
proxied component, the Availability Management Frameworks assumes that the
invoking process belongs to its proxy component, that is, to the component that has
the proxied's proxy CSI assigned active; otherwise, the Availability Management
Frameworks assumes that the invoking process belongs to the component identified
by the name to which the compName parameter points.

If a component wants to start more than one healthcheck, it should invoke this func-
tion once for each individual healthcheck. It is, however, not possible to have at a
given time and on the same amfHandle two healthchecks started for the same com-
ponent name and healthcheck key.

If the variant of the healthcheck is component-invoked, and the invoking process
does not call the saAmfHealthcheckConfirm() function within the configured
time interval for the healthcheck, and the compName parameter does not point to a
proxied component, the Availability Management Framework must engage the con-
figured recovery policy (see Section 3.11.1.3) for the component referred to by the
compName parameter. Otherwise, if the compName parameter points to a proxied
component, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for its proxy component.
The Availability Management Framework determines the configured time interval for
the healthcheck referred to by the healthcheckKey parameter from one of two pos-
sible sources.

• If the healthcheck is specifically configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHealthcheckMaxDuration configuration attribute of
the SaAmfHealthcheck configuration object class (see Section 8.14).

• If the healthcheck is not configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHctDefMaxDuration configuration attribute of the
SaAmfHealthcheckType configuration object class instance associated with
the component type object of the component (see Section 8.14).
284 SAI-AIS-AMF-B.04.01 Section 7.8.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
A healthcheck is automatically stopped by the Availability Management Framework if

• the handle amfHandle is finalized, or
• the component identified by the name to which the compName parameter points

is a proxied component, and its proxy CSI is no longer assigned active to the
component that started the healthcheck.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saAmfInitialize_4() to initial-
ize the Availability Management Framework was incomplete, as the
saAmfHealthcheckCallback() callback function is missing, and
invocationType specifies SA_HEALTHCHECK_AMF_INVOKED.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - This value is returned if one or more of the cases that
follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by the name to which compName refers.

• The healthcheck identified by the key to which healthcheckKey points is not
configured for the component designated by the name to which compName
refers, or it is not configured for the component type associated with the compo-
nent designated by the name to which compName refers.

• The component identified by the name to which the compName parameter points
is a proxied component, but its proxy CSI is not assigned active to any proxy
component.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.8.1 285

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.

SA_AIS_ERR_EXIST - The healthcheck with the handle amfHandle has already
been started for the component designated by the name to which compName refers
and for the same value of the key to which healthcheckKey points.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfHealthcheckCallbackT, saAmfHealthcheckConfirm(),
saAmfHealthcheckStop(), saAmfInitialize_4()

7.8.2 SaAmfHealthcheckCallbackT

Prototype

typedef void (*SaAmfHealthcheckCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

SaAmfHealthcheckKeyT *healthcheckKey

);

Parameters

invocation - [in] This parameter identifies a particular invocation of the callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

compName - [in] A pointer to the name of the component that must undergo the par-
ticular healthcheck. The SaNameT type is defined in [2].

healthcheckKey - [in] A pointer to the key of the healthcheck to be executed. The
SaAmfHealthcheckKeyT type is defined in Section 7.4.3.2 on page 247.
286 SAI-AIS-AMF-B.04.01 Section 7.8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

The Availability Management Framework invokes this callback to request the invoked
process to perform a healthcheck specified by the key pointed to by the
healthcheckKey parameter for the component identified by the name pointed to by
the compName parameter.

This callback is invoked in the context of a thread of the process that started the
healthcheck operation by invoking the saAmfHealthcheckStart() function, when
this thread invokes the saAmfDispatch() function with the handle amfHandle that
was specified when the healthcheck operation was started.

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework about the completion of the healthcheck by invoking the
saAmfResponse_4() function. The error parameter in the invocation of the
saAmfResponse_4() function should be set to one of the following values:

• SA_AIS_OK - The healthcheck completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The component failed to successfully

execute the given healthcheck and has reported an error on the faulty compo-
nent by invoking saAmfComponentErrorReport_4().

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION within the time interval config-
ured for the healthcheck, the Availability Management Framework must engage the
configured recovery policy (see Section 3.11.1.3) for the component referred to by
the compName parameter.
The Availability Management Framework determines the configured time interval for
the healthcheck referred to by the healthcheckKey parameter from one of two pos-
sible sources.

• If the healthcheck is specifically configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHealthcheckMaxDuration configuration attribute of
the SaAmfHealthcheck configuration object class (see Section 8.14).

• If the healthcheck is not configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHctDefMaxDuration configuration attribute of the
SaAmfHealthcheckType configuration object class instance associated with
the component type object of the component (see Section 8.14).
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.8.2 287

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned time interval, and the compName parameter does not point to a prox-
ied component, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for the component referred to by the
compName parameter; otherwise, if the compName parameter points to a proxied
component, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for the proxy component (that is, for the com-
ponent to which the invoked process belongs).

See Also

saAmfResponse_4(), saAmfHealthcheckStart(),
saAmfComponentErrorReport_4(), saAmfDispatch()

7.8.3 saAmfHealthcheckConfirm()

Prototype

SaAisErrorT saAmfHealthcheckConfirm(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey,

SaAisErrorT healthcheckResult

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component for which the healthcheck
result is being reported. The SaNameT type is defined in [2].

healthcheckKey - [in] A pointer to the key of the healthcheck whose result is
being reported. Based on this key, the Availability Management Framework can
retrieve the corresponding healthcheck parameters. The SaAmfHealthcheckKeyT
type is defined in Section 7.4.3.2 on page 247.
288 SAI-AIS-AMF-B.04.01 Section 7.8.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
healthcheckResult - [in] This parameter of SaAisErrorT type (defined in [2])
indicates the result of the healthcheck performed by the component. This parameter
can take one of the following values:

• SA_AIS_OK - The healthcheck completed successfully.
• SA_AIS_ERR_FAILED_OPERATION: the component failed to successfully exe-

cute the given healthcheck and has reported an error on itself by invoking
saAmfComponentErrorReport_4().

Any other error code set in the healthcheckResult parameter will be treated by
the Availability Management Framework as if the caller had set the
healthcheckResult parameter to SA_AIS_ERR_FAILED_OPERATION.

Description

This function allows a process to inform the Availability Management Framework that
it has performed the healthcheck identified by the key pointed to by
healthcheckKey for the component designated by the name to which compName
points, and whether the healthcheck was successful or not.

The invoking process must be the same process that started the healthcheck by
invoking the saAmfHealthcheckStart() function.

If the invoking process sets the healthcheckResult parameter to
SA_AIS_ERR_FAILED_OPERATION within the time interval configured for the
healthcheck, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for this component.
The Availability Management Framework determines the configured time interval for
the healthcheck referred to by the healthcheckKey parameter from one of two pos-
sible sources.

• If the healthcheck is specifically configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHealthcheckMaxDuration configuration attribute of
the SaAmfHealthcheck configuration object class (see Section 8.14).

• If the healthcheck is not configured for the component referred to by the
compName parameter, the Availability Management Framework obtains the time
interval from the saAmfHctDefMaxDuration configuration attribute of the
SaAmfHealthcheckType configuration object class instance associated with
the component type object of the component (see Section 8.14).

If the process that initiated a component-invoked healthcheck by calling the
saAmfHealthcheckStart() function does not call the
saAmfHealthcheckConfirm() function within the configured time interval for the
healthcheck, and the compName parameter does not point to a proxied component,
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.8.3 289

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
the Availability Management Framework must engage the configured recovery policy
(see Section 3.11.1.3) for the component referred to by the compName parameter;
otherwise, if the compName parameter points to a proxied component, the Availability
Management Framework must engage the configured recovery policy (see
Section 3.11.1.3) for its proxy component.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if the calling process is not the process that started the healthcheck
by invoking saAmfHealthcheckStart().

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by the name to which compName points.

• No component-invoked healthcheck has been started for the component desig-
nated by the name to which compName points and for the key referred to by
healthcheckKey.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.
290 SAI-AIS-AMF-B.04.01 Section 7.8.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
See Also

saAmfHealthcheckStart(), saAmfComponentErrorReport_4(),
saAmfInitialize_4()

7.8.4 saAmfHealthcheckStop()

Prototype

SaAisErrorT saAmfHealthcheckStop(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component for which healthchecks are
to be stopped. The SaNameT type is defined in [2].

healthcheckKey - [in] A pointer to the key of the healthcheck to be stopped.
Based on this key, the Availability Management Framework can retrieve the corre-
sponding healthcheck parameters. The SaAmfHealthcheckKeyT type is defined in
Section 7.4.3.2 on page 247.

Description

This function is used to stop the healthcheck referred to by the key pointed by
healthcheckKey for the component designated by the name to which compName
points.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.8.4 291

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. A specific exam-
ple is when the calling process is not the process that has started the associated
healthcheck.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by the name to which compName points.

• No healthcheck has been started for the component designated by the name to
which compName points and for the key to which healthcheckKey refers.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfHealthcheckStart(), saAmfInitialize_4()
292 SAI-AIS-AMF-B.04.01 Section 7.8.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.9 Component Service Instance Management
The following calls are used to manage the HA state of components on behalf of the
component service instances that they support.

7.9.1 saAmfHAStateGet()

Prototype

SaAisErrorT saAmfHAStateGet(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *csiName,

SaAmfHAStateT *haState

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component for which the information is
requested. The SaNameT type is defined in [2].

csiName - [in] A pointer to the name of the component service instance for which
the information is requested. The SaNameT type is defined in [2].

haState - [out] A pointer to the HA state that the Availability Management Frame-
work has currently assigned to the component identified by the name to which
compName points for the component service instance identified by the name to which
csiName refers. The HA state is active, standby, quiescing, or quiesced, as defined
by the SaAmfHAStateT enumeration type (see Section 7.4.4.1 on page 247).
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9 293

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

The Availability Management Framework returns the HA state of a component identi-
fied by the name to which compName refers for the component service instance iden-
tified by the name to which csiName refers.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The component identified by the name to which
compName points has not been registered with the Availability Management Frame-
work.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfCSISetCallbackT, saAmfInitialize_4()
294 SAI-AIS-AMF-B.04.01 Section 7.9.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.9.2 SaAmfCSISetCallbackT

Prototype

typedef void (*SaAmfCSISetCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

SaAmfHAStateT haState,

SaAmfCSIDescriptorT csiDescriptor

);

Parameters

invocation - [in] This parameter identifies a particular invocation of the callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() or
saAmfCSIQuiescingComplete() functions. The SaInvocationT type is defined
in [2].

compName - [in] A pointer to the name of the component to which a new component
service instance is assigned or for which the HA state of one or all supported compo-
nent service instances is changed. The SaNameT type is defined in [2].

haState - [in] The new HA state to be assumed by the component identified by the
name to which compName points for the component service instance identified by
csiDescriptor, or for all component service instances already supported by the
component (if SA_AMF_CSI_TARGET_ALL is set in csiFlags of the
csiDescriptor parameter). The SaAmfHAStateT type is defined in
Section 7.4.4.1 on page 247.

csiDescriptor - [in] The descriptor with information about the component service
instances targeted by this callback invocation. The SaAmfCSIDescriptorT type is
defined in Section 7.4.5.5 on page 254.

Description

The Availability Management Framework invokes this callback to request that the
component identified by the name to which compName points assume the HA state
specified by haState for one or all component service instances.

The component service instances targeted by this call along with additional informa-
tion about them are provided by the csiDescriptor parameter.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.2 295

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If the haState parameter indicates that the new HA state for the CSIs is
SA_AMF_HA_QUIESCING, the invoked process must notify the Availability Manage-
ment Framework that the assignment has been received by invoking the
saAmfResponse_4() function. Subsequently, when the CSIs have been quiesced,
the invoked process must notify the Availability Management Framework by invoking
the saAmfCSIQuiescingComplete() function. When the process invokes both
the saAmfResponse_4() and saAmfCSIQuiescingComplete() functions, the
process provides invocation as an in parameter.

If the compName parameter refers to a non-pre-instantiable proxied component, the
Availability Management Framework invokes this callback in the context of a thread
of the registered process for its proxy component when this thread calls
saAmfDispatch() with the handle amfHandle that was specified when the proxy
component was registered by invoking saAmfComponentRegister(). For all other
categories of components referred to by the compName parameter, this callback is
invoked in the context of a thread of a registered process when this thread calls
saAmfDispatch() with the handle amfHandle that was specified when the com-
ponent identified by the name referred to by compName was registered by invoking
saAmfComponentRegister().

If the compName parameter refers to a non-pre-instantiable proxied component, the
invoked process (which must be the registered process for the proxy component)
must register the proxied component before the invoked process responds to this
callback request by invoking the saAmfResponse_4() function.

The Availability Management Framework sets invocation, and the process returns
invocation as an in parameter when it responds to the Availability Management
Framework by invoking the saAmfResponse_4() function. The error parameter in
the invocation of the saAmfResponse_4() function should be set to one of the fol-
lowing values:

• SA_AIS_OK - The component executed the saAmfCSISetCallback()
function successfully.

• SA_AIS_ERR_NOT_READY - The component has changed its HA readiness
state for the given component service instance to indicate that it cannot
assume the HA state specified by haState for at least one component ser-
vice instance.

• SA_AIS_ERR_FAILED_OPERATION - The component failed to assume the
HA state specified by haState for at least one component service instance.

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.
296 SAI-AIS-AMF-B.04.01 Section 7.9.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION within the time interval config-
ured by the value of the saAmfCompCSISetCallbackTimeout configuration
attribute of the SaAmfComp configuration object class (see Section 8.13.2) for the
component referred to by the compName parameter, the Availability Management
Framework must engage the configured recovery policy (see Section 3.11.1.3) for the
component referred to by the compName parameter.

However, a response with the error parameter set to SA_AIS_ERR_NOT_READY,
does not trigger a recovery action from the Availability Management Framework if the
invoked process first calls the saAmfHAReadinessStateSet() function to set the
HA readiness state of the component for the assigned component service instance to
a value indicating that the component is not ready for the requested assignment, and
it then invokes the saAmfResponse_4() function to respond to this callback. These
values of the HA readiness state are:

• SA_AMF_HARS_NOT_READY_FOR_ACTIVE or
SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT for an active or quiescing
assignment, or

• SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT for a standby assignment.

Only these combinations of HA state assignments and HA readiness state values are
considered valid reasons to reject an assignment without triggering a recovery action.
This means in particular that

• a component must always be ready to accept the assignment of a component
service instance in any HA state if the HA readiness state of the component for
that component service instance is either
SA_AMF_HARS_READY_FOR_ASSIGNMENT or
SA_AMF_HARS_READY_FOR_ACTIVE_DEGRADED and that

• a component must always be ready to accept the quiesced assignment of a
component service instance irrespective of the HA readiness state of the compo-
nent for that component service instance.

If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned configured time interval, and the compName parameter does not
point to a proxied component, the Availability Management Framework must engage
the configured recovery policy (see Section 3.11.1.3) for the component referred to
by the compName parameter. Otherwise, if the compName parameter points to a prox-
ied component, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for the proxy component (that is, for the com-
ponent to which the invoked process belongs).
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.2 297

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If the haState parameter specifies SA_AMF_HA_QUIESCING, and the invoked pro-
cess responds by calling the saAmfResponse_4() function with the error parameter
set to SA_AIS_OK within the time period configured by the value of the
saAmfCompCSISetCallbackTimeout configuration attribute of the SaAmfComp
configuration object class (see Section 8.13.2) for the component referred to by the
compName parameter, but the invoked process fails to subsequently report that this
component has successfully quiesced (by invoking the
saAmfCSIQuiescingComplete() function) within the configured
saAmfCompQuiescingCompleteTimeout time period for the same component,
the Availability Management Framework must engage the configured recovery policy
(see Section 3.11.1.3) for the proxy component (that is, for the component to which
the invoked process belongs). The invocation of the
saAmfCSIQuiescingComplete() function is not required if—within the
saAmfCompQuiescingCompleteTimeout time period—the Availability Manage-
ment Framework sets a new HA state for all the CSIs originally targeted by this call.

See Also

saAmfResponse_4(), saAmfCSIQuiescingComplete(),
saAmfComponentRegister(), saAmfDispatch()

7.9.3 SaAmfCSIRemoveCallbackT

Prototype

typedef void (*SaAmfCSIRemoveCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

const SaNameT *csiName,

SaAmfCSIFlagsT csiFlags

);

Parameters

invocation - [in] This parameter identifies a particular invocation of the callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

compName - [in] A pointer to the name of the component from which all component
service instances or the component service instance identified by the name referred
to by csiName will be removed. The SaNameT type is defined in [2].
298 SAI-AIS-AMF-B.04.01 Section 7.9.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
csiName - [in] A pointer to the name of the component service instance that must be
removed from the component identified by the name to which compName points. The
SaNameT type is defined in [2].

csiFlags - [in] This flag specifies whether one or more component service
instances are affected. It can contain one of the values SA_AMF_TARGET_ONE or
SA_AMF_TARGET_ALL. The SaAmfCSIFlagsT type is defined in
Section 7.4.5.1 on page 250.

Description

The Availability Management Framework requests the invoked process to remove
from the component identified by the name referred to by compName one or all com-
ponent service instances from the set of component service instances being sup-
ported.

If the value of csiFlags is SA_AMF_TARGET_ONE, csiName points to the name of
the component service instance that must be removed. If the value of csiFlags is
SA_AMF_TARGET_ALL, csiName is NULL, and the component must remove all com-
ponent service instances.

The Availability Management Framework invokes this callback in the context of a
thread of the registered process for the component identified by the name referred to
by compName when this thread calls saAmfDispatch() with the handle
amfHandle that was specified when the component was registered by invoking
saAmfComponentRegister().

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:

• SA_AIS_OK - The component executed the saAmfCSIRemoveCallback()
function successfully.

• SA_AIS_ERR_FAILED_OPERATION - The component failed to remove at
least one component service instance.

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION within the time interval config-
ured by the value of the saAmfCompCSIRmvCallbackTimeout configuration
attribute of the SaAmfComp configuration object class (see Section 8.13.2) for the
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.3 299

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
component referred to by the compName parameter, the Availability Management
Framework must engage the configured recovery policy (see Section 3.11.1.3) for the
component referred to by the compName parameter.
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned configured time interval, and the compName parameter does not
point to a proxied component, the Availability Management Framework must engage
the configured recovery policy (see Section 3.11.1.3) for the component referred to
by the compName parameter. Otherwise, if the compName parameter points to a prox-
ied component, the Availability Management Framework must engage the configured
recovery policy (see Section 3.11.1.3) for the proxy component (that is, for the com-
ponent to which the invoked process belongs).

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch()

7.9.4 saAmfCSIQuiescingComplete()

Prototype

SaAisErrorT saAmfCSIQuiescingComplete(

SaAmfHandleT amfHandle,

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

invocation - [in] The invocation parameter that the Availability Management
Framework assigned when it invoked the saAmfCSISetCallback() callback func-
tion to request the component referred to by the compName parameter in the corre-
sponding invocation of the saAmfCSISetCallback() callback function to enter the
SA_AMF_HA_QUIESCING HA state for a particular component service instance or for
all component service instances assigned to it. The SaInvocationT type is defined
in [2].
300 SAI-AIS-AMF-B.04.01 Section 7.9.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
error - [in] The component returns the status of the completion of the quiescing
operation in this parameter (of SaAisErrorT type, defined in [2]), which has one of
the following values:

• SA_AIS_OK - The component referred to by the compName parameter in the
corresponding invocation of the saAmfCSISetCallback() callback func-
tion stopped successfully its activity related to a particular component service
instance or to all component service instances assigned to it.

• SA_AIS_ERR_FAILED_OPERATION - The component referred to by the
compName parameter in the corresponding invocation of the
saAmfCSISetCallback() callback function failed to stop its activity related
to a particular component service instance or to any of a set of component
service instances assigned to it. Some of the actions required during quiesc-
ing might not have been performed.

If any other error code is returned in this parameter, it will be treated by the Availabil-
ity Management Framework as if the caller had returned
SA_AIS_ERR_FAILED_OPERATION.

Description

A process invokes this call to notify the Availability Management Framework whether
the component referred to by the compName parameter in the corresponding invoca-
tion of the saAmfCSISetCallback() callback function, which has assigned the
SA_AMF_HA_QUIESCING state to this component, has successfully stopped its activ-
ity related to a particular component service instance or to all component service
instances assigned to it. The invocation parameter associates this call of
saAmfCSIQuiescingComplete() with the corresponding invocation of the
saAmfCSISetCallback() callback function.

It is possible that the component is unable to successfully complete the ongoing work
due to, for example, a failure in the component. If possible, the component or its
proxy (if it is a proxied component) should notify the Availability Management Frame-
work of this fact by invoking this function. The error parameter specifies whether the
component has stopped cleanly as requested.

If the error parameter is set to SA_AIS_ERR_FAILED_OPERATION, the Availability
Management Framework must engage the configured recovery policy (see
Section 3.11.1.3) for the component referred to by the compName parameter in the
corresponding saAmfCSISetCallback() callback function.

This function may only be called by the registered process for a component. The
amfHandle must be the same that was used to register the component identified by
the name referred to by the compName parameter in the corresponding invocation of
the saAmfCSISetCallback() callback function.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.4 301

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory, and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The invocation parameter does not identify an invo-
cation of the saAmfCSISetCallback() callback function for which the call of
saAmfCSIQuiescingComplete() is outstanding.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfCSISetCallbackT, saAmfResponse_4(),
saAmfComponentRegister(), saAmfInitialize_4()
302 SAI-AIS-AMF-B.04.01 Section 7.9.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.9.5 saAmfHAReadinessStateSet()

SaAisErrorT saAmfHAReadinessStateSet(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *csiName,

SaAmfHAReadinessStateT haReadinessState,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the pre-instantiable component. The
SaNameT type is defined in [2].

csiName - [in] A pointer to the name of the component service instance. If csiName
is equal to NULL, all component service instances that are assigned or can poten-
tially be assigned to the component are considered. The SaNameT type is defined
in [2].

haReadinessState - [in] The HA Readiness state that the Availability Manage-
ment Framework must set for the component identified by the name to which
compName points for the component service instance identified by the name to which
csiName refers (or for any component service instance that is assigned or can
potentially be assigned to the component, if csiName is NULL). The HA readiness
state is ready-for-assignment, ready-for-active-degraded,
not-ready-for-active, or not-ready-for-assignment, as defined by the
SaAmfHAReadinessStateT enumeration type (see Section 7.4.4.7 on page 249).

correlationsIds – [in/out] Pointer to correlation identifiers associated with the
HA readiness state change. rootCorrelationId and parentCorrelationId
are in parameters and hold the root and parent correlation identifiers, respectively.
These correlation identifiers are included by the Availability Management Framework
in its own notifications triggered by this change. The rootCorrelationId and
parentCorrelationId may hold the same value. If both correlation identifiers are
set to SA_NTF_IDENTIFIER_UNUSED (that is, there is no notification with which this
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.5 303

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
error report may be correlated), the Availability Management Framework returns in
notificationId the identifier of the HA readiness state change notification it
sends as a consequence of this call. The SaNtfCorrelationIdsT type is defined
in [3].

Description

This function is invoked to set the HA readiness state of the pre-instantiable compo-
nent identified by the name to which compName refers for the component service
instance identified by the name to which csiName refers. If csiName is set to NULL,
this function sets the HA readiness state of the component identified by the name to
which compName refers for all component service instances that are assigned or can
potentially be assigned to the component.

In case of success, the new value of the HA readiness state for the affected compo-
nent service instances is equal to haReadinessState.

The change of the HA readiness state of a component for a component service
instance may force the Availability Management Framework to change the current
assignments for the component service instance. In particular:

• If the component has the active or quiescing assignment for the component ser-
vice instance and its HA readiness state for that component service instance is
set to SA_AMF_HARS_NOT_READY_FOR_ACTIVE, the Availability Management
Framework must either remove the assignment from the component or change
the assignment to standby.

• If the component is assigned any HA state for the component service instance,
and the HA readiness state of the component for that component service
instance is set to SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT, the Availabil-
ity Management Framework must remove the assignment from the component.

When the Availability Management Framework invokes the
SaAmfCSISetCallbackT callback function on the registered process for a compo-
nent to request the component to take a particular component service instance
assignment, the invoked process can call the saAmfHAReadinessStateSet()
function to indicate that the component is not ready to take the assignment. The
saAmfHAReadinessStateSet() function must be called before the invoked pro-
cess responds to the callback invocation with the SA_AIS_ERR_NOT_READY error
(by calling the saAmfResponse_4() function). The component can reject an active
assignment by setting its HA readiness state for the component service instance to
SA_AMF_HARS_NOT_READY_FOR_ACTIVE or
SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT. The component can reject a
standby assignment by setting its HA readiness state for the component service
instance to SA_AMF_HARS_NOT_READY_FOR_ASSIGNMENT.
304 SAI-AIS-AMF-B.04.01 Section 7.9.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If a component is already assigned an HA state for a particular component service
instance, and the component determines that it can no longer support that compo-
nent service instance assignment or only in a limited capacity, the registered process
for the component can call saAmfHAReadinessStateSet() to indicate that the
component can no longer support the assignment or is limited in how it can support
the assignment.

The amfHandle in the saAmfHAReadinessStateSet() call must be the same as
the one used in the saAmfComponentRegister() call to register the component.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized, or the component referred to by the
compName parameter has not been registered using this handle.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• compName does not point to a valid component name, or compName does not
identify a pre-instantiable component registered by the invoking process with the
handle amfHandle.

• csiName does not point to the name of a component service instance that may
be assigned to the component identified by the name to which compName points,
or

• haReadinessState is not a valid HA readiness state.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.9.5 305

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_OP - The HA readiness state specified by the
haReadinessState parameter for the component service instance(s) specified by
the csiName parameter is the same as the existing HA readiness state for the identi-
fied component for the identified component service instance(s).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfCSISetCallbackT, saAmfResponse_4(),
saAmfComponentRegister(), saAmfInitialize_4()
306 SAI-AIS-AMF-B.04.01 Section 7.9.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.10 Component Life Cycle
This section describes the callback function to request a component to terminate. It
contains also additional callback functions that proxy and container components
export to enable the Availability Management Framework to manage proxied and
contained components.

7.10.1 SaAmfComponentTerminateCallbackT

Prototype

typedef void (*SaAmfComponentTerminateCallbackT)(

SaInvocationT invocation,

const SaNameT *compName

);

Parameters

invocation - [in] This parameter identifies a particular invocation of this callback.
The invoked process returns invocation when it responds to the Availability Man-
agement Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

compName - [in] A pointer to the name of the component to be terminated. The
SaNameT type is defined in [2].

Description

The Availability Management Framework requests the component identified by the
name referred to by compName to terminate. To terminate a proxied component, the
Availability Management Framework invokes this function on the proxy component
that is “proxying” the component identified by the name to which compName points.

The component identified by the name referred to by compName is expected to
release all acquired resources and to terminate itself. The invoked process responds
by invoking the saAmfResponse_4() function.

This callback is invoked in the context of a thread of the registered process for the
component identified by the name referred to by compName when this thread calls
saAmfDispatch() with the handle amfHandle that was specified when the com-
ponent was registered by invoking saAmfComponentRegister().
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.10 307

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The component identified by the name

to which compName points failed to terminate.

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION within the time interval config-
ured by the value of the saAmfCompTerminateCallbackTimeout configuration
attribute of the SaAmfComp configuration object class (see Section 8.13.2) for the
component referred to by the compName parameter, the Availability Management
Framework must execute the cleanup procedure for the component referred to by the
compName parameter.
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned time interval, and the compName parameter does not point to a prox-
ied component, the Availability Management Framework must execute the cleanup
procedure for the component referred to by the compName parameter. Otherwise, if
the compName parameter points to a proxied component, the Availability Manage-
ment Framework must engage the configured recovery policy (see Section 3.11.1.3)
for the proxy component (that is, for the component to which the invoked process
belongs).

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch()
308 SAI-AIS-AMF-B.04.01 Section 7.10.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.10.2 SaAmfProxiedComponentInstantiateCallbackT

Prototype

typedef void (*SaAmfProxiedComponentInstantiateCallbackT)(

SaInvocationT invocation,

const SaNameT *proxiedCompName

);

Parameters

invocation - [in] This parameter identifies a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

proxiedCompName - [in] A pointer to the name of the proxied component to be
instantiated. The SaNameT type is defined in [2].

Description

The Availability Management Framework requests a proxy component to instantiate a
pre-instantiable proxied component identified by the name to which
proxiedCompName points.

This callback is invoked in the context of a thread of the registered process for a
proxy component when this thread calls saAmfDispatch() with the handle
amfHandle that was specified when the proxy component was registered by calling
saAmfComponentRegister().

The proxy component must register the proxied component referred to by the
proxiedCompName parameter before the invoked process (which is the registered
process for the proxy component) responds to this callback request by invoking the
saAmfResponse_4() function.

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.10.2 309

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The proxy component failed to instanti-

ate the proxied component. It is useless for the Availability Management
Framework to attempt to instantiate the proxied component again.

• SA_AIS_ERR_TRY_AGAIN - The proxy component failed to instantiate the
proxied component. The Availability Management Framework retries to
instantiate the proxied component based on the configuration attributes
described for the INSTANTIATE CLC-CLI command (see
Section 4.6 on page 211).

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION within the time interval config-
ured by the value of the saAmfCompInstantiateTimeout configuration attribute
of the SaAmfComp configuration object class (see Section 8.13.2) for the proxied
component referred to by the proxiedCompName parameter, the Availability Man-
agement Framework must engage the configured recovery policy (see
Section 3.11.1.3) for this proxied component.
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned time interval, the Availability Management Framework must engage
the configured recovery policy (see Section 3.11.1.3) for the proxy component (that
is, for the component to which the invoked process belongs).

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfProxiedComponentCleanupCallbackT
310 SAI-AIS-AMF-B.04.01 Section 7.10.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.10.3 SaAmfProxiedComponentCleanupCallbackT

Prototype

typedef void (*SaAmfProxiedComponentCleanupCallbackT)(

SaInvocationT invocation,

const SaNameT *proxiedCompName

);

Parameters

invocation - [in] This parameter identifies a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

proxiedCompName - [in] A pointer to the name of the proxied component to be
abruptly terminated. The SaNameT type is defined in [2].

Description

The Availability Management Framework requests a proxy component to abruptly ter-
minate a proxied component identified by the name to which proxiedCompName
points.

For a non-pre-instantiable proxied component, this callback is invoked in the context
of a thread of the registered process for a proxy component when this thread calls
saAmfDispatch() with the handle amfHandle that was specified when the proxy
component was registered by calling saAmfComponentRegister().

For a pre-instantiable proxied component, this callback is invoked in the context of a
thread of the registered process for the proxied component when this thread calls
saAmfDispatch() with the handle amfHandle that was specified when the prox-
ied component was registered by calling saAmfComponentRegister().

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.10.3 311

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The proxy component failed to abruptly

terminate the proxied component. The Availability Management Framework
might issue a further attempt to abruptly terminate the proxied component.

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling v with the error parameter set to
SA_AIS_ERR_FAILED_OPERATION within the time interval configured by the value
of the saAmfCompCleanupTimeout configuration attribute of the SaAmfComp con-
figuration object class (see Section 8.13.2) for the proxied component referred to by
the proxiedCompName parameter, the Availability Management Framework may
issue a CLEANUP command (see Section 4.8) if it is available for this proxied compo-
nent. For an external proxied component that had any active HA assignment for any
CSI protected in a redundancy model that permits one such assignment, the CSI
must stay unassigned until an administrative action is performed to terminate the
failed component.
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned time interval, the Availability Management Framework must engage
the configured recovery policy (see Section 3.11.1.3) for the proxy component (that
is, for the component to which the invoked process belongs).

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfProxiedComponentInstantiateCallbackT

7.10.4 SaAmfContainedComponentInstantiateCallbackT

Prototype

typedef void (*SaAmfContainedComponentInstantiateCallbackT)(

SaInvocationT invocation,

const SaNameT *containedCompName

);
312 SAI-AIS-AMF-B.04.01 Section 7.10.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Parameters

invocation - [in] This parameter identifies a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

containedCompName - [in] A pointer to the name of the contained component to be
instantiated. The SaNameT type is defined in [2].

Description

The Availability Management Framework requests a container component to instanti-
ate a contained component identified by the name to which containedCompName
points. This callback is invoked by the Availability Management Framework only if the
container component is assigned active for the container CSI that is configured to
handle the life cycle of the contained component.

This callback is invoked in the context of a thread of the registered process for a con-
tainer component when this thread calls saAmfDispatch() with the handle
amfHandle that was specified when the container component was registered by call-
ing saAmfComponentRegister().

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:

• SA_AIS_OK - The function completed successfully. The container component
becomes the associated container for the contained component.
The successful completion of this function does not imply the successful
instantiation of the contained component. The instantiation is considered suc-
cessful only when the contained component registers itself with the Availabil-
ity Management Framework.

• SA_AIS_ERR_FAILED_OPERATION - The container component failed to
instantiate the contained component. It is useless for the Availability Manage-
ment Framework to attempt to instantiate the contained component again.

• SA_AIS_ERR_TRY_AGAIN - The container component failed to instantiate
the contained component. The Availability Management Framework retries to
instantiate the contained component based on the configuration attributes
described for the INSTANTIATE CLC-CLI command (see
Section 4.6 on page 211).
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.10.4 313

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process responds by calling saAmfResponse_4() with the error
parameter set to SA_AIS_ERR_FAILED_OPERATION or the component referred to
by the containedCompName parameter does not register within the time interval
configured by the value of the saAmfCompInstantiateTimeout configuration
attribute of the SaAmfComp configuration object class (see Section 8.13.2) for the
component referred to by the containedCompName parameter, the Availability Man-
agement Framework must engage the configured recovery policy (see
Section 3.11.1.3) for this contained component.
If the invoked process does not respond by calling saAmfResponse_4() within the
aforementioned time interval, the Availability Management Framework must engage
the configured recovery policy (see Section 3.11.1.3) for the container component.

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfContainedComponentCleanupCallbackT

7.10.5 SaAmfContainedComponentCleanupCallbackT

Prototype

typedef void (*SaAmfContainedComponentCleanupCallbackT)(

SaInvocationT invocation,

const SaNameT *containedCompName

);

Parameters

invocation - [in] This parameter identifies a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Avail-
ability Management Framework by calling the saAmfResponse_4() function. The
SaInvocationT type is defined in [2].

containedCompName - [in] A pointer to the name of the contained component to be
abruptly terminated. The SaNameT type is defined in [2].
314 SAI-AIS-AMF-B.04.01 Section 7.10.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

The Availability Management Framework requests a container component to abruptly
terminate a contained component identified by the name to which
containedCompName points. This callback is invoked by the Availability Manage-
ment Framework only if the container component is the associated container compo-
nent for the contained component, that is, only if the container component has
instantiated the contained component as a result of a successful invocation of the
saAmfContainedComponentInstantiateCallback() callback on the regis-
tered process for the container component.

This callback is invoked in the context of a thread of the registered process for a con-
tainer component when this thread calls saAmfDispatch() with the handle
amfHandle that was specified when the container component was registered by call-
ing saAmfComponentRegister().

The Availability Management Framework sets invocation, and the component
returns invocation as an in parameter when it responds to the Availability Man-
agement Framework by invoking the saAmfResponse_4() function. The error
parameter in the invocation of the saAmfResponse_4() function should be set to
one of the following values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The container component failed to

abruptly terminate the contained component. The Availability Management
Framework might issue a further attempt to abruptly terminate the contained
component.

Any other error code set in the error parameter in the response will be treated by
the Availability Management Framework as if the caller had set the error parameter
to SA_AIS_ERR_FAILED_OPERATION.

If the invoked process does not respond to this callback or responds to it by calling
saAmfResponse_4() with the error parameter set to
SA_AIS_ERR_FAILED_OPERATION within the time interval configured by the value
of the saAmfCompCleanupTimeout configuration attribute of the SaAmfComp con-
figuration object class (see Section 8.13.2) for the component referred to by the
containedCompName parameter, the Availability Management Framework must
engage the configured recovery policy (see Section 3.11.1.3) for the container com-
ponent.

See Also

saAmfResponse_4(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfContainedComponentInstantiateCallbackT
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.10.5 315

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.11 Protection Group Management

7.11.1 saAmfProtectionGroupTrack_4()

Prototype

SaAisErrorT saAmfProtectionGroupTrack_4(

SaAmfHandleT amfHandle,

const SaNameT *csiName,

SaUint8T trackFlags,

SaAmfProtectionGroupNotificationBufferT_4
*notificationBuffer

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

csiName - [in] A pointer to the name of the component service instance for which
tracking is to start. This name is also the name of the protection group. The SaNameT
type is defined in [2].

trackFlags - [in] The kind of tracking that is requested, which is the bitwise OR of
one or more of the following flags (as defined in [2]), which have the following inter-
pretation here:

• SA_TRACK_CURRENT - If notificationBuffer is NULL, information about all
components in the protection group is returned by a single subsequent invoca-
tion of the saAmfProtectionGroupTrackCallback() notification callback;
otherwise, this information is returned in the structure to which
notificationBuffer points when the
saAmfProtectionGroupTrack_4() call completes successfully.

• SA_TRACK_CHANGES - The notification callback is invoked each time at least
one change occurs in the protection group membership, or one attribute (HA
state, HA readiness state, or rank) of at least one component in the protection
group changes. Information about all of the components is passed to the call-
back.
316 SAI-AIS-AMF-B.04.01 Section 7.11 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
• SA_TRACK_CHANGES_ONLY - The notification callback is invoked each time at
least one change occurs in the protection group membership, or one attribute
(HA state, HA readiness state, or rank) of at least one component in the protec-
tion group changes. Only information about components in the protection group
that have changed is passed to this callback function.

It is not permitted to set both SA_TRACK_CHANGES and SA_TRACK_CHANGES_ONLY
in an invocation of this function. The SaUint8T type is defined in [2].

notificationBuffer - [in/out] - A pointer to a structure of type
SaAmfProtectionGroupNotificationBufferT_4 (defined in
Section 7.4.6.4 on page 256). This parameter is ignored if SA_TRACK_CURRENT is
not set in trackFlags; otherwise and notificationBuffer is not NULL, the
structure will contain information about all components in the protection group when
saAmfProtectionGroupTrack_4() returns. The meaning of the fields of the
SaAmfProtectionGroupNotificationBufferT_4 structure is:

• numberOfItems - [in/out] If notification is NULL, numberOfItems is
ignored as input parameter; otherwise, it specifies that the array pointed to by
notification provides memory for information about numberOfItems com-
ponents in the protection group.
When saAmfProtectionGroupTrack_4() returns with SA_AIS_OK or with
SA_AIS_ERR_NO_SPACE, numberOfItems contains the number of compo-
nents in the protection group.

• notification - [in/out] If notification is NULL, memory for the protec-
tion group information is allocated by the Availability Management Framework.
The caller is responsible for freeing the allocated memory by calling the
saAmfProtectionGroupNotificationFree_4() function.

Description

The Availability Management Framework is requested to start tracking changes in the
protection group associated with the component service instance identified by the
name to which csiName points or changes of attributes of any component in the pro-
tection group. These changes are notified by the invocation of the
saAmfProtectionGroupTrackCallback() callback function, which must have
been supplied when the process invoked the saAmfInitialize_4() call.

An application may call saAmfProtectionGroupTrack_4() repeatedly for the
same values of amfHandle and of the component service instance designated by
the name referred to by csiName, regardless of whether the call initiates a one-time
status request or a series of callback notifications.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.11.1 317

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
If saAmfProtectionGroupTrack_4() is called with trackFlags containing
SA_TRACK_CHANGES_ONLY while changes in the protection group are currently
being tracked with SA_TRACK_CHANGES for the same combination of amfHandle
and the component service instance designated by the name referred to by
csiName, the Availability Management Framework will invoke further notification call-
backs according to the new trackFlags. The same is true vice versa.
Once saAmfProtectionGroupTrack_4() has been called with trackFlags
containing either SA_TRACK_CHANGES or SA_TRACK_CHANGES_ONLY, notification
callbacks can only be stopped by an invocation of
saAmfProtectionGroupTrackStop().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saAmfInitialize_4() to initial-
ize the Availability Management Framework was incomplete, as the
saAmfProtectionGroupTrackCallback() callback function is missing. This
value is not returned if only the SA_TRACK_CURRENT flag is set in trackFlags and
the notificationBuffer parameter is not NULL.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The SA_TRACK_CURRENT flag is set, and the
notification pointer in the structure pointed to by notificationBuffer is not
NULL, but the value of numberOfItems in this structure is smaller than the number
of entries to be provided in the array referred to by the notification pointer.

SA_AIS_ERR_NOT_EXIST - The component service instance designated by the
name referred to by csiName cannot be found.
318 SAI-AIS-AMF-B.04.01 Section 7.11.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter is invalid.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfProtectionGroupTrackCallbackT_4,
saAmfProtectionGroupTrackStop(),
saAmfProtectionGroupNotificationFree_4(), saAmfInitialize_4()

7.11.2 SaAmfProtectionGroupTrackCallbackT_4

Prototype

typedef void (*SaAmfProtectionGroupTrackCallbackT_4)(

const SaNameT *csiName,

SaAmfProtectionGroupNotificationBufferT_4
*notificationBuffer,

SaUint32T numberOfMembers,

SaAisErrorT error

);

Parameters

csiName - [in] A pointer to the name of the component service instance. The
SaNameT type is defined in [2].

notificationBuffer - [in] A pointer to a structure to contain the requested infor-
mation about components in the protection group. The
SaAmfProtectionGroupNotificationBufferT_4 is defined in
Section 7.4.6.4 on page 256.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.11.2 319

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
numberOfMembers - [in] The number of the components that belong to the protec-
tion group associated with the component service instance designated by the name
to which csiName refers. The SaUint32T type is defined in [2].

error - [in] This parameter indicates whether the Availability Management Frame-
work was able to perform the operation. Possible values for the error parameter
(whose type is defined in [2]) are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_BAD_HANDLE - The handle amfHandle that was passed to the
corresponding saAmfProtectionGroupTrack_4() call has become
invalid, since it is corrupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the
service. The process that invoked saAmfProtectionGroupTrack_4()
might have missed one or more notifications.

• SA_AIS_ERR_NO_RESOURCES - Either the Availability Management Frame-
work library or the provider of the service is out of required resources (other
than memory), and cannot provide the service. The process that invoked
saAmfProtectionGroupTrack_4() might have missed one or more notifi-
cations.

• SA_AIS_ERR_NOT_EXIST - The component service instance designated by
the name referred to by csiName has been administratively deleted.

• SA_AIS_ERR_UNAVAILABLE - The operation requested in the corresponding
saAmfProtectionGroupTrack_4() call is unavailable on this cluster
node due to one of the two reasons:
• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle
amfHandle was acquired before the cluster node left the cluster member-
ship.

If the error returned is SA_AIS_ERR_NO_MEMORY or SA_AIS_ERR_NO_RESOURCES,
the process that invoked saAmfProtectionGroupTrack_4() should invoke
saAmfProtectionGroupTrackStop() and then invoke
saAmfProtectionGroupTrack_4() again to resynchronize with the current state.
320 SAI-AIS-AMF-B.04.01 Section 7.11.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

This callback is invoked in the context of a thread calling saAmfDispatch() with
the handle amfHandle that was specified when the process called
saAmfProtectionGroupTrack_4() to request tracking of changes in the protec-
tion group associated with the component service instance identified by the name to
which csiName refers or in an attribute of any component in this protection group.

If successful, the saAmfProtectionGroupTrackCallback() function returns the
requested information in the structure pointed to by the notificationBuffer
parameter. The kind of information returned depends on the setting of the
trackFlags parameter of the saAmfProtectionGroupTrack_4() function.

The value of the numberOfItems attribute in the structure to which the
notificationBuffer parameter points might be greater than the value of the
numberOfMembers parameter, because some components may no longer be mem-
bers of the protection group: if the SA_TRACK_CHANGES flag or the
SA_TRACK_CHANGES_ONLY flag is set, the structure to which
notificationBuffer points might contain information about the current members
of the protection group and also about components that have recently left the protec-
tion group.

If an error occurs, it is returned in the error parameter.

Return Values

None

See Also

saAmfProtectionGroupTrack_4(), saAmfProtectionGroupTrackStop(),
saAmfDispatch()
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.11.2 321

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.11.3 saAmfProtectionGroupTrackStop()

Prototype

SaAisErrorT saAmfProtectionGroupTrackStop(

SaAmfHandleT amfHandle,

const SaNameT *csiName

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

csiName - [in] A pointer to the name of the component service instance. The
SaNameT type is defined in [2].

Description

The invoking process requests the Availability Management Framework to stop track-
ing protection group changes for the component service instance identified by the
name to which csiName points.

The Availability Management Framework releases any resources that it allocated for
the tracking to be stopped.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
322 SAI-AIS-AMF-B.04.01 Section 7.11.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - This value is returned if one or both cases below
occurred.

• The component service instance designated by the name referred to by
csiName cannot be found.

• No track of protection group changes for the component service instance desig-
nated by the name referred to by csiName was previously started by invoking
saAmfProtectionGroupTrack_4() with track flags SA_TRACK_CHANGES or
SA_TRACK_CHANGES_ONLY that would still be in effect.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfProtectionGroupTrackCallbackT_4,
saAmfProtectionGroupTrack_4(), saAmfInitialize_4()

7.11.4 saAmfProtectionGroupNotificationFree_4()

Prototype

SaAisErrorT saAmfProtectionGroupNotificationFree_4(

SaAmfHandleT amfHandle,

SaAmfProtectionGroupNotificationT_4 *notification

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.11.4 323

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
notification - [in] A pointer to the memory that was allocated by the Availability
Management Framework library in the saAmfProtectionGroupTrack_4() func-
tion and is to be released. The SaAmfProtectionGroupNotificationT_4 type
is defined in Section 7.4.6.3 on page 256.

Description

This function frees the memory to which notification points and which was allo-
cated by the Availability Management Framework library in a previous call to the
saAmfProtectionGroupTrack_4() function.

For details, refer to the description of the notification pointer in the structure
referred to by the notificationBuffer parameter in the corresponding invocation
of the saAmfProtectionGroupTrack_4() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfProtectionGroupTrack_4()
324 SAI-AIS-AMF-B.04.01 Section 7.11.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.12 Error Reporting

7.12.1 saAmfComponentErrorReport_4()

Prototype

SaAisErrorT saAmfComponentErrorReport_4(

SaAmfHandleT amfHandle,

const SaNameT *erroneousComponent,

SaTimeT errorDetectionTime,

SaAmfRecommendedRecoveryT recommendedRecovery,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

erroneousComponent - [in] A pointer to the name of the erroneous component.
The SaNameT type is defined in [2].

errorDetectionTime - [in] The absolute time when the reporting component
detected the error. If this value is 0, it is assumed that the time at which the library
received the error is the error detection time. The SaTimeT type is defined in [2].

recommendedRecovery - [in] Recommended recovery action. The
SaAmfRecommendedRecoveryT type is defined in Section 7.4.7 on page 257.

correlationIds - [in/out] Pointer to correlation identifiers associated with the
error report.The rootCorrelationId and parentCorrelationId fields are in
parameters and hold the root and parent correlation identifiers, respectively. These
correlation identifiers are included by the Availability Management Framework in its
own notifications triggered by this error report. The rootCorrelationId and
parentCorrelationId may hold the same value. If these notification identifiers
are not available to the invoker of this function, the correlation identifiers must be set
to SA_NTF_IDENTIFIER_UNUSED. The Availability Management Framework returns
in the notificationId field the identifier of the error report notification it sends
itself when it receives this error report. The SaNtfCorrelationIdsT type is
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.12 325

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
defined
in [3].

Description

The saAmfComponentErrorReport_4() function reports an error and provides a
recovery recommendation to the Availability Management Framework. The Availabil-
ity Management Framework validates the recommended recovery action and reacts
to it as described in Section 3.11.2.1 on page 201.

The correlationIds parameter is used by a caller process to inform the Availabil-
ity Management Framework about any notifications generated previously and which
can be correlated with the error condition being reported.

If the Availability Management Framework has already generated any error report
notifications for the same error condition (for instance, an error has already been
reported for the same component, and it has not yet been cleared), the Availability
Management Framework shall include the identifiers of those notifications in the error
report notification generated as a result of the current invocation. Any such notifica-
tion identifiers are included as correlated sibling notifications, that is, they are placed
at the third and higher positions of the correlated notifications attribute of the error
report notification (see Section 11.2.3.1).

Return Values

SA_AIS_OK - The function returned successfully, and the Availability Management
Framework has been notified of the error report.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if the SA_AMF_CONTAINER_RESTART: recommended recovery is
set in recommendedRecovery, and erroneousComponent does not point to the
name of a contained component.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.
326 SAI-AIS-AMF-B.04.01 Section 7.12.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The component specified by the name to which
erroneousComponent refers is not contained in the Availability Management
Framework’s configuration.

SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfComponentErrorClear_4(), saAmfInitialize_4()

7.12.2 saAmfComponentErrorClear_4()

Prototype

SaAisErrorT saAmfComponentErrorClear_4(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

compName - [in] A pointer to the name of the component to be cleared of all errors.
The SaNameT type is defined in [2].
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.12.2 327

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
correlationIds - [in/out] Pointer to correlation identifiers associated with the
error clear. The rootCorrelationId and parentCorrelationId fields are in
parameters and hold the root and parent correlation identifiers, respectively. These
correlation identifiers are included by the Availability Management Framework in its
own notifications triggered by this error clear. The rootCorrelationId and
parentCorrelationId may hold the same value. If these notification identifiers
are not available to the invoker of this function, the correlation identifiers must be set
to SA_NTF_IDENTIFIER_UNUSED. The Availability Management Framework returns
in the notificationId field the identifier of the error clear notification it sends itself
when it receives this error clear. The SaNtfCorrelationIdsT type is defined in [3].

Description

This function cancels the previous errors reported for the component identified by the
name to which compName refers. This function indicates the availability of a compo-
nent for providing service after an externally executed repair action and results in
enabling the operational state of the component.

If the repaired component was the only component left with a disabled operational
state in its service unit, the Availability Management Framework also sets the opera-
tional state of the service unit containing the repaired component to enabled.

A component enters the disabled operational state due to the reasons stated in
Section 3.2.2.2 on page 75.

The Availability Management Framework typically engages in repairing the compo-
nent. However, if this repair fails, or such repair actions are not permitted by the con-
figuration, this function can be used by an external entity to indicate that the
component has been repaired and its operational state is now enabled.

The Availability Management Framework expects that a repair done by an external
entity brings the repaired component to a state equivalent to the uninstantiated pres-
ence state, before this function is invoked. Thus, the Availability Management Frame-
work sets in the information model the presence state attribute of the component and
of the enclosing service unit to uninstantiated and clears any instantiation-failed or
termination-failed error condition.

The correlationIds parameter is used by a caller process to inform the Availabil-
ity Management Framework about any notifications generated previously and which
can be correlated with the error condition being cleared.

The Availability Management Framework shall generate only one error clear notifica-
tion for each error condition. That is, if the error condition for the components has
already been cleared, it must not generate a second error clear notification. In the
generated error clear notification, the Availability Management Framework shall
include the identifiers of all error report notifications it has generated for the error con-
328 SAI-AIS-AMF-B.04.01 Section 7.12.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
dition being cleared. Any such notification identifiers are included as correlated sib-
ling notifications, that is, they are placed at the third and higher positions of the
correlated notifications attribute of the error clear notification (see Section 11.2.3.2).

This function can be invoked on a component hosted by an AMF node even if this
AMF node is not mapped to a CLM node, or if the underlying CLM node is not a mem-
ber node. It can also be issued on a component even if it is configured but uninstanti-
ated.

If this function is invoked on a component whose operational state is already enabled,
the component remains in that state, and a benign error value of
SA_AIS_ERR_NO_OP is returned to the caller.

Return Values

SA_AIS_OK - The function returned successfully, and the Availability Management
Framework has been reliably notified about clearing the error.
Upon return, it is guaranteed that the Availability Management Framework will not
lose the error clear instruction, as long as the cluster is not reset.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The component specified by the name to which
compName points is not contained in the Availability Management Framework’s con-
figuration.

SA_AIS_ERR_NO_OP - The invocation of this function has no effect on the current
operational state of the component specified by the name to which compName points,
as the operational state of the component is already enabled.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.12.2 329

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

saAmfComponentErrorReport_4(), saAmfInitialize_4()

7.12.3 saAmfCorrelationIdsGet()

Prototype

SaAisErrorT saAmfCorrelationIdsGet(

SaAmfHandleT amfHandle,

SaInvocationT invocation,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

invocation - [in] This parameter identifies a particular invocation of a callback
function by the Availability Management Framework. The SaInvocationT type is
defined in [2].

correlationIds - [out] A pointer to the correlation identifiers to which the invoca-
tion of the callback function identified by invocation is related. The
SaNtfCorrelationIdsT type is defined in [3].
330 SAI-AIS-AMF-B.04.01 Section 7.12.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

This function is typically used by a process that needs to generate a notification as a
consequence of a particular callback invocation that the process has received from
the Availability Management Framework, and the process wants to set the proper
correlation identifiers in this notification to allow the reconstruction of the notification
correlation tree.

The invocation parameter refers to the particular callback invocation made by the
Availability Management Framework, and it can be used as long as it has not been
invalidated yet

• by the process
• when it responds to the callback by invoking the saAmfResponse_4()

function or
• when it calls the saAmfCSIQuiescingComplete() function to inform the

Availability Management Framework that its component has completed the
quiescing of services, or

• by the Availability Management Framework when it interrupts the quiescing of
services of the component to which the process belongs and sets another HA
state for these component service instances. The quiescing is requested by the
Availability Management Framework when it invokes the
saAmfCSIQuiescingComplete() callback function.

The Availability Management Framework returns in the rootCorrelationId and
parentCorrelationId fields of the structure referred to by the correlationIds
pointer the notification identifiers of the root and parent notifications that shall be used
by the process in the generated notifications related to the invocation of the callback
function identified by the invocation parameter. The notificationId field is not used.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.12.3 331

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The callback invocation identified by the invocation
parameter does not identify a currently in-progress AMF callback.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfComponentTerminateCallbackT, SaAmfCSISetCallbackT,
SaAmfCSIRemoveCallbackT,
SaAmfProxiedComponentInstantiateCallbackT,
SaAmfProxiedComponentCleanupCallbackT, saAmfComponentRegister(),
saAmfInitialize_4(),
SaAmfContainedComponentInstantiateCallbackT,
SaAmfContainedComponentCleanupCallbackT
332 SAI-AIS-AMF-B.04.01 Section 7.12.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
7.13 Component Response to Framework Requests

7.13.1 saAmfResponse_4()

Prototype

SaAisErrorT saAmfResponse_4(

SaAmfHandleT amfHandle,

SaInvocationT invocation,

SaNtfCorrelationIdsT *correlationIds,

SaAisErrorT error

);

Parameters

amfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize_4() function and which identifies this particular initialization of
the Availability Management Framework. The SaAmfHandleT type is defined in
Section 7.4.1 on page 245.

invocation - [in] This parameter associates an invocation of this response func-
tion with a particular invocation of a callback function by the Availability Management
Framework. The SaInvocationT type is defined in [2].

correlationIds - [in/out] Pointer to correlation identifiers associated with the
response if the response is reporting an error; otherwise, this pointer is set to NULL.
The rootCorrelationId and parentCorrelationId fields are in parameters
and hold the root and parent correlation identifiers, respectively. These correlation
identifiers are included by the Availability Management Framework in its own notifica-
tions triggered by this response. The rootCorrelationId and
parentCorrelationId fields may hold the same value. The Availability Manage-
ment Framework returns in the notificationId field the identifier of the error
report notification it sends itself when it receives this response. The
SaNtfCorrelationIdsT type is defined in [3].

error - [in] The response of the process to the associated callback. It returns
SA_AIS_OK if the associated callback was successfully executed by the process;
otherwise, it returns an appropriate error, as described in the corresponding callback.
The SaAisErrorT type is defined in [2].
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.13 333

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Description

The component responds to the Availability Management Framework with the result
of the execution of an operation that was requested by the Availability Management
Framework when it invoked a callback specifying invocation to identify the
requested operation. In the saAmfResponse_4() call, the component gives that
value of invocation back to the Availability Management Framework, so that the
Availability Management Framework can associate this response with the callback
request.

The request can be one of the following types.

• Request for executing a given healthcheck. See
SaAmfHealthcheckCallbackT.

• Request for terminating a component.
See SaAmfComponentTerminateCallbackT.

• Request for adding/assigning a given HA state to a component on behalf of a
component service instance. See SaAmfCSISetCallbackT.

• Request for removing a component service instance from a component. See
SaAmfCSIRemoveCallbackT.

• Request for instantiating a proxied component. See
SaAmfProxiedComponentInstantiateCallbackT.

• Request for cleaning up a proxied component. See
SaAmfProxiedComponentCleanupCallbackT.

• Request for instantiating a contained component. See
SaAmfContainedComponentInstantiateCallbackT.

• Request for cleaning up a contained component. See
SaAmfContainedComponentCleanupCallbackT.

The component replies to the Availability Management Framework when either (i) it
cannot carry out the request, or (ii) it has failed to successfully complete the execu-
tion of the request, or (iii) it has successfully completed the request. In cases (i) and
(ii), the responding process uses the correlationIds parameter to indicate known
correlated notifications. In case (iii), this parameter must be set to NULL.

With the exception of the response to an saAmfHealthcheckCallback() call, this
function may be called only by a registered process for a component, that is, the
amfHandle must be the same that was used when the registered process registered
the component by invoking saAmfComponentRegister(). The response to an
saAmfHealthcheckCallback() call may only be issued by the process that
started this healthcheck.
334 SAI-AIS-AMF-B.04.01 Section 7.13.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Availability Management Framework API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The invocation parameter does not identify a call-
back that has an outstanding response.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the Availability Management Framework
library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

amfHandle was acquired before the cluster node left the cluster membership.

See Also

SaAmfHealthcheckCallbackT, SaAmfComponentTerminateCallbackT,
SaAmfCSISetCallbackT, SaAmfCSIRemoveCallbackT,
SaAmfProxiedComponentInstantiateCallbackT,
SaAmfProxiedComponentCleanupCallbackT, saAmfComponentRegister(),
saAmfInitialize_4(),
SaAmfContainedComponentInstantiateCallbackT,
SaAmfContainedComponentCleanupCallbackT
AIS Specification SAI-AIS-AMF-B.04.01 Section 7.13.1 335

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8 AMF UML Information Model
The Availability Management Framework information model is described in UML and
has been organized in UML class diagrams.

The Availability Management Framework UML model is implemented by the SA
Forum IMM Service ([6]). For further details on this implementation, refer to the SA
Forum Overview document ([1]).

The classes in the Availability Management Framework UML class diagrams show
the contained attributes and their type, multiplicity, default values, and constraints.
The description of each attribute is provided in the SA Forum XMI document (see [7]).
The class diagrams additionally show the administrative operations (if any) applicable
on these classes.

To simplify references, this description uses for the UML diagrams the same names
used in [7].

The UML diagrams defined for the Availability Management Framework are:

• “3- Cluster View”
• “3.1- AMF Instances and Types View”
• “3.2- AMF Instances View”
• “3.3- AMF Cluster, Node, and Node Group Classes”
• “3.4- AMF Application Classes”
• “3.5- AMF SG Classes”
• “3.6- AMF SU Classes”
• “3.7- AMF SI Classes”
• “3.8- AMF CSI Classes”
• “3.9a- AMF Component Classes”
• “3.9b- AMF Component Type Classes”
• “3.9c- AMF Global Component Attributes and Healthcheck Classes”

These diagrams will be described starting with Section 8.4.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 8 337

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.1 Use of Entity Types in the AMF UML Information Model

As has been described in Chapter 3, types are defined for several entities of the
Availability Management Framework. This is done for the purpose of facilitating the
configuration and for software management purposes such as upgrading a configura-
tion (see [8]).

Types containing a version represent a generalization of entities.

Entity types that differ only by their version are grouped together into a base entity
type. Thus, the base entity type typically reflects some common functionality and fea-
tures that are common to all entities of the type regardless of their version. As a
result, a base entity type is not directly associated with code or other executables,
and no instances of it exist at runtime.

The attributes of an entity object class are in a particular relation with the attributes of
the corresponding entity type object class. An attribute of the entity type object
saAmf<entity type>Def<attribute name> defines the default value for the
saAmf<entity><attribute> attribute of the appropriate entity objects. The
saAmf<entity><attribute> attribute of an entity object class may override or
complement the default value provided by the
saAmf<entity type>Def<attribute name> attribute of the entity type object
as follows:

• A value specified for an attribute saAmf<entity><attribute> overrides the
value of the associated saAmf<entity type>Def<attribute name>
attribute if the saAmf<entity type>Def<attribute name> attribute is
specified as a default value for saAmf<entity><attribute> attribute in the
entity class. If the <attribute name> contains the "Min" or "Max" tag, the
saAmf<entity type>Def<attribute name> value sets the lower/upper
boundary for the overriding value.

• In any other case, the saAmf<entity><attribute> value complements the
value specified by saAmf<entity type>Def<attribute name>.

8.2 Notes on the Conventions Used in UML Diagrams
A general explanation of the conventions used in the UML diagrams, such as the use
of constraints, default values, and the like is presented in [1].
338 SAI-AIS-AMF-B.04.01 Section 8.1 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.3 DN Formats for Availability Management Framework UML Classes
Table 21 provides the format of the various DNs used to name Availability Manage-
ment Framework objects of the SA Forum Information Model. One format is defined
for each object class. The ‘*’ notation at the end of a DN format indicates that none or
more RDNs may be appended to the proposed format.

Table 21 DN Formats

Object Class DN Format for Objects of that Class

SaAmfAppBaseType "safAppType=…"

SaAmfApplication "safApp=…"

SaAmfAppType "safVersion=…,safAppType=…"

SaAmfCluster "safAmfCluster=…"

SaAmfComp "safComp=…,safSu=…,safSg=…,safApp=…"

SaAmfCompBaseType "safCompType=…"

SaAmfCompCsType "safSupportedCsType=…,safComp=...,safSu=…,safSg=…,safApp
=…"

SaAmfCompGlobalAttributes "safRdn=compGlobalAttributes, safApp=safAmfService”

SaAmfCompType "safVersion=…,safCompType=…"

SaAmfCSBaseType "safCSType=…"

SaAmfCSI "safCsi=…,safSi=…,safApp=…"

SaAmfCSIAssignment "safCSIComp=…,safCsi=…,safSi=…,safApp=…"

SaAmfCSIAttribute "safCsiAttr=…,safCsi=…,safSi=…,safApp=…"

SaAmfCSType "safVersion=...,safCSType=…"

SaAmfCtCsType "safSupportedCsType=…,safVersion=…,safCompType=…"

SaAmfHealthcheck

(instance)

"safHealthcheckKey=…,safComp=…,safSu=…,safSg=…,safApp=

SaAmfHealthcheck

(type)

"safHealthcheckKey=…,safVersion=…,safCompType=…"

SaAmfNode "safAmfNode=…,safAmfCluster=…"

SaAmfNodeGroup "safAmfNodeGroup=…,safAmfCluster=…"

SaAmfNodeSwBundle "safInstalledSwBundle=..., safAmfNode=…,safAmfCluster=…"

SaAmfSG "safSg=…,safApp=…"
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.3 339

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
SaAmfSGBaseType "safSgType=…"

SaAmfSGType "safVersion=…,safSgType=…"

SaAmfSI "safSi=…,safApp=…"

SaAmfSIAssignment "safSISU=…,safSi=…,safApp=…"

SaAmfSIDependency "safDepend=…,safSi=…,safApp=…"

SaAmfSIRankedSU "safRankedSu=…,safSi=…,safApp=…"

SaAmfSU "safSu=…,safSg=…,safApp=…"

SaAmfSUBaseType "safSuType=…"

SaAmfSutCompType "safMemberCompType=…,safVersion=…,safSuType=…"

SaAmfSUType "safVersion=…,safSuType=…"

SaAmfSvcBaseType "safSvcType=…"

SaAmfSvcType "safVersion=…,safSvcType=…"

SaAmfSvcTypeCSTypes "safMemberCSType=…,safVersion=…,safSvcType=…"

Table 21 DN Formats (Continued)

Object Class DN Format for Objects of that Class
340 SAI-AIS-AMF-B.04.01 Section 8.3 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.4 AMF Cluster
The following overview picture shows the relationships among the classes SaPlmEE,
SaClmCluster, SaClmNode, and the Availability Management Framework classes
SaAmfCluster, SaAmfNode, and SaAmfApplication.

Attributes and operations of the Availability Management Framework classes
SaAmfCluster and SaAmfNode are shown in Section 8.7. Attributes and operations
of the Availability Management Framework SaAmfApplication class are shown in
Section 8.8. The classes SaClmCluster and SaClmNode are described in [4], and
the SaPlmEE class is described in [5].

FIGURE 27 3- Cluster View

SaAmfNode

SaAmfCluster

SaPlmEE SaClmNode

SaClmCluster

SaAmfApplication

Maps On

0..1 0..1

Maps On

0..1 0..1

Maps On

0..1 0..1

1

0..*

1

0..*

0..*

1

AIS Specification SAI-AIS-AMF-B.04.01 Section 8.4 341

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.5 Availability Management Framework Instances and Types View
This overview diagram shows all classes of the Availability Management Framework,
except the SaAmfCluster class, which is shown in Section 8.7.

FIGURE 28 3.1- AMF Instances and Types View

SaAmfCompGlobalAttributes

SaAmfSI

SaAmfCSI

SaAmfApplication

SaAmfSU

SaAmfComp

SaAmfSG

SaAmfHealthcheckType

SaAmfCompBaseType

SaAmfSGBaseType

SaSmfSwBundle

SaAmfSUBaseType

SaAmfAppBaseType

SaAmfSvcBaseType

SaAmfCSBaseType

SaAmfHealthcheck

SaAmfNode

SaAmfCSIAttribute

SaAmfCompType

SaAmfNodeGroup

SaAmfSUType

SaAmfAppType

SaAmfSGType

SaAmfSvcType

SaAmfCSType SaAmfCtCsType

0..*

0..*

0..*

0..*

SaAmfCompCsType

0..*

0..*

1

0..*

SaAmfSvcTypeCSTypes

0..*

0..*

Protected by

0..*

0..1

SaAmfSIRankedSU

Ranked by

0..* 0..*

1

0..* 0..*

0..*

SaAmfCSIAssignment

Assigned to

0..* 0..*

SaAmfSIAssignment

Assigned to

0..* 0..*
1

0..*

1

0..*

SaAmfSutCompType

0..*

0..*

Configured on

0..*

0..1

0..*

1Realizes

1

0..*

SaAmfNodeSwBundle

0..*0..*

Realizes

Realizes

Realizes

Configured on

0..*
0..1

Realizes

Hosted on0..*

0..1

0..1

1

Configured on

0..*

0..1SaAmfSIDependency

0..*

0..*

{xor}

Depends On

0..*

0..*

0..*

0..*

0..*

0..*

1

0..*

1

0..* 0..*
1

Realizes
342 SAI-AIS-AMF-B.04.01 Section 8.5 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.6 Availability Management Framework Instances View
This overview diagram simplifies the overview of Section 8.5 by omitting all type
classes.

FIGURE 29 3.2- AMF Instances View

SaAmfComp

SaAmfSU

SaAmfSG

SaAmfApplication

SaAmfCompGlobalAttributes

SaAmfCSI

SaAmfNodeGroup

SaAmfNode

SaAmfSI

SaAmfHealthcheckSaAmfCSIAttribute

1

0..*

Protected by

0..*

0..1

SaAmfSIRankedSU

Ranked by
0..* 0..*

SaAmfSIAssignment

Assigned to

0..* 0..*

SaAmfCSIAssignment

Assigned to

0..* 0..*

Configured on

0..*

0..1

Configured on0..* 0..1

Hosted on0..*

0..1

1

0..*

Configured on

0..*

0..1

1

0..*

1

0..*

1

0..*

0..*

1

1

0..*

Depends On

0..*
0..*

{xor}
0..*

0..*

SaAmfSIDependency

0..*

0..*

1
0..*
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.6 343

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.7 AMF Cluster, Node, and Node-Related Classes
The classes of this diagram are:

• SaAmfCluster—This configuration object class defines the configuration and
runtime attributes of an AMF cluster and the operations that can be applied on
the AMF cluster. An object of this class must be configured for each AMF cluster.
For details, refer to Section 3.1.1 on page 38, Section 3.2.8 on page 93, and
Chapter 9.

• SaAmfNode—This configuration object class defines the configuration and runt-
ime attributes of an AMF node and the operations that can be applied on the
AMF node. An object of this class must be configured for each AMF node. For
details, refer to Section 3.1.1 on page 38, Section 3.2.6 on page 90,
Section 3.6.1.3 on page 114, and Chapter 9.

• SaAmfNodeGroup—This configuration object class defines the configuration
attributes of a node group, which is used in the configuration of service groups
and service units to specify AMF nodes that can host these entities. An object of
this class can be configured for a local service unit or a service group that has
local service units. For further details, refer to Section 3.1.9 on page 57,
Section 8.9 on page 348, and Section 8.10 on page 350. No administrative
operations are defined for a node group.

• SaAmfNodeSwBundle—This is a configuration association class between the
SaAmfNode and SaSmfSwBundle object classes. The SaAmfNodeSwBundle
class defines the root installation directory of a particular software bundle on the
AMF node in question. It is used to determine the absolute CLC-CLI command
path for components of component types delivered by the software bundle when
such a component is mapped onto the AMF node.
344 SAI-AIS-AMF-B.04.01 Section 8.7 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 30 3.3- AMF Cluster, Node, and Node-Related Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.7 345

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.8 Application Classes Diagram
The classes of this diagram are:

• SaAmfApplication—This configuration object class defines configuration
and runtime attributes of an application and the operations that can be applied
on the application. For each application, an object of this class must be config-
ured, and its saAmfApplicationType attribute must contain the DN of a valid
object of the SaAmfApplicationType object class. Additional configuration
attributes of an application are defined in the SaAmfAppType class.

• SaAmfAppType—This configuration object class defines configuration
attributes of an application type. An application type defines a list of service
group types, which implies that an application of the given type must be com-
posed of service groups of types from that list. All applications of the same type
share the attribute values defined in the application type configuration. Some of
the attribute values of the application type may be overridden in the configuration
of any application by setting the corresponding attribute of the configuration
object of the application to the required value.

• SaAmfAppBaseType—This configuration object class defines the configuration
attributes common to different application types. In particular, a base application
type defines the common name of versioned application types. An application
type x belongs to a base application type y based on the DN of x, which is the
concatenation of the RDN of x (representing its version) with the DN of y.
346 SAI-AIS-AMF-B.04.01 Section 8.8 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 31 3.4- AMF Application Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.8 347

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.9 Service Group Class Diagram

This diagram contains the following classes:

• SaAmfSG—This configuration object class defines configuration and runtime
attributes of a service group and the operations that can be applied on the ser-
vice group. For each service group, an object of this class must be configured,
and its saAmfSGType attribute must contain the DN of a valid object of the
SaAmfSGType object class. Additional configuration attributes of a service group
are defined in the SaAmfSGType and the SaAmfNodeGroup (see Section 8.7)
object classes. For configuring a node group on which local service units can be
instantiated, refer to Section 3.1.9 on page 57.

• SaAmfSGType—This configuration object class defines configuration attributes
of a service group type. The service group type is a generalization of similar ser-
vice groups that follow the same redundancy model, provide similar availability,
and are composed of units of the same service unit types. A service unit type
defined in the service group type must be such that any service unit of this ser-
vice unit type belonging to a service group of a service group type must be capa-
ble of supporting a common set of service types. All service groups of the same
type share the attribute values defined in the service group type configuration.
Some of the attribute values of the service group type may be overridden in the
configuration of any service group by setting the corresponding attribute of the
configuration object of the service group to the required value.

• SaAmfSGBaseType—This configuration object class defines the configuration
attributes common to different service group types. In particular, a base service
group type defines the common name of versioned service group types. A ser-
vice group type x belongs to a base service group type y based on the DN of x,
which is the concatenation of the RDN of x (representing its version) with the DN
of y.
348 SAI-AIS-AMF-B.04.01 Section 8.9 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 32 3.5- AMF SG Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.9 349

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.10 Service Unit Class Diagram

This diagram contains the following classes:

• SaAmfSU—This configuration object class defines configuration and runtime
attributes of a service unit and the operations that can be applied on the service
unit. For each service unit, an object of this class must be configured, and its
saAmfSUType attribute must contain the DN of a valid object of the
SaAmfSUType object class. Additional configuration attributes of a service unit
are defined
⇒ in the SaAmfSUType object class,
⇒ in either the SaAmfNodeGroup or SaAmfNode (see Section 8.7) object

classes, and
⇒ in the SaAmfSutCompType association class.

For configuring a node or a node group on which a local service unit is instanti-
ated, refer to Section 3.1.9 on page 57.

• SaAmfSUType —This configuration object class defines configuration attributes
of a service unit type. The service unit type defines a list of component types
and, for each component type, the number of components that a service unit of
this type may accommodate. Each element in this list is expressed by the
SaAmfSutCompType association class, which is described below. A service unit
of a given type may only consist of components of the component types from
that list, and the number of these components must be within the range specified
for the component type. All service units of the same type share the attribute val-
ues defined in the service unit type configuration.
Some of the attribute values of the service unit type may be overridden in the
configuration of any service unit by setting the corresponding attribute of the
configuration object of the service unit to the required value. All service units of
the same type can be assigned service instances derived from the same set of
service types.

• SaAmfSUBaseType—This configuration object class defines the configuration
attributes common to different service unit types. In particular, a base service
unit type defines the common name of versioned service unit types. A service
unit type x belongs to a base service unit type y based on the DN of x, which is
the concatenation of the RDN of x (representing its version) with the DN of y.

• SaAmfSutCompType—This is a configuration association class between the
SaAmfSUType and SaAmfCompType object classes. The SaAmfSutCompType
class defines configuration attributes of a component type that can be contained
in a service unit of the service unit type. An object of this class must be config-
ured for each component type that can be contained in a service unit of the type
350 SAI-AIS-AMF-B.04.01 Section 8.10 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
defined by the SaAmfSUType object class.
The number of member component types in an service unit type can be deter-
mined by the number of saAmfSutCompType objects configured for the service
unit type.
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.10 351

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 33 3.6- AMF SU Classes
352 SAI-AIS-AMF-B.04.01 Section 8.10 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.11 Service Instance Class Diagram

This diagram contains the following classes:

• SaAmfSI—This configuration object class defines configuration and runtime
attributes of a service instance and the operations that can be applied on the
service instance. For each service instance, an object of this class must be con-
figured, and its saAmfSvcType attribute must contain the DN of a valid object of
the SaAmfSvcType object class. Additional configuration attributes of a service
instance are defined in the SaAmfSvcType object class and in the association
classes SaAmfSIDependency, SaAmfSIRankedSU, and
SaAmfSvcTypeCSTypes.
The runtime attributes of the assignment of a service instance to a service unit
are defined in the SaAmfSIAssignment association class.

• SaAmfSvcType—This configuration object class together with the associated
SaAmfSvcTypeCSTypes class defines configuration attributes of a service
type. The service type defines a list of component service types of which a ser-
vice instance may be composed. The service type also defines for each compo-
nent service type the number of component service instances that a service
instance of the given type may aggregate. All service instances of the same type
share the attribute values defined in the service type configuration.

• SaAmfSvcBaseType—This configuration object class defines the configuration
attributes common to different service types. In particular, a base service type
defines the common name of versioned service types. A service type x belongs
to a base service type y based on the DN of x, which is the concatenation of the
RDN of x (representing its version) with the DN of y.

• SaAmfSIDependency—This is a configuration association class between
SaAmfSI object classes. The SaAmfSIDependency class defines configuration
attributes for a dependency of a service instance on another service instance, as
explained in Section 3.8.1 on page 185. This object class must be configured for
each dependency of a service instance on another service instance.

• SaAmfSIRankedSU—This is a configuration association class between the
SaAmfSI and the SaAmfSU object classes. The SaAmfSIRankedSU class is
used to define the ranked list of service units per service instance, which is
required in the N-way (see Section 3.6.4) and N-way active redundancy models
(see Section 3.6.5). If an object of this class is not configured, the ranked list of
service units for a service instance for the N-way and N-way active redundancy
models is given by the ordered list of service units in the service group (this
order is configured by setting the saAmfSURank attribute of the SaAmfSU object
class, see Section 8.10).
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.11 353

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
• SaAmfSIAssignment—This is a runtime association class between the
SaAmfSI and the SaAmfSU object classes. The SaAmfSIAssignment class
defines the attributes of a potential assignment of a service instance to a service
unit.
The saAmfSISUHAReadinessState attribute indicates whether the service
instance can be accepted by the service unit, as explained in Section 3.2.1.6,
whereas the saAmfSISUHAState attribute, as explained in Section 3.2.1.5,
indicates whether the service instance has been assigned to the service unit and
in what state.
An object of this class is first created when either the service instance is
assigned to the service unit or a component of the service unit sets its HA readi-
ness state for a component service instance of the particular service instance,
and this setting, in turn, changes the HA readiness state of the service unit for
the service instance.

• SaAmfSvcTypeCSTypes—This is a configuration association class between
the SaAmfSvcType and SaAmfCSType object classes. The
SaAmfSvcTypeCSTypes class defines the saAmfSvctMaxNumCSIs configura-
tion attribute to indicate the maximum number of instances of a member CS type
(identified by safMemberCSType) that any service instance of a certain service
type can have. An object of this class must be configured for each CS type that
is contained in a service instance of the type defined by the SaAmfSvcType
object class.
354 SAI-AIS-AMF-B.04.01 Section 8.11 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 34 3.7- AMF SI Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.11 355

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.12 Component Service Instance Diagram

This diagram contains the following classes:

• SaAmfCSI— This configuration object class defines configuration attributes of a
component service instance, namely the name of the component service type to
which the component service instance belongs and a list of component service
instances on which the component service instance depends (see
Section 3.8.1.3). For each component service instance, an object of this class
must be configured, and its saAmfCSType attribute must contain the DN of a
valid object of the SaAmfCSType object class. Additional configuration attributes
of a component service instance are defined in the SaAmfCSType and
SaAmfCSIAttribute object classes.
The runtime attributes of the assignment of a component service instance to a
component are defined in the SaAmfCSIAssignment association class.

• SaAmfCSType—This configuration object class defines configuration attributes
of a component service type. The component service type is the generalization
of similar component service instances (that is, similar workloads) that are seen
by the Availability Management Framework as equivalent and handled in the
same manner. The component service type defines the list of attribute names
(as described in Section 3.1.3) for all component service instances belonging to
the type.

• SaAmfCSBaseType—This configuration object class defines the configuration
attributes common to different component service types. In particular, a base
component service type defines the common name of versioned component ser-
vice types. A component service type x belongs to a base component service
type y based on the DN of x, which is the concatenation of the RDN of x (repre-
senting its version) with the DN of y.

• SaAmfCSIAttribute—This configuration object class defines the name and
value of an attribute (as described in Section 3.1.3) of a component service
instance. An SaAmfCSIAttribute object must be defined for each attribute
name listed in SaAmfCSType.

• SaAmfCSIAssignment—This is a runtime association class between the
SaAmfCSI and the SaAmfComp object classes. The SaAmfCSIAssignment
class defines the attributes of a potential assignment of a component service
instance to a component.
The saAmfCSICompHAReadinessState attribute indicates whether the com-
ponent service instance can be accepted by the component, as explained in
Section 3.2.2.5, whereas the saAmfCSICompHAState attribute, as explained in
Section 3.2.2.4, indicates whether the component service instance has been
assigned to the component and in what state. An object of this class is first cre-
ated when either the component service instance is assigned to the component
356 SAI-AIS-AMF-B.04.01 Section 8.12 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
or the component sets its HA readiness state for the component service
instance.

FIGURE 35 3.8- AMF CSI Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.12 357

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.13 Component and Component Types Class Diagrams

8.13.1 Component Type Class Diagram

This diagram contains the following classes:

• SaAmfCompType—This configuration object class defines configuration
attributes of a component type. A component type represents a particular ver-
sion of the software or hardware implementation that is used to construct com-
ponents. All components of the same type share the attribute values defined in
the component type configuration. Some of the attributes of the component type
are defined by the SaAmfCtCsType association class, which is described
below.
Some of the attribute values of the component type may be overridden or
extended in the configuration of any component by setting the corresponding
attribute of the configuration object of the component to the required value.

• SaAmfCompBaseType—This configuration object class defines the configura-
tion attributes common to different component types. In particular, a base com-
ponent type defines the common name of versioned component types. A
component type x belongs to a base component type y based on the DN of x,
which is the concatenation of the RDN of x (representing its version) with the DN
of y.

• SaAmfCtCsType— This is a configuration association class between the
SaAmfCompType and SaAmfCSType object classes. The SaAmfCtCsType
class defines configuration attributes of a component type for component service
instances of a certain component service type (identified by
safSupportedCsType) that can be assigned to a component of this compo-
nent type. An object of this class must be configured for each CS type that can
be assigned to a component of the type defined by the SaAmfCompType object
class. For further details, see also the description of the SaAmfCompCsType
class in Section 8.13.2.
A component type for a non-pre-instantiable component can only be associated
with a single component service type, and the object of class SaAmfCtCsType
that represents this association must have its saAmfCtCompCapability
attribute set to SA_AMF_COMP_NON_PRE_INSTANTIABLE.
The SA_AMF_COMP_NON_PRE_INSTANTIABLE capability must be set only in
association with non-pre-instantiable component types.
358 SAI-AIS-AMF-B.04.01 Section 8.13 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 36 3.9b- AMF Component Type Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.13.1 359

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.13.2 Component Classes Diagram

This diagram contains the following classes:

• SaAmfComp—This configuration object class defines configuration and runtime
attributes of a component and the operations that can be applied on the compo-
nent. An object of this class must be configured for each component, and its
saAmfCompType attribute must contain the DN of a valid object of the
SaAmfCompType object class. Additional configuration attributes of a compo-
nent are defined in the SaAmfCompType object class and in the
SaAmfCtCsType association class (see Section 8.13.1), in the
SaAmfCompCSType association class, and in the
SaAmfCompGlobalAttributes object class (see Section 8.14).

• SaAmfCompCsType—This is a configuration association class between the
SaAmfComp and SaAmfCSType object classes. The SaAmfCompCsType class
defines configuration and runtime attributes of a component for component ser-
vice types (each one identified by the attribute safSupportedCsType) that can
be assigned to the component. An object of this class must be configured for
each CS type that can be assigned to a component configured by an object of
the SaAmfComp object class.
The attributes of the SaAmfCompCsType class are in a particular relation with
the attributes of the SaAmfCtCsType class. An attribute designated by
saAmfCtDef<attribute name> in the SaAmfCtCsType class defines the
default value or an upper limit for the saAmfComp<attribute name> attribute
of the SaAmfCompCsType class. Concerning the rules for overriding or comple-
menting such default values, refer to Section 8.1.
360 SAI-AIS-AMF-B.04.01 Section 8.13.2 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 37 3.9a- AMF Component Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.13.2 361

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
8.14 AMF Global Component Attributes and Healthcheck Classes

This diagram contains the following classes:

• SaAmfCompGlobalAttributes—This configuration object class collects
those component configuration attributes for which the default value is set glo-
bally. Each of these global attributes is referred to by a corresponding attribute in
the SaAmfComp component configuration object class. One and only one object
of this class must be configured for each AMF cluster.
The global default values can be overridden in the configuration of any compo-
nent by setting the corresponding attribute of the configuration object of the com-
ponent to the required value.

Example: saAmfNumMaxInstantiateWithoutDelay in
SaAmfCompGlobalAttributes corresponds to
saAmfCompNumMaxInstantiateWithoutDelay in the SaAmfComp class.

• SaAmfHealthcheck—This configuration object class defines the attributes for
a component healthcheck for a certain healthcheck key (see also
Section 7.1.2.4). If an object of this class is configured for a component, its
attribute values override the corresponding attributes provided in the health-
check type configuration (see the SaAmfHealthcheckType object class) for
the component type and for the same healthcheck key. The healthcheck config-
uration for the component can only specify healthcheck keys for which there is a
healthcheck type configuration for its component type.
The IMM object representing the component healthcheck has a DN of the form
"safHealthcheckKey=…,safComp=…,safSu=…,safSg=…,safApp=…".

• SaAmfHealthcheckType—This configuration object class defines the
attributes for a component healthcheck type (see also Section 7.1.2.4). Each
healthcheck type is identified by a healthcheck key. An object of this class must
be configured for each healthcheck key that a component of a component type
uses to start a healthcheck. All components of the same type share the health-
check attribute values defined in the healthcheck type configuration.
The IMM object representing the component healthcheck type has a DN of the
form
"safHealthcheckKey=…,safVersion=…,safCompBaseType=…".
362 SAI-AIS-AMF-B.04.01 Section 8.14 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 38 3.9c- AMF Global Component Attributes and Healthcheck Classes
AIS Specification SAI-AIS-AMF-B.04.01 Section 8.14 363

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9 Administration API
This section describes the various administrative API functions that the IMM Service
exposes on behalf of the Availability Management Framework to a system adminis-
trator. These API functions are described using a ’C’ API syntax. The main clients of
this administrative API are system management applications and SNMP agents that
typically convert system administration commands (invoked from a management sta-
tion) to the correct administrative API sequence to yield the wanted result that is
expected upon execution of the system administration command.

9.1 Availability Management Framework Administration API Model

The Availability Management Framework administrative API functions are applicable
to the entities that are controlled by the Availability Management Framework like ser-
vice units and service instances. Thus, restarting an AMF node by using an Availabil-
ity Management Framework administration API shall restart all the components
contained in the service units housed in the AMF node. This operation will not reboot
the underlying CLM node. Similarly, restarting an AMF cluster in the context of Avail-
ability Management Framework shall restart all components in the AMF cluster, but
shall not reboot the underlying CLM nodes of the CLM cluster.

Most Availability Management Framework administrative API functions are applicable
to the service unit (SU) logical entity and entities to which it belongs like a service
group (SG), application, AMF node, or AMF cluster. This choice of granularity for
administrative operations aligns with Section 3.1.4, which advocates a coarser-
grained and aggregated view of components to the system administrator. In certain
rare cases, however, the administrative API function directly affects a component
within a service unit.

Administrative operations that are applicable to the lowest granular logical entity are
called primitive administrative operations or simply primitive operations. As
explained above and in most cases, the lowest granular logical entity is a service unit.
The semantics of certain other administrative operations imply a repetitive execution
of the same primitive administrative operation to yield the wanted result. These oper-
ations are called composite administrative operations or simply composite oper-
ations. For an example, starting external active monitoring (EAM) on a service unit
involves starting external active monitoring on all the components housed in the AMF
node. Thus, in this case, starting EAM on the service unit is a composite operation,
and starting EAM on an individual component is a primitive operation.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 9 365

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
In the remainder of this section, it is assumed that concurrent and potentially conflict-
ing administrative operations are invalid, that is, when an administrator has initiated
an administrative operation on a logical entity X, any other administrative operation
that involves a logical entity with which this logical entity X has a relationship (associ-
ation or aggregation) will not be allowed until the first operation on X is done.
Note that the shutdown administrative operation is non-blocking, which means that it
may complete while the actual procedure to shut down the target entity is still in
progress (that is, the entity has not yet reached the locked administrative state). As
soon as the shutdown administrative operation completes, other administrative oper-
ations such as lock or unlock can be invoked; they can interrupt the shutdown proce-
dure and force the target entity into a locked or an unlocked administrative state.

A general principle that has been adhered to while specifying these administrative
operations is that an operation done at a given scope can only be undone by perform-
ing the reverse operation at the same scope. This means, for example, one cannot
lock at the AMF node-level and then unlock each service unit one by one at the ser-
vice unit-level. This principle is especially applicable to administrative operations that
manipulate the administrative state.

These API functions will be exposed by the IMM Service Object Management library
(see [6]).
366 SAI-AIS-AMF-B.04.01 Section 9.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.2 Include File and Library Name
The appropriate IMM Service header file and the Availability Management Frame-
work header file must be included in the source of an application using the Availability
Management Framework administration API; for the name of the IMM Service header
file, see [6]).

To use the Availability Management Framework administration API, an application
must be bound to the IMM Service library (for the library name, see [6]).

9.3 Type Definitions
The specification of Availability Management Framework Administration API requires
the following types, in addition to the ones already described.

9.3.1 SaAmfAdminOperationIdT

typedef enum {

SA_AMF_ADMIN_UNLOCK = 1,

SA_AMF_ADMIN_LOCK = 2,

SA_AMF_ADMIN_LOCK_INSTANTIATION = 3,

SA_AMF_ADMIN_UNLOCK_INSTANTIATION = 4,

SA_AMF_ADMIN_SHUTDOWN = 5,

SA_AMF_ADMIN_RESTART = 6,

SA_AMF_ADMIN_SI_SWAP = 7,

SA_AMF_ADMIN_SG_ADJUST = 8,

SA_AMF_ADMIN_REPAIRED = 9,

SA_AMF_ADMIN_EAM_START = 10,

SA_AMF_ADMIN_EAM_STOP = 11

} SaAmfAdminOperationIdT;
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.2 367

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4 Availability Management Framework Administration API

As explained earlier, the administrative API shall be exposed by the IMM Service
library.

The administrative APIs are described with the assumption that the Availability Man-
agement Framework is an object implementer (runtime owner) for the various admin-
istrative operations that will be initiated as a consequence of invoking the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() functions (see [6]) with the appro-
priate operationId (described in Section 9.3.1) on the entity designated by the
name to which objectName points.

The return values explained in the following sections for various administrative opera-
tions shall be passed by the operationReturnValue parameter, which is provided
by the invoker of the saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() functions to obtain return codes
from the object implementer (Availability Management Framework, in this case).

The operations described in the following subsections are applicable to and have the
same effects on both pre-instantiable and non-pre-instantiable service units, unless
explicitly stated otherwise.

9.4.1 Administrative State Modification Operations

A fair number of administrative operations involve the manipulation of the administra-
tive state. To aid in the description of such administrative operations, FIGURE 39
illustrates the various administrative states and the various operations that are appli-
cable on an entity when it is in a particular administrative state. The abbreviations
used in this figure and their meaning are:

• UL = SA_AMF_ADMIN_UNLOCK
• L = SA_AMF_ADMIN_LOCK
• ULI = SA_AMF_ADMIN_UNLOCK_INSTANTIATION
• LI = SA_AMF_ADMIN_LOCK_INSTANTIATION
• SD = SA_AMF_ADMIN_SHUTDOWN

The dotted line in the figure represents the internal (spontaneous) transition corre-
sponding to the completion of the shutting down operation; this transition moves the
entity into locked state without further external intervention.
368 SAI-AIS-AMF-B.04.01 Section 9.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
FIGURE 39 Administrative States and Related Operations for AMF Entities

UL

L

UL

SD
Complete

LSD ULI

unlocked

shutting-down

locked

locked-instantiation

LI
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.1 369

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.2 SA_AMF_ADMIN_UNLOCK

Parameters

operationId = SA_AMF_ADMIN_UNLOCK

objectName - [in] A pointer to the name of the logical entity to be unlocked. The
name is expressed as a LDAP DN. The type of the logical entity is inferred by parsing
this DN.

Description

This administrative operation is applicable to a service unit, a service instance, an
AMF node, a service group, an application, and the AMF cluster, that is, to all logical
entities that possess an administrative state.

The invocation of this administrative operation transitions the administrative state of
the logical entity designated by the name to which objectName points to unlocked,
provided that the logical entity was previously in the locked or shutting-down adminis-
trative state. For more details regarding the respective status of the logical entities
that results as a consequence of invoking this administrative operation on these enti-
ties, refer to Section 3.2.1.2 on page 63 (service unit), Section 3.2.3.1 on page 87
(service instance), Section 3.2.5 on page 89 (service group),
Section 3.2.6.1 on page 90 (AMF node), Section 3.2.7 on page 92 (application), and
Section 3.2.8 on page 93 (AMF cluster).

This administrative operation can be issued on a logical entity even if one or more of
the AMF nodes hosting the logical entity or parts of it are not mapped to CLM nodes,
or one or more of these underlying CLM nodes are not member nodes. It can also be
issued on a service unit even if it is configured but uninstantiated.

If this operation is invoked on a logical entity that is already unlocked, there is no
change in the status of such an entity, that is, it remains in unlocked state and the
caller is returned a benign SA_AIS_ERR_NO_OP error code.

If this operation is invoked on a logical entity that is locked for instantiation, there is no
change in the status of such an entity, that is, it remains in the locked-instantiation
state, and the caller is returned an SA_AIS_ERR_BAD_OPERATION error value.
370 SAI-AIS-AMF-B.04.01 Section 9.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in unlocked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

See Also

SA_AMF_ADMIN_LOCK, SA_AMF_ADMIN_SHUTDOWN
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.2 371

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.3 SA_AMF_ADMIN_LOCK

Parameters

operationId = SA_AMF_ADMIN_LOCK

objectName - [in] A pointer to the name of the logical entity to be locked. The name
is expressed as a LDAP DN. The type of the logical entity is inferred by parsing this
DN.

Description

This administrative operation is applicable to a service unit, a service instance, an
AMF node, a service group, an application, and the AMF cluster, that is, to all logical
entities that support an administrative state.

The invocation of this administrative operation transitions the administrative state of
the logical entity designated by the name to which objectName points to locked,
provided that the logical entity was previously in the unlocked or shutting-down
administrative state. For more details regarding the respective status of the logical
entities that results as a consequence of invoking this administrative operation on
these entities, refer to Section 3.2.1.2 on page 63 (service unit),
Section 3.2.3.1 on page 87 (service instance), Section 3.2.5 on page 89 (service
group), Section 3.2.6.1 on page 90 (AMF node), Section 3.2.7 on page 92 (applica-
tion), and Section 3.2.8 on page 93 (AMF cluster).

When a service unit or any of the entities containing the service unit is locked, and the
service unit contains container components, the Availability Management Framework
first performs the following actions for each container component:

• for each associated contained component and for each of its component service
instances that has the active HA state and needs to be quiesced, the Availability
Management Framework sets the HA state of the associated contained compo-
nent to quiesced;

• the Availability Management Framework waits for each associated contained
component to quiesce for its component service instances (if the setting of the
HA state to quiesced was necessary), then it removes all component service
instances assigned to the contained component and terminates it (see also
page 81).

Analogously, when a service instance containing a container CSI is locked, the Avail-
ability Management Framework performs the same actions for contained compo-
nents whose life cycle is being handled by the associated container component for
this container CSI, before it locks the service instance.
372 SAI-AIS-AMF-B.04.01 Section 9.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
This administrative operation can be issued on a logical entity even if one or more of
the AMF nodes hosting the logical entity or parts of it are not mapped to CLM nodes,
or one or more of these underlying CLM nodes are not member nodes. It can also be
issued on a service unit even if it is configured but uninstantiated.

If this operation is invoked by a client on a logical entity that is already locked, there is
no change in the status of such an entity, that is, it remains in the locked state, and a
benign error value SA_AIS_ERR_NO_OP is returned to the client conveying that the
entity in question designated by the name to which objectName points is already in
locked state.

If this operation is invoked on a logical entity that is locked for instantiation, there is no
change in the status of such an entity, that is, it remains in the locked-instantiation
state, and the caller is returned an SA_AIS_ERR_BAD_OPERATION error value.

Chapter 10 provides sequence diagrams to illustrate the actions performed for the
lock administrative operation (Section 10.4, Section 10.5, Section 10.8, and
Section 10.9).

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in locked state.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.3 373

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion, but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

See Also

SA_AMF_ADMIN_UNLOCK
374 SAI-AIS-AMF-B.04.01 Section 9.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION

Parameters

operationId = SA_AMF_ADMIN_LOCK_INSTANTIATION

objectName - [in] A pointer to the name of the logical entity to be locked for instan-
tiation. The name is expressed as a LDAP DN. The type of the logical entity is
inferred by parsing this DN.

Description

This administrative operation is applicable to a service unit, an AMF node, a service
group, an application, and the AMF cluster.

The invocation of this administrative operation transitions the administrative state of
the logical entity designated by the name to which objectName points to locked-
instantiation, provided that the logical entity was previously in the locked administra-
tive state. For more details regarding the respective status of the logical entities that
results as a consequence of invoking this administrative operation on these entities,
refer to Section 3.2.1.2 on page 63 (service unit), Section 3.2.5 on page 89 (service
group), Section 3.2.6.1 on page 90 (AMF node), Section 3.2.7 on page 92 (applica-
tion), and Section 3.2.8 on page 93 (AMF cluster).

After successful invocation of this procedure, all components in all affected service
units are terminated and become non-instantiable; in particular, all processes in
those components must cease to exist.

The effect of this operation can only be reversed by applying another administrative
operation designated by the operationId
SA_AMF_ADMIN_UNLOCK_INSTANTIATION, which causes the relevant service
units to be instantiated in a locked state, provided that the entity is not locked for
instantiation at any other level, the concerned service units are pre-instantiable, and
the redundancy model of the pertinent service groups allows the instantiation. Note
that for non-pre-instantiable service units, the application of
SA_AMF_ADMIN_LOCK_INSTANTIATION is semantically equivalent to the applica-
tion of SA_AMF_ADMIN_LOCK with regards to the presence state of the service units.

This administrative operation can be issued on a logical entity even if one or more of
the AMF nodes hosting the logical entity or parts of it are not mapped to CLM nodes,
or one or more of these underlying CLM nodes are not member nodes. It can also be
issued on a service unit even if it is configured but uninstantiated.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.4 375

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
If the logical entity is unavailable during the invocation of this administrative opera-
tion, for example, if an AMF node is configured but not a member, all service units
within the scope of the entity are set to non-instantiable; they can only ever again be
instantiated in a locked state after another administrative operation designated by the
operationId SA_AMF_ADMIN_UNLOCK_INSTANTIATION (refer to
Section 9.4.5 on page 378) is invoked on the entity provided that the entity is not
locked for instantiation at any other level.

If this operation is invoked by a client on a logical entity that is already in locked-
instantiation state, the status of such an entity does not change, that is, the entity
remains in that state, and a benign error value SA_AIS_ERR_NO_OP is returned to
the client, conveying that the state of the concerned entity in question did not change.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an
SA_AIS_ERR_BAD_OPERATION error value.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity and it remains in the current state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.
376 SAI-AIS-AMF-B.04.01 Section 9.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion, but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also

SA_AMF_ADMIN_UNLOCK_INSTANTIATION, SA_AMF_ADMIN_LOCK
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.4 377

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION

Parameters

operationId = SA_AMF_ADMIN_UNLOCK_INSTANTIATION

objectName - [in] A pointer to the name of the logical entity to be unlocked for
instantiation. The name is expressed as a LDAP DN. The type of the logical entity is
inferred by parsing this DN.

Description

This administrative operation is applicable to a service unit, an AMF node, a service
group, an application, and the AMF cluster, that is, to all logical entities that support
an administrative state with a locked-instantiation value.

The invocation of this administrative operation transitions the administrative state of
the logical entity designated by the name to which objectName points to locked,
provided that the logical entity was previously in the locked-instantiation administra-
tive state. For more details regarding the respective status of the logical entities that
results as a consequence of invoking this administrative operation on these entities,
refer to Section 3.2.1.2 on page 63 (service unit), Section 3.2.5 on page 89 (service
group), Section 3.2.6.1 on page 90 (AMF node), Section 3.2.7 on page 92 (applica-
tion), and Section 3.2.8 on page 93 (AMF cluster).

If the current administrative state of the target entity is locked-instantiation, the invo-
cation of this operation on such an entity causes all of the relevant service units to
become instantiable (though they remain in the locked state), provided that all other
conditions are met. A subsequent invocation of the SA_AMF_ADMIN_UNLOCK admin-
istrative operation would make the relevant service units available for service
instance assignments by the Availability Management Framework if all containing
entities are also in the unlocked administrative state.

This administrative operation can be issued on a logical entity even if one or more of
the AMF nodes hosting the logical entity or parts of it are not mapped to CLM nodes,
or one or more of these underlying CLM nodes are not member nodes.

If this operation is invoked by a client on a logical entity that is already locked, the sta-
tus of such an entity does not change, that is, it remains in the locked state, and a
benign error value SA_AIS_ERR_NO_OP is returned to the client conveying that the
entity (designated by the name to which objectName points) is already in locked
state.
378 SAI-AIS-AMF-B.04.01 Section 9.4.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an
SA_AIS_ERR_BAD_OPERATION error value.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in locked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

See Also

SA_AMF_ADMIN_LOCK_INSTANTIATION, SA_AMF_ADMIN_UNLOCK
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.5 379

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.6 SA_AMF_ADMIN_SHUTDOWN

Parameters

operationId = SA_AMF_ADMIN_SHUTDOWN

objectName - [in] A pointer to the name of the logical entity to be shut down. The
name is expressed as a LDAP DN. The type of the logical entity is inferred by parsing
this DN.

Description

This administrative operation is applicable to a service unit, a service instance, an
AMF node, a service group, an application, and the AMF cluster, that is, to all logical
entities that support an administrative state.

This administrative operation transitions directly or indirectly the administrative state
of the logical entity designated by the name to which objectName points to the
locked state, provided that the logical entity was previously in the unlocked adminis-
trative state.
The indirect transition is performed if the logical entity is actively providing service or
being used to provide service (the latter case applies if the logical entity is a service
instance). The entity first transitions to the shutting-down state, so that any ongoing
service can be completed. When the ongoing service is completed, the entity transi-
tions to the locked state.
For more details regarding the respective status of the logical entities that results as a
consequence of invoking this administrative operation on these entities, refer to
Section 3.2.1.2 on page 63 (service unit), Section 3.2.3.1 on page 87 (service
instance), Section 3.2.5 on page 89 (service group), Section 3.2.6.1 on page 90
(AMF node), Section 3.2.7 on page 92 (application), and Section 3.2.8 on page 93
(AMF cluster).

This administrative operation is non-blocking, that is, it does not wait for the logical
entity designated by the name to which objectName points to transition to the
locked administrative state, which can possibly take a very long time.

When a service unit or any of the entities containing the service unit is shut down, and
the service unit contains container components, the Availability Management Frame-
work performs the following actions for each container component, before it shuts
down the service unit or any of the containing entities:

• for each associated contained component and for each of its component service
instances that has the active HA state and needs to be quiesced, the Availability
Management Framework sets the HA state of the associated contained compo-
nent to quiescing;
380 SAI-AIS-AMF-B.04.01 Section 9.4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
• the Availability Management Framework waits for each associated contained
component to quiesce for its component service instances (if the setting of the
HA state to quiescing was necessary), then it removes all component service
instances assigned to the contained component and terminates it (see also
page 81).

Analogously, when a service instance containing a container CSI is shut down, the
Availability Management Framework performs the same actions for contained com-
ponents whose life cycle is being handled by the associated container component for
this container CSI, before it shuts down the service instance.

If this operation is invoked on a logical entity that is already in shutting-down adminis-
trative state, there is no change in the status of such an entity, that is, it continues
shutting down, and the caller is returned a benign SA_AIS_ERR_NO_OP error value,
which means that the entity is already shutting down.

If this operation is invoked by a client on a logical entity that is either in locked or
locked-instantiation administrative state, there is no change in the status of such an
entity, that is, it remains locked or locked for instantiation, and the caller is returned
an SA_AIS_ERR_BAD_OPERATION error value.

Chapter 10 provides sequence diagrams to illustrate the actions performed for the
shutdown administrative operation (Section 10.1, Section 10.2, Section 10.3, and
Section 10.7).

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.6 381

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in shutting-down state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is locked or locked for instantiation.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion, but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also

SA_AMF_ADMIN_LOCK, SA_AMF_ADMIN_UNLOCK
382 SAI-AIS-AMF-B.04.01 Section 9.4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.7 SA_AMF_ADMIN_RESTART

Parameters

operationId = SA_AMF_ADMIN_RESTART

objectName - [in] A pointer to the name of the logical entity to be restarted. The
name is expressed as a LDAP DN. The type of the logical entity is inferred by parsing
this DN.

Description

This operation is applicable to a component, a service unit, an AMF node, an applica-
tion, and the AMF cluster. This procedure typically involves a termination action fol-
lowed by a subsequent instantiation of either the concerned entity or logical entities
that belong to the concerned entity.

This administrative operation is applicable to only those service units whose pres-
ence state is instantiated. The invocation of this administrative operation on a service
unit causes the service unit to be restarted by restarting all the components within it
according to the procedures defined in Section 3.11.1.2 on page 191.

The decision to reassign the assigned service instances to another service unit dur-
ing this operation should be determined by the Availability Management Framework
based on the configured recovery policy of the components that make up the service
unit.

If all components within the service unit have a configured recovery policy of restart,
that is, the saAmfCompDisableRestart configuration attribute of all components is
set to SA_FALSE (see the SaAmfComp object class in Section 8.13.2), it is not neces-
sary to reassign the assigned service instances; however, if at-least one component
within the service unit has the saAmfCompDisableRestart configuration attribute
set to SA_TRUE, a reassignment of the service instances assigned to a service unit
during its restart (before termination) must be attempted by the Availability Manage-
ment Framework in course of this administrative action to prevent potential service
disruption. In this case, the Availability Management Framework does not set the
presence state of the component to restarting and transitions through the individual
terminating, terminated, instantiating, instantiated presence states instead.

When this operation is invoked upon a particular instantiated component of a service
unit, the other components of the service unit are not affected by this operation, that
is, they are not restarted.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.7 383

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
If this operation is invoked upon an instantiated container component or upon an
instantiated service unit which contains a container component, the Availability Man-
agement Framework implicitly restarts all service units that contain contained compo-
nents having this container component as the associated container component. The
procedure regarding reassignment of service instances to these implicitly restarted
service units is as explained above when the operation is invoked upon a service unit.

When invoked upon an AMF node, an application, or the AMF cluster, this operation
becomes a composite operation that causes a collective restart of all service units
residing within the AMF node, application, or the AMF cluster. To execute such a col-
lective restart of all service units in a particular scope, the Availability Management
Framework first completely terminates all pertinent service units and does not start to
instantiate them until all service units have been terminated. If the target entity is an
application or the AMF cluster, the Availability Management Framework does not per-
form the usual reassignment (in-order to maintain service) of service instances
assigned to the various service units during the execution of the termination phase of
the restart procedure. Also note that the instantiation phase of such restarts is exe-
cuted in accordance with the redundancy model configuration for various service
groups with no requirement to preserve pre-restart service instance assignments to
various service units in the application or AMF cluster.

The Availability Management Framework must not proceed with this operation if
another administrative operation or an error recovery initiated by the Availability Man-
agement Framework is already engaged on the logical entity. In such case, the
SA_AIS_ERR_TRY_AGAIN error value shall be returned to indicate that the action is
feasible but not at this instant.

Section 10.10 provides a sequence diagram to illustrate the actions performed for the
restart of a container component.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.
384 SAI-AIS-AMF-B.04.01 Section 9.4.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_BAD_OPERATION - The target logical entity for this operation identified
by name to which objectName points could not be restarted for various reasons like
the presence state of the service unit or the component to be restarted was not
instantiated.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate or instanti-
ate these erroneous components, it will put them in the termination-failed or instantia-
tion-failed presence state. However, the Availability Management Framework will
continue the administrative operation, but will return from the call with this error value,
before initiating the required repair operations for such components. The caller of the
administrative operation is responsible for discovering such erroneous components
and tracking the completion of the subsequent repair operations.

See Also

None
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.7 385

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.8 SA_AMF_ADMIN_SI_SWAP

Parameters

operationId = SA_AMF_ADMIN_SI_SWAP

objectName - [in] A pointer to the name of the service instance whose component
service instances need to be swapped. The name is expressed as a LDAP DN. The
type of the logical entity is inferred by parsing this DN.

Description

This administrative operation is applicable to service instances that are currently
assigned to service units.

The invocation of this procedure results in swapping the HA states of the appropriate
CSIs contained within an SI. The typical outcome of this operation results in the HA
state of CSIs assigned to components within the service units to be interchanged;
active assignments become standby, and standby assignments become active.

The SI identified by the name to which objectName points is called here the desig-
nated SI.

If the designated SI is protected by a service group whose redundancy model is 2N,
the invocation of this administrative operation causes a complete swap of all active
and standby CSIs belonging to not just the designated SI but also to any other SI that
is assigned to a service unit to which the designated SI is assigned. Note that this
behavior is consistent with the semantics of the respective redundancy model.

If the designated SI is protected by a service group whose redundancy model is N+M,
the invocation of this administrative operation results in a complete swap of all active
and standby CSIs belonging to not just the designated SI but also to any other SI that
is assigned active to a service unit to which the designated SI is assigned active.
Application of this operation on an SI may potentially modify the standby assignments
of other SIs that are protected by the same service group, but are not assigned to the
service unit to which the SI in question is assigned active. For an example, refer to
FIGURE 15 on page 134: if the swap operation is applied on SI A, the active assign-
ment for SI A shall be moved to Service Unit S4 on Node X, and the standby assign-
ments for SI A as well as that of SI C and SI B will be moved to Service Unit S1 on
Node U. The active assignments of SI C and SI B will remain on Service Unit S3 (on
Node W) and Service Unit S2 (on Node V), respectively.

If the redundancy model of the protecting service group is N-way, the aggregate
effect of swapping all SIs assigned to a service unit by swapping only one SI is not
achieved. This behavior is again consistent with the semantics of the N-way redun-
386 SAI-AIS-AMF-B.04.01 Section 9.4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
dancy model. In the N-way redundancy model, it is possible that an SI has multiple
standby assignments, in which case this administrative operation shall affect only the
highest-ranked standby assignment.

This operation must not be invoked on an SI that is protected by a service group
whose redundancy model is either N-way active or no-redundancy.

If no standby assignments are available for an SI (potentially because the AMF clus-
ter is in a degenerated status, and reduction procedures have been engaged) when
this operation is invoked on a particular logical entity, the
SA_AIS_ERR_BAD_OPERATION error value shall be returned.
In other words, this operation shall be allowed by the Availability Management
Framework to proceed under the following circumstances.

• The concerned SI is assigned active or quiescing to one service unit.
• The concerned SI is assigned standby to at least another service unit.
• The HA readiness state of the service unit currently assigned the standby HA

state for the target service instance is ready-for-assignment.
• The node capacity limits for the affected AMF nodes are not violated when the

HA state assignments are swapped.

The Availability Management Framework shall not proceed with this procedure when
the presence state of the constituent service units of the service group protecting the
SI is instantiating, restarting, or terminating, and should return an
SA_AIS_ERR_TRY_AGAIN error value conveying that the action is valid but not cur-
rently possible.

The SI-SI dependency rules and dependencies among the component service
instances of the same SI must be honored, if applicable during the execution of this
operation.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.8 387

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_BAD_OPERATION - The operation was not successful on the target SI,
possibly because one or more of the following conditions are not met:

• The concerned SI is assigned active or quiescing to one service unit.
• The concerned SI is assigned standby to at least another service unit.
• The HA readiness state of the service unit currently assigned the standby HA

state for the target service instance is ready-for-assignment.
• The node capacity limits for the affected AMF nodes are not violated when the

HA state assignments are swapped.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported for
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion, but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also

None
388 SAI-AIS-AMF-B.04.01 Section 9.4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.9 SA_AMF_ADMIN_SG_ADJUST

Parameters

operationId = SA_AMF_ADMIN_SG_ADJUST

objectName - [in] A pointer to the name of the service group that needs to be tran-
sitioned to the original ‘preferred configuration’. The name is expressed as a LDAP
DN. The type of the logical entity is inferred by parsing this DN.

Description

This operation is only applicable to a service group.

This operation moves a service group to the preferred configuration, which typically
causes the service instance assignments of the service units in the service group to
be transferred back to the most preferred service instance assignments in which the
highest-ranked available service units are assigned the active or standby HA states
for those service instances. If the most preferred configuration cannot be achieved,
this operation will restore the best possible configuration in which the rankings of the
service units are respected with regards to active and standby service instance
assignments.

The objective of this administrative operation is to provide an administrator the capa-
bility to manually execute an adjust procedure, as described in
Section 3.6.1.1 on page 110. This operation is generally issued after the service
group has undergone a series of swaps, locks, or shutdowns, and the invocation of
this administrative operation brings the service group back to its initial preferred state
or as close to the preferred state as possible.

The Availability Management Framework shall not proceed with this procedure when
the presence state of the constituent service units of the service group is instantiat-
ing, restarting, terminating, or the administrative state is shutting-down. For these
cases, the Availability Management Framework should return an
SA_AIS_ERR_TRY_AGAIN error value conveying that the action is valid but not cur-
rently possible.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.9 389

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported for
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not cooperate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion, but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also

None
390 SAI-AIS-AMF-B.04.01 Section 9.4.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.10 SA_AMF_ADMIN_REPAIRED

Parameters

operationId = SA_AMF_ADMIN_REPAIRED

objectName - [in] A pointer to the name of the logical entity to be repaired. The
name is expressed as a LDAP DN. The type of the logical entity is inferred by parsing
this DN.

Description

This administrative operation is applicable to a service unit and an to AMF node.

This administrative operation is used to clear the disabled operational state of an
AMF node or a service unit after they have been successfully mended to declare
them as repaired. The administrator uses this operation to indicate the availability of a
service unit or an AMF node for providing service after an externally executed repair
action. When invoked on an AMF node, this operation results in enabling the opera-
tional state of the constituent service units and components. When invoked on a ser-
vice unit, it has similar effect on all the components that make up the service unit. An
AMF node or a service unit enters the disabled operational state due to reasons
stated in Section 3.2.6.2 on page 91 (AMF node) and Section 3.2.1.3 on page 63
(service unit).

The Availability Management Framework might optionally engage in repairing an
AMF node or a service unit after a successful recovery procedure execution, in which
case the Availability Management Framework itself will clear the disabled state of the
involved AMF node or service unit. However, if the repair action is undertaken by an
external entity outside the scope of the Availability Management Framework, or the
Availability Management Framework failed to successfully repair (and the repair
requires intervention by an external entity), one should use this administrative opera-
tion to clear the disabled state of the AMF node or the service unit to indicate that
these entities are repaired and their operational state is enabled.

It is expected that a repair done by an external entity should bring the repaired ser-
vice units and components in a consistent state, that is, to the uninstantiated pres-
ence state, before an SA_AIS_OK status is returned by this operation.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.10 391

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
This administrative operation can be issued on an AMF node or on a service unit
hosted by an AMF node even if this AMF node is not mapped to a CLM node, or the
underlying CLM node is not a member node. It can also be issued on a service unit
even if it is configured but uninstantiated.

If this administrative operation is invoked on an AMF node or a service unit whose
operational state is already enabled, the entity remains in that state, and a benign
error value of SA_AIS_ERR_NO_OP is returned to the caller.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already enabled.

SA_AIS_ERR_BAD_OPERATION - The operation could not ensure that the presence
states of the relevant service units and components are either instantiated or unin-
stantiated.

See Also

None
392 SAI-AIS-AMF-B.04.01 Section 9.4.10 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.11 SA_AMF_ADMIN_EAM_START

Parameters

operationId = SA_AMF_ADMIN_EAM_START

objectName - [in] A pointer to the name of the logical entity on which external
active monitoring needs to be started. The name is expressed as a LDAP DN. The
type of the logical entity is inferred by parsing this DN.

Description

This administrative operation applies to a component and a service unit.

This API function is invoked to resume external active monitoring of components after
it has been stopped by invoking the administrative operation designated by
operationId = SA_AMF_ADMIN_EAM_STOP on the same component.

If a component on which this administrative operation is invoked is already being
actively monitored, there is no change in its status as a consequence of invoking this
operation on such a component. A status of SA_AIS_ERR_NO_OP is returned in such
a case.

When this procedure is applied to a service unit, it results in an aggregate action of
starting the external active monitors for all components within the service unit that
support external active monitoring without affecting the ones that are already being
actively monitored. If the external monitors for all components within the enclosing
service unit that support external active monitoring have been already started, an
SA_AIS_ERR_NO_OP error code is returned to indicate that there has been no
change in the status of active monitoring of the components within the service unit.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.

SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.11 393

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_FAILED_OPERATION - The AM_START operation returns an error or
fails to complete within the configured timeout.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported for
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of active monitoring of the logical entity.

See Also

SA_AMF_ADMIN_EAM_STOP
394 SAI-AIS-AMF-B.04.01 Section 9.4.11 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.4.12 SA_AMF_ADMIN_EAM_STOP

Parameters

operationId = SA_AMF_ADMIN_EAM_STOP

objectName - [in] A pointer to the name of the logical entity on which external
active monitoring needs to be stopped. The name is expressed as a LDAP DN. The
type of the logical entity is inferred by parsing this DN.

Description

This administrative operation applies to a component and a service unit.

This API function is typically invoked to stop external active monitoring of compo-
nents before terminating them.

If a component on which this administrative operation is invoked is not being actively
monitored, there is no change in its status as a consequence of invoking this opera-
tion on such a component. A status of SA_AIS_ERR_NO_OP is returned in such a
case.

When this procedure is applied to a service unit, it results in an aggregate action of
stopping the external active monitors for all components within the service unit that
support external active monitoring without affecting the ones that are not being
actively monitored. If the external monitors for all components within the enclosing
service unit that support external active monitoring have been already stopped, an
SA_AIS_ERR_NO_OP error code is returned to indicate that there has been no
change in the status of active monitoring of the components within the service unit.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred. It is
unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation or an error recovery initiated by the Availabil-
ity Management Framework.
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.4.12 395

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - The Availability Management Framework or a library is
out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_FAILED_OPERATION - The AM_STOP operation returns an error or
fails to complete within the configured timeout.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported for
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of active monitoring of the logical entity.

See Also

SA_AMF_ADMIN_EAM_START
396 SAI-AIS-AMF-B.04.01 Section 9.4.12 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
9.5 Summary of Administrative Operation Support
The following table summarizes the various administrative operations supported by
the various logical entities within the Availability Management Framework system
model.

Table 22 Summary: Applicability of Administrative Operations

Administrative Operation Applicability

UNLOCK AMF cluster, application, SG, AMF node, SU, SI

LOCK AMF cluster, application, SG, AMF node, SU, SI

UNLOCK_INSTANTIATION AMF cluster, application, SG, AMF node, SU

LOCK_INSTANTIATION AMF cluster, application, SG, AMF node, SU

SHUTDOWN AMF cluster, application, SG, AMF node, SU, SI

RESTART AMF cluster, application, AMF node, SU, component

SWAP_SI SI

ADJUST_SG SG

REPAIRED AMF node, SU

EAM_START SU, component

EAM_STOP SU, component
AIS Specification SAI-AIS-AMF-B.04.01 Section 9.5 397

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10 Basic Operational Scenarios
This section contains basic operational scenarios.
For the portrayed operational scenarios, the following assumptions have been made:

• The HA readiness state for all service units and components is ready-for-assign-
ment for all current and future SI and CSI assignments.

• None of the SI assignments made within the operational scenarios would violate
the capacity limits of the host nodes.

10.1 Administrative Shutdown of a Service Instance in a 2N Case
The context of this scenario is a service group with 2N redundancy model having two
service units with a single regular SA-aware, contained, or proxy component each.
Two SIs are assigned to the service unit such that component Comp1 and compo-
nent Comp2 have each two component service instance assignments: Comp1 is
assigned active for CSI1 and CSI2, and Comp2 is assigned standby for CSI1 and
CSI2. The following diagram shows the sequence of actions when one of the two SIs
is administratively shut down.
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 10 399

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 40 Administrative Shutdown of a Service Instance for the 2N Case

The dotted lines indicate optional transactions.

The result of a “complete” transition from the quiescing HA state is to arrive at the qui-
esced HA state.

Notice that as only one of the SIs has been shut down, the component service
instance corresponding to that SI (CSI1) is manipulated and the other (CSI2) is left
unchanged.

Further notice that the Availability Management Framework does not remove the
standby state for CSI1 from Comp2 until the active HA state of Comp1 for CSI1 has
transitioned successfully to quiesced. At this time, the Availability Management
Framework can remove the CSI1 assignment from Comp1 and Comp2 in any order.

Comp1AMF

1)saAmfCSISetCallback(CSI1,quiescing)

2)saAmfResponse_4(CSI1,SA_AIS_OK)

3)saAmfCSIQuiescingComplete(CSI1)

4)saAmfHAStateGet(CSI1)

5) return HA state = quiesced

6)saAmfCSIRemoveCallback(CSI1,Comp1)

7)saAmfResponse_4(CSI1,SA_AIS_OK)

gracefully
quiescing
CSI work
assignment

Comp2

8)saAmfCSIRemoveCallback(CSI1,Comp2)

9)saAmfResponse_4(CSI1,SA_AIS_OK)
400 SAI-AIS-AMF-B.04.01 Section 10.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.2 Administrative Shutdown of a Service Unit in a 2N Case
The context of this scenario is a service group with 2N redundancy model having two
service units with a single regular SA-aware, contained, or proxy component each.
Two SIs are assigned to the service unit such that component Comp1 and compo-
nent Comp2 have each two component service instance assignments: Comp1 is
assigned active for CSI1 and CSI2, and Comp2 is assigned standby for CSI1 and
CSI2. The following diagram shows the sequence of actions when one of the service
units (the one having components assigned active for CSI1 and CSI2) is administra-
tively shut down.

FIGURE 41 Administrative Shutdown of a Service Unit for the 2N Case

AMF Comp1

1)saAmfCSISetCallback(CSI1&CSI2,quiescing)

2)saAmfResponse_4(CSI1&CSI2,SA_AIS_OK)

3)saAmfCSIQuiescingComplete(CSI1&CSI2)

6)saAmfCSIRemoveCallback(CSI1&CSI2,Comp1)

7)saAmfResponse_4(CSI1&CSI2,SA_AIS_OK)

Comp2

4)saAmfCSISetCallback(CSI1&CSI2,active)

5)saAmfResponse_4(CSI1&CSI2,SA_AIS_OK)

CSI 1 and CSI 2 must
both ‘quiesce’ before
QuiescingComplete
can be issued.

AIS Specification SAI-AIS-AMF-B.04.01 Section 10.2 401

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
The Availability Management Framework should use the csiFlags value
SA_AMF_TARGET_ALL in the callback of step 4 in order to guarantee that 2N seman-
tics are honored. Those semantics are “...at most one service unit will have the active
HA state for all service instances, and at most one service unit will have the standby
HA state for all service instances”.

Notice that saAmfCSIQuiescingComplete() can only be invoked when all com-
ponent service instance assignments have successfully quiesced within the compo-
nent.

10.3 Administrative Shutdown of a Service Unit for the N-Way Model
This scenario is the same as in the previous section, except that the redundancy
model is another one.

The context of this scenario is a service group with N-way redundancy model having
two service units with a single regular SA-aware, contained, or proxy component
each. Two SIs are assigned to the service units such that component Comp1 and
component Comp2 have each two CSI assignments: Comp1 is assigned active for
CSI1 and CSI2, and Comp2 is assigned standby for CSI1 and CSI2. The following
diagram shows the sequence of actions when one of the service units (the one hav-
ing components assigned active for CSI1 and CSI2) is administratively shut down.
402 SAI-AIS-AMF-B.04.01 Section 10.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 42 Administrative Shutdown of a Service Unit for the N-Way Case

Note that Comp2 will have both active and standby assignments for a certain period
of time, which implies that Comp2 must have the x_active_and_y_standby capability.

Also notice that CSI2 at Comp1 has taken much longer to quiesce (from step 2 to
step 10) while CSI1 at Comp1 quiesced much faster (from step 1 to step 5) allowing
the Availability Management Framework to proceed with the active HA assignment
for CSI1 to Comp2.

AMF Comp1

1)saAmfCSISetCallback(CSI1,quiescing)

2)saAmfCSISetCallback(CSI2,quiescing)

3)saAmfResponse_4(CSI1,SA_AIS_OK)

4)saAmfResponse_4(CSI2,SA_AIS_OK)

5)saAmfCSIQuiescingComplete(CSI1)

10)saAmfCSIQuiescingComplete(CSI2)

8)saAmfCSIRemoveCallback(CSI1,Comp1)

13)saAmfCSIRemoveCallback(CSI2,Comp1)

9)saAmfResponse_4(CSI1,SA_AIS_OK)

14)saAmfResponse_4(CSI2,SA_AIS_OK)

Comp2

6)saAmfCSISetCallback(CSI1,active)

7)saAmfResponse_4(CSI1,SA_AIS_OK)

11)saAmfCSISetCallback(CSI2,active)

12)saAmfResponse_4(CSI2,SA_AIS_OK)
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.3 403

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.4 Administrative Lock of a Service Instance
The context of this scenario is a service group with 2N redundancy model having two
service units with a single regular SA-aware, contained, or proxy component each.
Two SIs are assigned to the service units such that component Comp1 and compo-
nent Comp2 have each two CSI assignments: Comp1 is assigned active for CSI1 and
CSI2, and Comp2 is assigned standby for CSI1 and CSI2. The following diagram
shows the sequence of actions when one of the two SIs are locked.

FIGURE 43 Administrative Lock of a Service Instance for the 2N Case

Notice that as only one of the SIs has been locked, only the component service
instance corresponding to that SI is manipulated.

Comp1AMF

1)saAmfCSIRemoveCallback(CSI1,Comp2)

2)saAmfResponse_4(CSI1,SA_AIS_OK)

Comp2

3)saAmfCSIRemoveCallback(CSI1,Comp1)

4)saAmfResponse_4(CSI1,SA_AIS_OK)
404 SAI-AIS-AMF-B.04.01 Section 10.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.5 Administrative Lock of a Service Unit
The context of this scenario is a service group with 2N redundancy model having two
service units with a single regular SA-aware, contained, or proxy component each.
Two SIs are assigned to the two service units such that component Comp1 and com-
ponent Comp2 have each two CSI assignments: Comp1 is assigned active for CSI1
and CSI2, and Comp2 is assigned standby for CSI1 and CSI2. The following diagram
shows the sequence of actions when one of the service units (the one having compo-
nents assigned active for CSI1 and CSI2) is administratively locked.

FIGURE 44 Administrative Lock of a Service Unit for the 2N Case

The Availability Management Framework should use the csiFlags value
SA_AMF_TARGET_ALL in the callback of step 5 to guarantee that 2N semantics are
honored.

Note that the same sequence shown in FIGURE 44 applies when a service unit is
locked as a consequence of a node lock administrative action. In the example, it is
assumed that the other service unit in the service group resides on another node.

AMF Comp1

1)saAmfCSISetCallback(CSI1,quiesced)

2)saAmfCSISetCallback(CSI2,quiesced)

3)saAmfResponse_4(CSI1,SA_AIS_OK)

4)saAmfResponse_4(CSI2,SA_AIS_OK)

7)saAmfCSIRemoveCallback(CSI1,Comp1)

8)saAmfCSIRemoveCallback(CSI2,Comp1)

9)saAmfResponse_4(CSI1,SA_AIS_OK)

10)saAmfResponse_4(CSI2,SA_AIS_OK)

Comp2

5)saAmfCSISetCallback(CSI1&CSI2,active)

6)saAmfResponse_4(CSI1&CSI2,SA_AIS_OK)
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.5 405

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.6 A Simple Fail-Over
The context of this scenario is a service group with 2N redundancy model having two
service units with a single regular SA-aware, contained, or proxy component each. A
single SI is assigned such that component Comp1 and component Comp2 have each
a single CSI assignment (CSI1): Comp1 is assigned active for CSI1, and Comp2 is
assigned standby for CSI1. The following diagram shows Comp1 disabled by a fault,
and the Availability Management Framework responding by assigning the active HA
state to Comp2 for CSI1.

FIGURE 45 Fail-Over Scenario for a Service Group with the 2N Redundancy Model

The dotted line indicates an optional transaction. Note that the protection group call-
back informs the registered component that Comp1 left the protection group.

Comp2AMF

3)saAmfCSISetCallback(CSI1,active)

Comp1

2) saAmfProtectionGroupTrackCallback()
terminate

4)saAmfResponse_4(CSI1,active)

1)saAmfComponentErrorReport_4(COMPONENT FAILOVER)
406 SAI-AIS-AMF-B.04.01 Section 10.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.7 Administrative Shutdown of an SI Having a Container CSI
This scenario shows the sequence of operations when a service instance having a
container CSI is shut down. The container component and the associated contained
components have different redundancy models.

Service Group for Service Units Containing the Container Components

• It has an N-way active redundancy model and contains the service units
ContainerSU1 and ContainerSU2, which are configured on Node1 and Node2,
respectively.

• ContainerSU1 contains the component Container1, and ContainerSU2 contains
Container2.

• The service instance ContainerSI1 is assigned to the service group.
ContainerSI1 contains ContainerCSI1.

Service Group for Service Units Containing the Contained Components

• It has a 2N redundancy model and contains the service units SU1 and SU2,
which are configured on Node1 and Node2, respectively.

• SU1 contains the component C1, and SU2 contains C2.
• The service instance SI1 is assigned to the service group. SI1 contains the com-

ponent service instance CSI1.
• In the Availability Management Framework configuration, C1 and C2 are config-

ured with saAmfCompContainerCsi set to ContainerCSI1.
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.7 407

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 46 Scenario for Shutting Down a Service Instance Having a Container CSI

The following sequence diagram shows the sequence of operations when
ContainerSI1 is shut down. For readability purposes, the invocations of
saAmfResponse_4() to respond to Availability Management Framework requests
are not shown in the diagram.

Before the shutdown administrative operation is issued, the state is as follows:

• Container1 and Container2 have the active HA state for ContainerCSI1.
• Container1 handles the life cycle of C1, and Container2 handles the life cycle of

C2.
• For CSI1, C1 has the active HA state and C2 has the standby HA state.

Node1

ContainerSU1

Container1

C1

SU1

Node2

ContainerSU2

Container2

C2

SU2

active

active

active

standby

CSI1

SI1

ContainerSI1

ContainerCSI1
408 SAI-AIS-AMF-B.04.01 Section 10.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 47 Administrative Shutdown of a Service Instance Having a Container CSI

The main transitions are:

• C1 is set to quiescing for CSI1.
• After the quiescing is completed, CSI1 is removed from C1 and C2.
• C1 and C2 are terminated.
• Container1 is set to quiescing for ContainerCS1; after the quiescing is com-

pleted, ContainerCSI1 is removed from Container1.
• Container2 is set to quiescing for ContainerCS1; after the quiescing is com-

pleted, ContainerCSI1 is removed from Container2.

AMF Container1

1)saAmfCSISetCallback(CSI1,quiescing)

2)saAmfCSIQuiescingComplete(CSI1)

C1

3)saAmfCSIRemoveCallback (C2,CSI1)

5)saAmfComponentTerminateCallback (C1)

C2

10) saAmfCSISetCallback (ContainerCSI1,quiescing)

9)saAmfCSIRemoveCallback (Container1,ContainerCSI1)

Container2

6)saAmfComponentTerminateCallback (C2)

11)saAmfCSIQuiescingComplete (ContainerCSI1)

7) saAmfCSISetCallback (ContainerCSI1,quiescing)

8)saAmfCSIQuiescingComplete(ContainerCSI1)

12)saAmfCSIRemoveCallback (Container2,ContainerCSI1)

4)saAmfCSIRemoveCallback (C1,CSI1)
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.7 409

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
10.8 Administrative Lock of an SI Having a Container CSI
This scenario shows the sequence of operations when a service instance having a
container CSI is locked. The container component and the associated contained
components have different redundancy models.

The configuration of the service group for the container components and of the ser-
vice group for the contained components is the same as for Section 10.7.
FIGURE 46 in Section 10.7 depicts this scenario.

The following sequence diagram shows the sequence of operations when
ContainerSI1 is locked. For readability purposes, the invocations of
saAmfResponse_4() to respond to Availability Management Framework requests
are not shown in the diagram.

Before the lock administrative operation is issued, the state is as follows:

• Container1 and Container2 have the active HA state for ContainerCSI1.
• Container1 handles the life cycle of C1, and Container2 handles the life cycle

of C2.
• For CSI1, C1 has the active HA state and C2 has the standby HA state.

FIGURE 48 Administrative Lock of a Service Instance Having a Container CSI

AMF Container1 C1

1)saAmfCSIRemoveCallback (C1,CSI1)

2)saAmfComponentTerminateCallback (C1)

C2

5)saAmfCSIRemoveCallback (Container1,ContainerCSI1)

Container2

6)saAmfCSIRemoveCallback (Container2,ContainerCSI1)

3)saAmfCSIRemoveCallback (C2,CSI1)

4)saAmfComponentTerminateCallback (C2)
410 SAI-AIS-AMF-B.04.01 Section 10.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
The main transitions are:

• CSI1 is removed from C1, and C1 is terminated.
• CSI1 is removed from C2, and C2 is terminated.
• ContainerCSI1 is removed from C1 and from C2.

10.9 Administrative Lock of a Service Unit with a Container Component
This scenario shows the sequence of operations when a service unit containing a
container component is locked. The container component and the associated con-
tained components have different redundancy models.

Service Group for Service Units Containing the Container Components

•It has a N-way active redundancy model and contains the service units
ContainerSU1, ContainerSU2, and ContainerSU3, which are configured on
Node1, Node2, and Node3, respectively.

•ContainerSU1 contains the component Container1, ContainerSU2 contains
Container2, and ContainerSU3 contains Container3.

• The service instance ContainerSI1 is assigned to the service group.
ContainerSI1 contains the component service instance ContainerCSI1.

Service Group for Service Units Containing the Contained Components

• It has a 2+1 (N+M) redundancy model and contains the service units SU1, SU2,
and SU3, which are configured on Node1, Node2, and Node3, respectively.

• SU1 contains the component C1, SU2 contains C2, and SU3 contains C3.
• The service instances SI1 and SI2 are assigned to the service group. SI1 con-

tains the component service instance CSI1, and SI2 contains the component
service instance CSI2.

• C1, C2, and C3 are configured with saAmfCompContainerCsi set to
ContainerCSI1.
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.9 411

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 49 Scenario for Locking a Service Unit Containing a Container Component

The following sequence diagram shows the sequence of operations when
ContainerSU1 is locked. Before the lock administrative operation is issued, the state
is as follows:

• Container1, Container2, and Container3 have the active HA state for
ContainerCSI1.

• Container1, Container2, and Container3 handle the life cycle of C1, C2, and C3,
respectively.

• C1 has the active HA state for CSI1, C2 has the active HA state for CSI2, and
C3 has the standby HA state for CSI1 and CSI2.

Node1

ContainerSU1

Container1

C1

SU1

CSI1 CSI2

Node2

ContainerSU2

Container2

C2

SU2

active

active

activeactive

active standbystandby

ContainerSI1

ContainerCSI1

Node3

ContainerSU3

Container3

C3

SU3

SI1 SI2
412 SAI-AIS-AMF-B.04.01 Section 10.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 50 Administrative Lock of a Service Unit Containing a Container Component

The main transitions are:

• C1 is quiesced for CSI1.
• The standby HA state for CSI2 is removed from C3.
• C3 is set active for CSI1.
• CSI1 is removed from C1.

AMF Container1 C1 C3

1)saAmfCSISetCallback(CSI1,quiesced)

2)saAmfResponse_4(CSI1,SA_AIS_OK)

3)saAmfCSIRemoveCallback(C3,CSI2)

4)saAmfResponse_4(C3,SA_AIS_OK)

5)saAmfCSISetCallback(CSI1,active)

6)saAmfResponse_4(CSI1,SA_AIS_OK)

9)saAmfComponentTerminateCallback(C1)

10)saAmfResponse_4(C1,SA_AIS_OK)

11)saAmfCSISetCallback(ContainerCSI1,quiesced)

12)saAmfResponse_4(ContainerCSI1,SA_AIS_OK)

7)saAmfCSIRemoveCallback(C1,CSI1)

8)saAmfResponse_4(C1,SA_AIS_OK)

13)saAmfCSIRemoveCallback(Container1,ContainerCSI1)

14)saAmfResponse_4(Container1,SA_AIS_OK)
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.9 413

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
• C1 is terminated.
• Container1 is quiesced for ContainerCSI1.
• ContainerCSI1 is removed from Container1.

10.10 Restart of a Container Component

This scenario shows the restart of a container component Container1 that is handling
the life cycle of a single contained component C1 as a result of the restart administra-
tive operation on the container component.

In the Availability Management Framework configuration, the ContainerCSI1 compo-
nent service instance is configured to be assigned to Container1 such that
Container1 can handle the life cycle of C1. No other CSIs are assigned to Container1.

The single CSI1 component service instance is configured to be assigned to C1.

This scenario applies regardless of the configuration of service units containing these
components and regardless of the redundancy models used for the service groups
containing contained components, provided that both the container component and
the contained components have been configured with the
saAmfCompDisableRestart configuration attribute set to SA_FALSE (see
Section 3.2.2.1).

The restart of Container1 is described in the following sequence diagram. It is
assumed that before the restart administrative operation is issued on Container1,
Container1 is assigned active for ContainerCSI1, and C1 is assigned active for CSI1.
414 SAI-AIS-AMF-B.04.01 Section 10.10 AIS Specification

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 51 Restart of a Container Component

The main transitions are:

• The contained component C1 is terminated; then, Container1 is terminated.
• The Availability Management Framework runs the INSTANTIATE command to

instantiate Container1.
• Container1 registers with the Availability Management Framework.

AMF Container1

3) saAmfComponentTerminateCallback ()

4)saAmfResponse_4(SA_AIS_OK)

9) saAmfContainedComponentInstantiateCallback (C1)

C1

5)INSTANTIATE

6)saAmfRegister(Container1)

7)saAmfCSISetCallback(ContainerCSI1,active)

8)saAmfResponse_4(ContainerCSI1,SA_AIS_OK)

12)saAmfRegister(C1)

11)saAmfResponse_4(C1,SA_AIS_OK)

14)saAmfResponse_4(CSI1,SA_AIS_OK)

13)saAmfCSISetCallback(CSI1,active)

10) instantiate C1

2)saAmfResponse_4(SA_AIS_OK)

1)saAmfComponentTerminateCallback()
AIS Specification SAI-AIS-AMF-B.04.01 Section 10.10 415

Service AvailabilityTM Application Interface Specification
Operational Scenarios

1

5

10

15

20

25

30

35

40
• The Availability Management Framework assigns Container1 active for
ContainerCSI1.

• Container1 responds to the Availability Management Framework that it is ready
to provide service for ContainerCSI1.

• The Availability Management Framework invokes the
saAmfContainedComponentInstantiateCallback() callback function of
Container1 to instantiate C1.

• Container1 instantiates C1 through a private interface.
• C1 registers with the Availability Management Framework.
• The Availability Management Framework assigns C1 active for CSI1.
416 SAI-AIS-AMF-B.04.01 Section 10.10 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11 Alarms and Notifications
The Availability Management Framework produces alarms and notifications to con-
vey important information regarding the operational and functional state of the objects
under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention, and notifications which signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service AvailabilityTM Forum (abbreviated as NTF, see [3]), and hence the
various notifications are partitioned into categories, as described in this service.

In some cases, this specification uses the word “Unspecified” for values of attributes
that the vendor is at liberty to set to whatever makes sense in the vendor’s context,
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see
[10]).

11.1 Setting Common Attributes
The following attributes of the notifications presented in Section 11.2 are not shown in
their description, as the generic description presented here applies to all of them:

• Notification Id - Depending on the Notification Service function used to send the
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and must contain at least the
safApp RDN value portion of the DN set to the specified standard RDN value of
the SA Forum AIS Service generating the notification, that is safAmfService.
For details on the AIS naming convention, refer to [2].

The following notes apply to all Availability Management Framework notifications pre-
sented in Section 11.2:

• Correlated Notifications - Correlation Ids are supplied to correlate notifications
that have been generated because of a related cause. The correlated notifica-
tions attribute should include
⇒ in the first position the root notification identifier of the related tree of notifica-

tions as described in the Notification Service specification (see [3]);
AIS Specification SAI-AIS-AMF-B.04.01 Chapter 11 417

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
⇒ in the second position the parent notification identifier of the same tree;
⇒ in the third position the notification identifier of the sibling notification, if any.

This sibling notification is the opening pair of the current notification such as
the alarm that is being cleared or the start of an administrative operation or a
configuration change that has ended.

If any of these notifications is unknown, the SA_NTF_IDENTIFIER_UNUSED
value must be used. This value may be omitted in trailing positions.

• Event Time - If not specified in the description of a particular notification, this
attribute contains the time when the Availability Management Framework
detected the event leading to the notification.

• Notification Class Identifier - The vendorId portion of the SaNtfClassIdT
data structure must be set to SA_NTF_VENDOR_ID_SAF always, and the
majorId field must be set to SA_SVC_AMF (as defined in the SaServicesT
enumeration in [2]) for all notifications that follow the standard formats described
in this specification. The minorId field will vary based on the specific notifica-
tion.
418 SAI-AIS-AMF-B.04.01 Section 11.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2 Availability Management Framework Notifications
The following subsections describe the notifications that an Availability Management
Framework implementation shall produce.

11.2.1 Availability Management Framework Alarms

11.2.1.1 Component Instantiation Failed

Description

The Availability Management Framework was unable to successfully instantiate a
particular component. This means that

• either the INSTANTIATE command executed on the component either returned
an error exit status or failed to successfully complete within the time period spec-
ified by the configured timeout, or

• the corresponding callback invoked on the component or on its proxy or associ-
ated container component returned an error code other than SA_AIS_OK or
failed to successfully complete within the configured timeout, and

• and all subsequent attempts by the Availability Management Framework to
revive the component, including a possible node reboot, did not resolve the
issue.

As a consequence, the component will enter the instantiation-failed presence state.
For more details, refer to Section 4.6.

Clearing Method

Manual, after taking the appropriate administrative action.
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2 419

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 23 Component Instantiation Failed Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component whose instantiation failed

Notification Class
Identifier

NTF-Internal minorId =
SA_AMF_NTFID_COMP_INSTANTIATION_FAILED,
see Section 7.4.11.1 on page 261

Additional Text Optional “Instantiation of Component <LDAP DN of compo-
nent> failed”

Additional Informa-
tion

Mandatory infoId = SA_AMF_NODE_NAME,
infoType = SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of node on which the compo-
nent is hosted

Probable Cause Mandatory Applicable value from enum
SaNtfProbableCauseT in [3]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtfSeverityT in [3]

Trend Indication Optional Unspecified

Threshold Informa-
tion

Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair
Actions

Optional Unspecified
420 SAI-AIS-AMF-B.04.01 Section 11.2.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.1.2 Component Cleanup Failed

Description

The Availability Management Framework was unable to successfully cleanup a par-
ticular component after failing to successfully terminate the component. Under such
circumstances, the component enters the termination-failed presence state. This con-
dition could potentially cause a service disruption, as the workload (assigned to the
failed component) would not be reassigned to some other healthy component
because of redundancy model constraints, requiring an administrator to take a cor-
rective action in order to recover. For more details, refer to Section 4.8.

Clearing Method

Manual, after taking the appropriate administrative action.
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.1.2 421

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 24 Component Cleanup Failed Alarm

NTF Attribute
Name

Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component whose cleanup failed

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_COMP_CLEANUP_FAILED,
see Section 7.4.11.1 on page 261

Additional Text Optional “Cleanup of Component <LDAP DN of component>
failed”

Additional Informa-
tion

Mandatory infoId = SA_AMF_NODE_NAME,
infoType = SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of node on which the compo-
nent is hosted

Probable Cause Mandatory Applicable value from enum SaNtfProbableCauseT
in [3]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtfSeverityT in [3]

Trend Indication Optional Unspecified

Threshold Informa-
tion

Optional Unspecified

Monitored
Attributes

Optional Unspecified

Proposed Repair
Actions

Optional Unspecified
422 SAI-AIS-AMF-B.04.01 Section 11.2.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.1.3 Cluster Reset Triggered by a Component Failure

Description

A component failed and recommended to the Availability Management Framework
the SA_AMF_CLUSTER_RESET cluster reset recovery action.

Clearing Method
(1) Manual, after taking the appropriate administrative action or
(2) issue an implementation-specific optional alarm with perceived severity

SA_NTF_SEVERITY_CLEARED to convey that the cluster reset was successful.
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.1.3 423

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 25 Cluster Reset Triggered by a Component Failure Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component that recommended an
SA_AMF_CLUSTER_RESET recovery

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_CLUSTER_RESET, see
Section 7.4.11.1 on page 261

Additional Text Optional “Failure of Component <LDAP DN of component> trig-
gered cluster reset.”

Additional Informa-
tion

Optional Unspecified

Probable Cause Mandatory Applicable value from enum SaNtfProbableCauseT
in [3]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtfSeverityT in [3]

Trend Indication Optional Unspecified

Threshold Informa-
tion

Optional Unspecified

Monitored
Attributes

Optional Unspecified

Proposed Repair
Actions

Optional Unspecified
424 SAI-AIS-AMF-B.04.01 Section 11.2.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.1.4 Service Instance Unassigned

Description

A particular unit of work indicated by a service instance has no active assignments to
any service unit, which is potentially causing a service disruption. In other words, the
service instance transitioned to the unassigned assignment state, as explained in
Section 3.2.3.2.

This alarm is typically generated when the Availability Management Framework is
unable to successfully execute a recovery to prevent the service disruption and main-
tain service availability in case of a failure (node, service unit, and so on). This alarm
should be also generated when an administrative action renders a service instance
unassigned.

Clearing Method

Manual, after taking the appropriate administrative action.
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.1.4 425

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 26 Service Instance Unassigned Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the service instance that has no
current active assignments

Notification Class Identifier NTF-Internal minorId =
SA_AMF_NTFID_SI_UNASSIGNED, see
Section 7.4.11.1 on page 261

Additional Text Optional “SI designated by <LDAP DN of the SI> has
no current active assignments to any SU.”

Additional Information Optional Unspecified

Probable Cause Mandatory Applicable value from enum
SaNtfProbableCauseT in [3]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [3]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
426 SAI-AIS-AMF-B.04.01 Section 11.2.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.1.5 Proxy Status of a Component Changed to Unproxied

Description

This alarm is generated by the Availability Management Framework when it reliably
confirms that a component that was previously being proxied has currently no proxy
component mediating for it, that is, the Availability Management Framework has not
been able to engage another component to assume the mediation responsibility for a
component whose proxy component has failed. The proxied component has now the
SA_AMF_PROXY_STATUS_UNPROXIED status, as defined in Section 7.4.4.8.

See also Section 11.2.2.7.

Clearing Method

Manual, after taking the appropriate administrative action.

Table 27 Proxy Status of a Component Changed to Unproxied Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of component that is no longer proxied.

Notification Class
Identifier

NTF -Internal minorId = SA_AMF_NTFID_COMP_UNPROXIED,
see Section 7.4.11.1 on page 261

Additional Text Optional Unspecified

Additional Information Optional Unspecified

Probable Cause Mandatory Applicable value from enum
SaNtfProbableCauseT in [3]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtfSeverityT in
[3]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair
Actions

Optional Unspecified
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.1.5 427

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2 Availability Management Framework State Change Notifications

11.2.2.1 Administrative State Change Notify

Description

The administrative state of a node, a service unit, a service group, a service instance,
an application, or the cluster changed.

Table 28 Administrative State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the logical entity whose administrative
state changed

Notification Class
Identifier

NTF-Internal The following values for the minorid from
Section 7.4.11.1 on page 261 apply:
node: SA_AMF_NTFID_NODE_ADMIN_STATE
SU: SA_AMF_NTFID_SU_ADMIN_STATE
SG: SA_AMF_NTFID_SG_ADMIN_STATE
SI: SA_AMF_NTFID_SI_ADMIN_STATE
application: SA_AMF_NTFID_APP_ADMIN_STATE
cluster: SA_AMF_NTFID_CLUSTER_ADMIN_STATE

Additional Text Optional Unspecified

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_MANAGEMENT_OPERATION

Changed State
Attribute ID

Optional SA_AMF_ADMIN_STATE

Old Attribute Value Optional Applicable value from enum SaAMFAdminStateT

New Attribute Value Mandatory Applicable value from enum SaAMFAdminStateT
428 SAI-AIS-AMF-B.04.01 Section 11.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.2 Operational State Change Notify

Description

The operational state of a node or a service unit changed.

Table 29 Operational State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the logical entity whose operational
state changed

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_NODE_OP_STATE for
node and
minorid = SA_AMF_NTFID_SU_OP_STATE for
SU, see Section 7.4.11.1 on page 261

Additional Text Optional Unspecified

Additional Information Optional infoId = SA_AMF_MAINTENANCE_CAMPAIGN_DN
infoType = SA_NTF_VALUE_LDAP_NAME
infoValue = LDAP DN of the upgrade campaign,
that is, the contents of the
saAmfSUMaintenanceCampaign attribute

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_AMF_OP_STATE

Old Attribute Value Optional Applicable value from enum
SaAmfOperationalStateT

New Attribute Value Mandatory Applicable value from enum
SaAmfOperationalStateT
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.2.2 429

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.3 Presence State Change Notify

Description

The presence state change of a service unit is reported only if it becomes instanti-
ated, uninstantiated, or restarting.

Table 30 Presence State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service unit whose presence state
changed

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_SU_PRESENCE_STATE,
see Section 7.4.11.1 on page 261

Additional Text Optional Unspecified

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_AMF_PRESENCE_STATE

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory Applicable value from enum
SaAmfPresenceStateT
430 SAI-AIS-AMF-B.04.01 Section 11.2.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.4 HA State Change Notify

Description

The HA state of a service unit for an assigned service instance changes.

Table 31 HA State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service unit whose HA state for a
particular SI changed

Notification Class
Identifier

NTF- Internal minorId = SA_AMF_NTFID_SU_SI_HA_STATE,
see Section 7.4.11.1 on page 261

Additional Text Optional “The HA state of SI <LDAP DN> assigned to SU
<LDAP DN> changed.”

Additional Informa-
tion

Mandatory infoId = SA_AMF_SI_NAME,
infoType = SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of the SI for which the HA
state of the SU changed

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_AMF_HA_STATE

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory Applicable value from enum SaAmfHAStateT
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.2.4 431

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.5 HA Readiness State Change Notify

Description

The HA readiness state of a service unit for a service instance changes.

Table 32 HA Readiness State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service unit whose HA readiness
state for a particular SI changed

Notification Class
Identifier

NTF-Internal minorId =
SA_AMF_NTFID_SU_SI_HA_READINESS_STATE,
see Section 7.4.11.1 on page 261

Additional Text Optional “The HA readiness state of SI <LDAP DN>
assigned to SU <LDAP DN> changed.”

Additional Informa-
tion

Mandatory infoId = SA_AMF_SI_NAME,
infoType = SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of the SI for which the HA
readiness state of the SU has changed

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_AMF_HA_READINESS_STATE

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory Applicable value from enum
SaAmfHAReadinessStateT

Number of Corre-
lated Notifications

Mandatory 2

Correlated Notifica-
tions

Mandatory Root and parent correlation IDs passed to
saAmfHAReadinessStateSet()
432 SAI-AIS-AMF-B.04.01 Section 11.2.2.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.6 SI Assignment State Change Notify

Description

The assignment state of a service instance changed. This notification is generated for
all assignment state transitions for a service instance, except when the assignment
state changes to SA_AMF_ASSIGNMENT_UNASSIGNED in which case an alarm is
generated, as explained in Section 11.2.1.4 on page 425.

Table 33 SI Assignment State Change Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service instance whose assign-
ment state changed

Notification Class Identifier NTF-Internal minorId =
SA_AMF_NTFID_SI_ASSIGNMENT_STATE,
see Section 7.4.11.1 on page 261

Additional Text Optional “The Assignment state of SI <LDAP DN of SI>
changed.”

Additional Information Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_ASSIGNMENT_STATE

Old Attribute Value Optional Applicable value from enum
SaAmfAssignmentStateT

New Attribute Value Mandatory Applicable value from enum
SaAmfAssignmentStateT
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.2.6 433

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.2.7 Proxy Status of a Component Changed to Proxied

Description

This notification is generated by the Availability Management Framework when it
could engage another component to assume the mediation responsibility for a prox-
ied component which was in the SA_AMF_PROXY_STATUS_UNPROXIED status (see
Section 7.4.4.8). The proxied component assumes then the
SA_AMF_PROXY_STATUS_PROXIED status.

See also Section 11.2.1.5.

Table 34 Proxy Status of a Component Changed to Proxied Notification

NTF Attribute
Name

Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the proxied component whose proxy
failed and is currently not being proxied

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_COMP_PROXY_STATUS,
see Section 7.4.11.1 on page 261

Additional Text Optional Unspecified

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_AMF_PROXY_STATUS

Old Attribute Value Optional SA_AMF_PROXY_STATUS_UNPROXIED

New Attribute Value Mandatory SA_AMF_PROXY_STATUS_PROXIED
434 SAI-AIS-AMF-B.04.01 Section 11.2.2.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.3 Availability Management Framework Notifications of Miscellaneous Type

11.2.3.1 Error Report Notification

Description

This notification is generated by the Availability Management Framework when the
the saAmfComponentErrorReport_4() function is invoked.
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.3 435

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 35 Error Report Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ERROR_REPORT

Notification Object Mandatory LDAP DN of the component on which the error has
been reported

Notification Class
Identifier

NTF-Internal minorId = SA_AMF_NTFID_ERROR_REPORT, see
Section 7.4.11.1 on page 261

Event Time Mandatory Value of the errorDetectionTime parameter of the
saAmfComponentErrorReport_4() function

Number of Corre-
lated Notifications

Mandatory 0, 1, 2, or more, depending on the values of the differ-
ent fields passed to the
saAmfComponentErrorReport_4() function and
on the number of error report notifications generated
for the same error condition (see also Section 11.1)

Correlated Notifica-
tions

Mandatory rootCorrelationId and parentCorrelationId
passed to the saAmfComponentErrorReport_4()
function, as applicable, and the identifier of any error
report notification generated for the same error condi-
tion (see also Section 11.1)

numAdditionalI
nfo field of
SaNtfNotificat
ionHeaderT (see
[3])

Mandatory 1

Additional Informa-
tion

Mandatory infoId = SA_AMF_AI_RECOMMENDED_RECOVERY,
infoType = SA_NTF_VALUE_UINT64,
infoValue = recommendedRecovery parameter of
the saAmfComponentErrorReport_4() function}

Additional Informa-
tion

Optional infoId = SA_AMF_AI_APPLIED_RECOVERY,
infoType = SA_NTF_VALUE_UINT64,
infoValue = recovery engaged by the Availability
Management Framework
(SaAmfRecommendedRecoveryT)
436 SAI-AIS-AMF-B.04.01 Section 11.2.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
11.2.3.2 Error Clear Notification

Description

This notification is generated by the Availability Management Framework when the
saAmfComponentErrorClear_4() function is invoked.

Table 36 Error Clear Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ERROR_CLEAR

Notification Object Mandatory LDAP DN of the component that has been
repaired

Notification Class Identi-
fier

NTF-Internal minorId = SA_AMF_NTFID_ERROR_CLEAR,
see Section 7.4.11.1 on page 261

Event Time Mandatory Time at which the
saAmfComponentErrorClear_4() function is
invoked

Number of Correlated
Notifications

Mandatory 0, 1, 2, or more, depending on the values of the
different fields passed to the
saAmfComponentErrorClear_4() function
and on the number of error report notifications
generated for the same error condition (see also
Section 11.1)

Correlated Notifications Mandatory rootCorrelationId and
parentCorrelationId passed to the
saAmfComponentErrorClear_4() function,
as applicable, and the identifier of any error
report notification generated for the same error
condition (see also Section 11.1)

numAdditionalInfo
field of
SaNtfNotificationH
eaderT (see [3])

Mandatory 0
AIS Specification SAI-AIS-AMF-B.04.01 Section 11.2.3.2 437

Service AvailabilityTM Application Interface Specification
Implementation of CLC Interfaces

1

5

10

15

20

25

30

35

40
Appendix A Implementation of CLC Interfaces
The commands or callbacks used to control the life cycle of the various component
categories differ considerably. To describe conveniently these life cycle operations,
the specification uses the names instantiate, terminate, and cleanup for these opera-
tions. The following table shows how these operations are implemented:

Table 37 Implementation of CLC Operations for Each Component Category

Component
Category Operation Implementation

SA-aware
(excluding
contained
component)

instantiate CLC-CLI INSTANTIATE

terminate saAmfComponentTerminateCallback()

cleanup CLC-CLI CLEANUP

contained
component

instantiate saAmfContainedComponentInstantiateCallback()

terminate saAmfComponentTerminateCallback()

cleanup saAmfContainedComponentCleanupCallback()

proxied,
pre-
instantiable

instantiate saAmfProxiedComponentInstantiateCallback()

terminate saAmfComponentTerminateCallback()

cleanup CLC-CLI CLEANUP (except for external)
saAmfProxiedComponentCleanupCallback()

proxied,
non-pre-
instantiable

instantiate saAmfCSISetCallback()

terminate saAmfCSIRemoveCallback()

cleanup CLC-CLI CLEANUP (except for external)
saAmfProxiedComponentCleanupCallback()

non-prox-
ied, non-SA-
aware

instantiate CLC-CLI INSTANTIATE

terminate CLC-CLI TERMINATE

cleanup CLC-CLI CLEANUP
AIS Specification SAI-AIS-AMF-B.04.01 Appendix A 439

Service AvailabilityTM Application Interface Specification
Implementation of CLC Interfaces

1

5

10

15

20

25

30

35

40
If both an saAmfProxiedComponentCleanupCallback() callback and a
CLEANUP command are defined for local components, the callback is invoked. The
CLEANUP command is run only if the callback returns an error; however, in situations
where the Availability Management Framework needs to abruptly terminate all com-
ponents on a node that left the cluster membership, the CLEANUP command is run
directly without invoking the callback.
440 SAI-AIS-AMF-B.04.01 Appendix A AIS Specification

Service AvailabilityTM Application Interface Specification
API Functions and Registered Processes

1

5

10

15

20

25

30

35

40
Appendix B API Functions and Registered Processes
A process that has not registered any component may only invoke a subset of the
Availability Management Framework API functions, and only a subset of the Availabil-
ity Management Framework callback functions may be invoked for the process. For
each API function of the Availability Management Framework (sorted alphabetically)
and for all the remaining SA Forum API functions in the last line as a whole, the fol-
lowing table indicates by a ’YES’ in the second column whether the function can be
invoked in the context of any process. A ’NO’ in the second column indicates that the
function can be invoked only in the context of a registered process for a component.

Table 38 API Functions and Registered Processes

API Interfaces API Can be Invoked in the
Context of Any Process

saAmfComponentErrorClear_4() YES

saAmfComponentErrorReport_4() YES

saAmfComponentNameGet() YES

saAmfComponentRegister()1 NO

SaAmfComponentTerminateCallbackT NO

SaAmfContainedComponentCleanupCallbackT NO

SaAmfContainedComponentInstantiateCallbackT NO

saAmfCorrelationIdsGet() NO

saAmfCSIQuiescingComplete() NO

SaAmfCSIRemoveCallbackT NO

SaAmfCSISetCallbackT NO

saAmfDispatch() YES

saAmfFinalize() YES

SaAmfHAReadinessStateSet() NO

saAmfHAStateGet() YES

SaAmfHealthcheckCallbackT YES

saAmfHealthcheckConfirm() YES
AIS Specification SAI-AIS-AMF-B.04.01 Appendix B 441

Service AvailabilityTM Application Interface Specification
API Functions and Registered Processes

1

5

10

15

20

25

30

35

40
saAmfHealthcheckStart() YES

saAmfHealthcheckStop() YES

saAmfInitialize_4() YES

saAmfPmStart_3() YES

saAmfPmStop() YES

SaAmfProtectionGroupNotificationFree_4() YES

saAmfProtectionGroupTrack_4() YES

SaAmfProtectionGroupTrackCallbackT_4 YES

saAmfProtectionGroupTrackStop() YES

SaAmfProxiedComponentCleanupCallbackT NO

SaAmfProxiedComponentInstantiateCallbackT NO

saAmfResponse_4() YES

saAmfSelectionObjectGet() YES

All SA Forum API functions and callbacks YES

1. The process of an SA-aware component calling this function to register the component becomes the regis-
tered process for the component only after this function completes successfully.
The process of a proxy component calling this function to register a proxied component becomes the registered
process for the proxied component only after this function completes successfully.

Table 38 API Functions and Registered Processes (Continued)

API Interfaces API Can be Invoked in the
Context of Any Process
442 SAI-AIS-AMF-B.04.01 Appendix B AIS Specification

Service AvailabilityTM Application Interface Specification
Example for Proxy/Proxied Association

1

5

10

15

20

25

30

35

40
Appendix C Example for Proxy/Proxied Association
The following example outlines the procedure by which a proxied component gets
associated with a proxy component as well as the subsequent interactions of these
components with the Availability Management Framework during the instantiation
and registration phase. The example uses two service groups with different redun-
dancy models, one containing the proxied components (SGx1) and the other one
containing the proxy components (SGx2).

Proxied SGx1:

• has a 2+1 (N+M) redundancy model,
• and contains the service units SUx1, SUx2, and SUx3.
• SUx1 contains component cx1, SUx2 contains component cx2, and SUx3 con-

tains component Cx3.
• CSIs corresponding to the components cx1, cx2, and cx3 are CSIx1, CSIx2,

and CSIx3, respectively.

Proxy SGp1:

• has a 2N redundancy model,
• and contains the service units SUp1 and SUp2.
• SUp1 contains component cp1 and SUp2 contains component cp2.
• The CSI corresponding to the components is CSIp1 (“Proxy CSI”)
• There is only a single SI, SIx1, which is protected by this service group.

The Availability Management Framework configuration will have the following CSI
associations for the proxied components in SGx1:

• cx1 should be proxied by CSIp1
• cx2 should be proxied by CSIp1
• cx3 should be proxied by CSIp1

When the Availability Management Framework instantiates SGp1, it may decide by
some logic that CSIp1 should be assigned active to cp1 and standby to cp2. The
decision is based on the configuration data and HA requirements; the fact that CSIp1
is a proxy CSI is not taken into account during its decision; however, when CSIp1 is
assigned to cp1 as active, the Availability Management Framework has the following
information at that time:

• CSIp1 is associated with the proxied components cx1, cx2, and cx3. This
information is derived from the configuration.
AIS Specification SAI-AIS-AMF-B.04.01 Appendix C 443

Service AvailabilityTM Application Interface Specification
Example for Proxy/Proxied Association

1

5

10

15

20

25

30

35

40
• CSIp1 is currently being assigned active to cp1.

Hence, the Availability Management Framework concludes that cp1 is currently sup-
posed to “proxy” proxied components cx1, cx2, and cx3, and it starts instantiating
them.

The following steps illustrate an instantiation sequence for this sample configuration
when cx1 and cx2 are instantiated and registered but cx3 does not register (poten-
tially because of a failure).

1. AMF runs the INSTANTIATE command to instantiate cp1.
2. cp1 registers with AMF by invoking saAmfComponentRegister().
3. AMF assigns cp1 active for CSIp1 by invoking SaAmfCSISetCallbackT.
4. AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx1 on
cp1.

5. cp1 registers cx1 with AMF by invoking saAmfComponentRegister().
6. cp1 returns SA_AIS_OK to AMF for step 4. by invoking saAmfResponse_4().
7. AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx2 on
cp1.

8. cp1 registers cx2 with AMF by invoking saAmfComponentRegister().
9. cp1 returns SA_AIS_OK to AMF for step 7. by invoking saAmfResponse_4().
10.AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx3 on
cp1.

11.cx3 is not registered with AMF by cp1 for some reason (for instance, failure).
12.cp1 returns failure for step 10. (see step 15. for subsequent AMF actions).
13.AMF assigns CSIx1 to cx1 by invoking SaAmfCSISetCallbackT of cp1.
14.AMF assigns CSIx2 to cx2 by invoking SaAmfCSISetCallbackT of cp1.
15.AMF invokes SaAmfProxiedComponentCleanupCallbackT for cx3 on cp1

and carries out the regular procedure to try to revive cx3. If it fails, AMF transi-
tions cx3 to the instantiation-failed presence state, raises the alarm, and so on.

Note: In the scenario described above, CSIx3 was never assigned, which would
also have been the case for an SA-aware component.
444 SAI-AIS-AMF-B.04.01 Appendix C AIS Specification

Service AvailabilityTM Application Interface Specification
Interaction with CLM

1

5

10

15

20

25

30

35

40
Appendix D Interaction with CLM
The Availability Management Framework must use the track APIs of the Cluster
Membership Service (CLM) to be notified about changes in the cluster membership
(see [4]). Depending on the cause of the membership change, the Availability Man-
agement Framework may be notified at different steps during the change:

• SA_CLM_CHANGE_VALIDATE: when invoked during this step, the Availability
Management Framework has the possibility to reject the pending change. The
Availability Management Framework must reject the pending change if it would
bring the assignment state of some service instances to unassigned.

• SA_CLM_CHANGE_START: when invoked during this step, the Availability Man-
agement Framework must perform any action that prepares for the pending
change.
If the cause of the pending change is a shutdown administrative operation per-
formed on an entity that hosts an AMF node (PLM hardware element, execution
environment, or CLM node), the Availability Management Framework must per-
form the same operations it would perform in case of an AMF node shutdown
administrative operation (see Section 9.4.6); the Availability Management
Framework then terminates all service units hosted by this node and only replies
to the cluster membership track callback when all these actions are completed.

If the cause of the pending change is a lock administrative operation performed
on an entity that hosts an AMF node (PLM hardware element, execution environ-
ment, or CLM node) or an eviction of a PLM hardware element that hosts an
AMF node, the Availability Management Framework must perform the same
operations it would perform in case of an AMF node lock administrative opera-
tion (see Section 9.4.3); the Availability Management Framework then termi-
nates all service units hosted by this node and only replies to the cluster
membership track callback when all these actions are completed.

• SA_CLM_CHANGE_COMPLETED: when invoked during this step, the Availability
Management Framework must perform any action that is still necessary to react
to the change that just occurred. No action may be needed in this step if all
required actions have already been performed during a previous
SA_CLM_CHANGE_START step.
If a node has left the membership, the Availability Management Framework must
terminate all service units hosted by this AMF node, which implies the termina-
tion and cleanup of all processes belonging to components. The Availability
Management Framework must also check all service groups affected by the ter-
mination of these service units and must perform any adjustment to match their
preferred configuration. These adjustments may involve reassigning service
instances to other service units and instantiating some uninstantiated service
AIS Specification SAI-AIS-AMF-B.04.01 Appendix D 445

Service AvailabilityTM Application Interface Specification
Interaction with CLM

1

5

10

15

20

25

30

35

40
units.
If the notification indicates a pending failure of a node, the Availability Manage-
ment Framework must attempt to reassign all service instances currently
assigned to service units hosted on that node to service units hosted on other
nodes.
If a node has joined the membership, the Availability Management Framework
must check whether any service units must be instantiated on the node and
whether some service instances must be assigned to them.
446 SAI-AIS-AMF-B.04.01 Appendix D AIS Specification

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
Index of Definitions
Numerics
1_active component capability 107
1_active_or_1_standby component capability 107
1_active_or_y_standby component capability 107
2N redundancy model

see also redundancy models
definition 122
auto-adjust option 123
ordered list of service units for a service group 122
preferred number of in-service service units 122

A
abrupt termination of a component 72
active assignment of a component 79
active assignment of a service unit 68
active assignment of/for a component service instance 79
active assignment of/for a service instance 68
active HA state of a component for a component service

instance 78
active HA state of a service unit for a service instance 67
active-active redundancy configuration 161
administrative state of a cluster 93
administrative state of a node 90
administrative state of a service group 89
administrative state of a service instance 87
administrative state of an application 92
AM_START command 215
AM_STOP command 215
AMF cluster 39
AMF node 38
AMF node capacity 115
application type 56
applications

definition 56
administrative state

definition 92
locked 92
locked-instantiation 92
shutting-down 92
unlocked 92

type 56
assigned service units 111
assignment state of a service instance 88
associated contained component 45
associated container component 45
auto-adjust option 112, 123, 137, 152, 163, 177
auto-adjust probation period 114
automatic repair 197
Availability Management Framework cluster 39
Availability Management Framework node 38

C
capacity 115
CLC-CLI

definition 207
arguments 210
commands

AM_START 215
AM_STOP 215
CLEANUP 214
INSTANTIATE 211
TERMINATE 213

environment variables 209
exit status 210
pathname of a command 208
pathname prefix 208
per-command pathname 208

CLC-CLI arguments 210
CLC-CLI environment variables 209
CLEANUP command 214
CLM cluster 39
CLM node 38
cluster

administrative state
definition 93
locked 93
locked-instantiation 93
shutting-down 93
unlocked 93

reset 40
start 40

Cluster Membership cluster 39
Cluster Membership node 38
cluster reset 40
cluster start 40
collocated contained components 45
component capability

model 107
1_active 107
1_active_or_y_standby 107
1_active_or_1_standby 107
non-pre-instantiable 107
x_active 107
x_active_and_y_standby 107
x_active_or_y_standby 107

component capability model 107
component category 42
component healthchecks see healthchecks
component life cycle see CLC-CLI
component monitoring

definition 190
external active monitoring 190
internal active monitoring 190
passive monitoring 190

component or service unit fail-over recovery 195
component service instance

definition 50
container CSI 51, 224
fail-over 96
name/value pairs 51
Proxy CSI 51
switch-over 96

component service instance fail-over 96
component service instance switch-over 96
component service type 52
component type 50
AIS Specification SAI-AIS-AMF-B.04.01 447

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
component-invoked healthchecks 233
components

see also healthchecks
definition 41
abrupt termination 72
active assignment 79
active assignment of/for a component service instance 79
associated contained 45
associated container 45
category 42
collocated contained 45
contained 44
container 44
external 42
HA readiness state for a component service instance

definition 84
not-ready-for-active 85
not-ready-for-assignment 86
ready-for-active-degraded 85
ready-for-assignment 85

HA state for a component service instance
definition 77
active 78
quiesced 78
quiescing 78
standby 78

local 42
non-pre-instantiable 49
non-SA-aware 46
operational state

definition 75
disabled 75
enabled 75

pre-instantiable 49
presence state

definition 71
instantiated 72, 73
instantiating 72
instantiation-failed 72
restarting 73
terminating 72
termination-failed 72
uninstantiated 72

proxied 46
proxy 46, 48
readiness state

definition 76
in-service 76
out-of-service 76
stopping 77

regular SA-aware 44
SA-aware 43
standby assignment 79
type 50
workload 51

composite administrative operations 365
composite operations see composite administrative opera-

tions
contained components 44

container components 44
container CSI 51, 224
CSI see component service instance

D
dependencies

dependencies amongst components 187
dependency amongst component service instances 186
SI-SI dependencies 185
tolerance time of an SI-SI dependency 186

dependencies amongst components 187
dependency amongst component service instances 186
disabled operational state of a component 75
disabled operational state of a node 91
disabled operational state of a service unit 64

E
enabled operational state of a component 75
enabled operational state of a node 91
enabled operational state of a service unit 63
error detection 191
escalation of level 3 205
escalations of levels 1 and 2 203
exit status 210
external active monitoring 190
external components 42
external resources 42
external service units 53

F
fail-over

component service instance fail-over 96
node fail-over recovery 196, 199
service instance fail-over 96
service unit fail-over recovery 199

fail-over recovery 194
failover see fail-over
framework-invoked healthchecks 233
fully-assigned service instance 88

H
HA readiness state of a component for a component service

instance 84
HA readiness state of a service unit for a service instance 69
HA state of a component for a component service

instance 77
HA state of a service unit for a service instance 67
healthcheck key 232
healthcheck maximum-duration 234, 235
healthcheck period 234, 235, 236
healthchecks

see also components
definition 232
component-invoked 233
framework-invoked 233
key 232
maximum duration 234, 235
period 234, 235, 236
variants 233
448 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
I
in-service readiness state of a component 76
in-service readiness state of a service unit 65
in-service service unit 65
in-service service units 110
instantiable service units 110
INSTANTIATE command 211
instantiated presence state of a component 72, 73
instantiated presence state of a service unit 62
instantiated service units 111
instantiated spare service units 111
instantiating presence state of a component 72
instantiating presence state of a service unit 62
instantiation level 187
instantiation-failed presence state of a component 72
instantiation-failed presence state of a service unit 62
internal active monitoring 190

L
local components 42
local resources 41
local service units 53
locked administrative state of a cluster 93
locked administrative state of a node 90
locked administrative state of a service group 89
locked administrative state of a service instance 87
locked administrative state of a service unit 63
locked administrative state of an application 92
locked-instantiation administrative state of a cluster 93
locked-instantiation administrative state of a node 90
locked-instantiation administrative state of a service

group 89
locked-instantiation administrative state of a service unit 63
locked-instantiation administrative state of an application 92
logical entities 37

M
maximum number of active SIs per service unit 136, 152,

163
maximum number of standby SIs per service unit 136, 152
monitoring see component monitoring
multiple (ranked) standby assignments 112

N
N+M redundancy model

see also redundancy models
definition 132
auto-adjust option 137
maximum number of active SIs per service unit 136
maximum number of standby SIs per service unit 136
ordered list of service units for a service group 135
ordered list of SIs 135
preferred number of active service units 136
preferred number of in-service service units 136
preferred number of standby service units 136

name/value pairs 51
no spare HA state 112
node capacity 115
node failfast recovery 196, 199
node fail-over recovery 196, 199

node group configuration attribute 57
node switch-over recovery 196, 199
nodes

administrative state
definition 90
locked 90
locked-instantiation 90
shutting-down 90
unlocked 90

AMF 38
capacity 115
CLM 38
failfast recovery 196
fail-over recovery 199
node group configuration attribute 57
operational state

definition 91
disabled 91
enabled 91

switch-over recovery 196, 199
non-instantiated spare service units 111
non-pre-instantiable component capability 107
non-pre-instantiable components 49
non-pre-instantiable service unit 65
non-pre-instantiable service units 53
non-SA-aware 46
no-redundancy redundancy model

see also redundancy models
definition 175
auto-adjust option 177
ordered list of service units for a service group 177
ordered list of SIs 177
preferred number of in-service service units 177

not-ready-for-active HA readiness state of a component for a
component service instance 85

not-ready-for-active HA readiness state of a service unit for a
service instance 70

not-ready-for-assignment HA readiness state of a component
for a component service instance 86

not-ready-for-assignment HA readiness state of a service unit
for a service instance 71

N-way active redundancy model
see also redundancy models
definition 160
active-active redundancy configuration 161
auto-adjust option 163
maximum number of active SIs per service unit 163
ordered list of service units for a service group 162
ordered list of SIs 162
preferred number of active assignments per SI 162
preferred number of assigned service units 162
preferred number of in-service service units 162
ranked service unit list per SI 162

N-way redundancy model
see also redundancy models
definition 149
auto-adjust option 152
maximum number of active SIs per service unit 152
maximum number of standby SIs per service unit 152
AIS Specification SAI-AIS-AMF-B.04.01 449

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
ordered list of service units for a service group 151
ordered list of SIs 151
preferred number of assigned service units 152
preferred number of in-service service units 151
preferred number of standby assignments per SI 151
ranked service unit list per SI 151

O
operational state of a component 75
operational state of a node 91
operational state of a service unit 63
ordered list of service units for a service group 111, 122,

135, 151, 162, 177
ordered list of SIs 113, 135, 151, 162, 177
out-of-service readiness state of a component 76
out-of-service readiness state of a service unit 65
out-of-service service unit 65

P
partially-assigned service instance 88
passive monitoring 190
pathname of a CLC-CLI command 208
pathname prefix 208
per-command pathname 208
preferred number of active assignments per SI 162
preferred number of active service units 136
preferred number of assigned service units 152, 162
preferred number of in-service service units 122, 136, 151,

162, 177
preferred number of standby assignments per SI 151
preferred number of standby service units 136
pre-instantiable components 49
pre-instantiable service unit 65, 66
pre-instantiable service units 53
presence state of a component 71
presence state of a service unit 61
primitive administrative operations 365
primitive operations see primitive administrative operations
process

registered process for the component 230
protection group 56
proxied components 46
proxy component failure handling 219
proxy components 46, 48
proxy CSI 51

Q
quiesced HA state of a component for a component service

instance 78
quiesced HA state of a service unit for a service instance 67
quiescing HA state of a component for a component service

instance 78
quiescing HA state of a service unit for a service instance 67

R
rank 110
ranked list 110
ranked service unit list per SI 151, 162
ranking 110
readiness state of a component 76

readiness state of a service unit 64
ready-for-active-degraded HA readiness state of a compo-

nent for a component service instance 85
ready-for-active-degraded HA readiness state of a service

unit for a service instance 69
ready-for-assignment HA readiness state of a component for

a component service instance 85
ready-for-assignment HA readiness state of a service unit for

a service instance 69
recommended recovery actions 201
recovery 199

definition 192
escalation 201
fail-over

definition 194
component or service unit 195
node failfast 196, 199
node fail-over 196, 199
node switch-over 196, 199
service unit 199

restart
definition 193
restart all components of the service unit 193
restart the associated container component and collo-

cated contained components 194
restart the erroneous component 193

recovery escalation 201
reduction procedure 112
redundancy level of a service instance 113
redundancy models

see also service groups, 2N redundancy model, N+M
redundancy model, N-way redundancy model, N-way
active redundancy model, no-redundancy redundancy
model

definition 55
common definitions

auto-adjust option 112
auto-adjust probation period 114
in-service service units 110
instantiable service units 110
instantiated service units 111
instantiated spare service units 111
multiple (ranked) standby assignments 112
no spare HA state 112
non-instantiated spare service units 111
ordered list of service units for a service group 111
ordered list of SIs 113
reduction procedure 112
redundancy level of a service instance 113

node group configuration attribute 57
registered process for the component 230
regular SA-aware component 44
repair

definition 197
automatic repair 197
node failfast recovery 199
node fail-over recovery 199
node switch-over 199
service unit failover recovery 199
450 SAI-AIS-AMF-B.04.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
resources
external 42
local 41

restart 191
restart all components of the service unit 193
restart recovery 193
restart the associated container component and collocated

contained components 194
restart the erroneous component 193
restarting presence state of a component 73
restarting presence state of a service unit 62
RM see redundancy models

S
SA-aware component 43
service

component service instance 50
type 55

service group redundancy model 109
service group type 55
service groups

see also redundancy models
definition 55
administrative state

definition 89
locked 89
shutting-down 89
unlocked 89

type 55
service instance 54

administrative state
definition 87
fully-assigned 88
locked 87
partially-assigned 88
shutting-down 87
unassigned 88
unlocked 87

assignment state
definition 88

fail-over 96
switch-over 96
weight 115

service instance fail-over 96
service instance switch-over 96
service type 55
service unit failover recovery 199
service unit type 53
service units

definition 52
active assignment 68
active assignment of/for a service instance 68
administrative state

locked 63
locked-instantiation 63
shutting-down 63
unlocked 63

assigned 111
external 53
HA readiness state for a service instance

definition 69
not-ready-for-active 70
not-ready-for-assignment 71
ready-for-active-degraded 69
ready-for-assignment 69

HA state for a service instance
definition 67
active 67
quiesced 67
quiescing 67
standby 67

in-service 110
instantiable 110
instantiated 111
instantiated spare 111
local 53
non-instantiated spare 111
non-pre-instantiable 53, 65
operational state

definition 63
disabled 64
enabled 63

ordered list for a service group 111
pre-instantiable 53, 65
presence state

definition 61
instantiated 62
instantiating 62
instantiation-failed 62
restarting 62
terminating 62
termination-failed 62
uninstantiated 62

readiness state
definition 64
in-service 65
out-of-service 65
stopping 66

standby assignment 68
type 53

SG see service groups
shutting-down administrative state of a cluster 93
shutting-down administrative state of a node 90
shutting-down administrative state of a service group 89
shutting-down administrative state of a service instance 87
shutting-down administrative state of a service unit 63
shutting-down administrative state of an application 92
SI see service instance
SI weight 115
SI-SI dependencies 185
spare

instantiated spare service units 111
non-instantiated spare service units 111

standby assignment 68, 79
standby HA state of a component for a component service

instance 78
standby HA state of a service unit for a service instance 67
startup 40
stopping readiness state of a component 77
AIS Specification SAI-AIS-AMF-B.04.01 451

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
stopping readiness state of a service unit 66
SU see service unit
switch-over

component service instance switch-over 96
service instance switch-over 96

T
TERMINATE command 213
terminating presence state of a component 72
terminating presence state of a service unit 62
termination-failed presence state of a component 72
termination-failed presence state of a service unit 62
tolerance time of an SI-SI dependency 186

U
unassigned service instance 88
uninstantiated presence state of a component 72
uninstantiated presence state of a service unit 62
unlocked administrative state of a cluster 93
unlocked administrative state of a node 90
unlocked administrative state of a service group 89
unlocked administrative state of a service instance 87
unlocked administrative state of a service unit 63
unlocked administrative state of an application 92

V
variants of healthcheck 233

W
weights 115
workload 51
wrapper method 189

X
x_active component capability 107
x_active_and_y_standby component capability 107
x_active_or_y_standby component capability 107
452 SAI-AIS-AMF-B.04.01 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Overview of the Availability Management Framework

	3 System Description and System Model
	3.1 Logical Entities
	3.1.1 Cluster and Nodes
	3.1.1.1 AMF Nodes
	3.1.1.2 AMF Cluster

	3.1.2 Components
	3.1.2.1 SA-Aware Components
	3.1.2.1.1 Container and Contained Components

	3.1.2.2 Non-SA-Aware Components
	3.1.2.2.1 External Components
	3.1.2.2.2 Non-Proxied, Non-SA-Aware Components
	3.1.2.2.3 Integration and Usage of Non-SA-Aware Local Components

	3.1.2.3 Proxy and Proxied Components
	3.1.2.4 Component Life Cycle
	3.1.2.5 Component Type

	3.1.3 Component Service Instance
	3.1.3.1 Component Service Type

	3.1.4 Service Unit
	3.1.4.1 Service Unit Type

	3.1.5 Service Instances
	3.1.5.1 Service Type

	3.1.6 Service Groups
	3.1.6.1 Service Group Type

	3.1.7 Application
	3.1.7.1 Application Type

	3.1.8 Protection Groups
	3.1.9 Mapping of Service Units to Nodes
	3.1.10 Service Unit Instantiation
	3.1.11 Illustration of Logical Entities

	3.2 State Models
	3.2.1 Service Unit States
	3.2.1.1 Presence State
	3.2.1.2 Administrative State
	3.2.1.3 Operational State
	3.2.1.4 Readiness State
	3.2.1.5 HA State of a Service Unit for a Service Instance
	3.2.1.6 HA Readiness State of a Service Unit per Service Instance

	3.2.2 Component States
	3.2.2.1 Presence State
	3.2.2.2 Operational State
	3.2.2.3 Readiness State
	3.2.2.4 HA State of a Component per Component Service Instance
	3.2.2.5 HA Readiness State of a Component for a Component Service Instance

	3.2.3 Service Instance States
	3.2.3.1 Administrative State
	3.2.3.2 Assignment State

	3.2.4 Component Service Instance States
	3.2.5 Service Group States
	3.2.6 Node States
	3.2.6.1 Administrative State
	3.2.6.2 Operational State

	3.2.7 Application States
	3.2.8 Cluster States
	3.2.9 Summary of States Supported for the Logical Entities

	3.3 Fail-Over and Switch-Over
	3.4 Possible Combinations of States for Service Units
	3.4.1 Combined States for Pre-Instantiable Service Units
	3.4.2 Combined States for Non-Pre-Instantiable Service Units

	3.5 Component Capability Model
	3.6 Service Group Redundancy Model
	3.6.1 Common Characteristics
	3.6.1.1 Common Definitions
	3.6.1.2 Initiation of the Auto-Adjust Procedure for a Service Group
	3.6.1.3 AMF Node Capacity Limitation
	3.6.1.3.1 Examples

	3.6.1.4 Considerations when Configuring Redundancy

	3.6.2 2N Redundancy Model
	3.6.2.1 Basics
	3.6.2.2 Configuration
	3.6.2.3 SI Assignments and Failure Handling
	3.6.2.3.1 Failure of the Active Service Unit
	3.6.2.3.2 Failure of the Standby Service Unit
	3.6.2.3.3 Auto-Adjust Procedure
	3.6.2.3.4 Cluster Startup
	3.6.2.3.5 Role of the List of Ordered Service Units in Assignments and Instantiations

	3.6.2.4 Examples
	3.6.2.5 UML Diagram of the 2N Redundancy Model

	3.6.3 N+M Redundancy Model
	3.6.3.1 Basics
	3.6.3.2 Examples
	3.6.3.3 Configuration
	3.6.3.4 SI Assignments
	3.6.3.4.1 Reduction Procedure

	3.6.3.5 Examples for Service Unit Fail-Over
	3.6.3.5.1 Handling of a Node Failure when Spare Service Units Exist
	3.6.3.5.2 Handling of a Node Failure when no Spare Service Units Exist

	3.6.3.6 Example of Auto-Adjust
	3.6.3.7 UML Diagram of the N+M Redundancy Model

	3.6.4 N-Way Redundancy Model
	3.6.4.1 Basics
	3.6.4.2 Example
	3.6.4.3 Configuration
	3.6.4.4 SI Assignments
	3.6.4.4.1 Reduction Procedure

	3.6.4.5 Failure Handling
	3.6.4.6 Example of Auto-Adjust
	3.6.4.7 UML Diagram of the N-Way Redundancy Model

	3.6.5 N-Way Active Redundancy Model
	3.6.5.1 Basics
	3.6.5.2 Example
	3.6.5.3 Configuration
	3.6.5.4 SI Assignments
	3.6.5.4.1 Reduction Procedure

	3.6.5.5 Failure Handling
	3.6.5.5.1 Example for Failure Recovery

	3.6.5.6 Example of Auto-Adjust
	3.6.5.7 UML Diagram of the N-Way Active Redundancy Model

	3.6.6 No-Redundancy Redundancy Model
	3.6.6.1 Basics
	3.6.6.2 Example
	3.6.6.3 Configuration
	3.6.6.4 SI Assignments
	3.6.6.4.1 Reduction Procedure

	3.6.6.5 Failure Handling
	3.6.6.6 Example of Auto-Adjust
	3.6.6.7 UML Diagram of the No-Redundancy Redundancy Model

	3.6.7 The Effect of Administrative Operations on Service Instance Assignments
	3.6.7.1 Locking a Service Unit or a Node
	3.6.7.2 Unlocking a Service Unit, a Service Group, or a Node

	3.7 Component Capability Model and Service Group Redundancy Model
	3.8 Dependencies Among SIs, Component Service Instances, and Components
	3.8.1 Dependencies Among Service Instances and Component Service Instances
	3.8.1.1 Dependencies Among SIs when Assigning a Service Unit Active for a Service Instance
	3.8.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances
	3.8.1.3 Dependencies Among Component Service Instances of the same Service Instance

	3.8.2 Dependencies Among Components

	3.9 Approaches for Integrating Legacy Software or Hardware Entities
	3.10 Component Monitoring
	3.11 Error Detection, Recovery, Repair, and Escalation Policy
	3.11.1 Basic Notions
	3.11.1.1 Error Detection
	3.11.1.2 Restart
	3.11.1.3 Recovery
	3.11.1.3.1 Restart Recovery Action
	3.11.1.3.2 Fail-Over Recovery Action
	3.11.1.3.3 Application Restart Recovery Action
	3.11.1.3.4 Cluster Reset Recovery Action

	3.11.1.4 Repair
	3.11.1.4.1 Recovery and Associated Repair Policies
	3.11.1.4.2 Restrictions to Auto-Repair

	3.11.1.5 Recovery Escalation

	3.11.2 Recovery Escalation Policy of the Availability Management Framework
	3.11.2.1 Recommended Recovery Action
	3.11.2.2 Escalations of Levels 1 and 2
	3.11.2.3 Escalation of Level 3

	4 Local Component Life Cycle Management Interfaces
	4.1 Common Characteristics
	4.2 Configuring the Pathname of CLC-CLI Commands
	4.3 CLC-CLI Environment Variables
	4.4 Configuring CLC-CLI Arguments
	4.5 Exit Status
	4.6 INSTANTIATE Command
	4.7 TERMINATE Command
	4.8 CLEANUP Command
	4.9 AM_START Command
	4.10 AM_STOP Command
	4.11 Usage of CLC-CLI Commands Based on the Component Category

	5 Proxied Components Management
	5.1 Properties of Proxy and Proxied Components
	5.2 Life Cycle Management of Proxied Components
	5.3 Proxy Component Failure Handling

	6 Contained Components Management
	6.1 Overview of Container and Contained Components
	6.1.1 Definitions
	6.1.2 Component Category
	6.1.3 Multiple Components per Process
	6.1.4 Life Cycle Management of Contained Components
	6.1.5 Container and Contained Components in Service Units and Service Groups
	6.1.6 Redundancy Models
	6.1.7 Administrative Operations and Container and Contained Components
	6.1.8 Failure Handling

	6.2 Life Cycle Management of Contained Components
	6.2.1 Container CSI and Its Configuration
	6.2.2 Assignment of the Container CSI
	6.2.3 Life Cycle Callbacks

	6.3 Failure Handling for Container and Contained Components
	6.4 Proxied and Contained Components: Similarities and Differences

	7 Availability Management Framework API
	7.1 Availability Management Framework Model for the APIs
	7.1.1 Callback Semantics and Component Registration and Unregistration
	7.1.2 Component Healthcheck Monitoring
	7.1.2.1 Overview
	7.1.2.2 Variants of Healthchecks
	7.1.2.3 Starting and Stopping Healthchecks
	7.1.2.4 Healthcheck Configuration Issues
	7.1.2.4.1 Role of Period and Maximum-Duration in Framework-Invoked Healthchecks
	7.1.2.4.2 Role of Period in Component-Invoked Healthchecks
	7.1.2.4.3 Modification of Healthcheck Parameters

	7.1.3 Component Service Instance Management
	7.1.4 Component Life Cycle Management
	7.1.5 Protection Group Management
	7.1.6 Error Reporting
	7.1.7 Correlation of Notifications
	7.1.8 Component Response to Framework Requests
	7.1.9 API Usage Illustrations

	7.2 Unavailability of the AMF API on a Non-Member Node
	7.2.1 A Member Node Leaves or Rejoins the Cluster Membership
	7.2.2 Guidelines for Availability Management Framework Implementers

	7.3 Include File and Library Names
	7.4 Type Definitions
	7.4.1 SaAmfHandleT
	7.4.2 Component Process Monitoring
	7.4.2.1 SaAmfPmErrorsT Type
	7.4.2.2 SaAmfPmStopQualifierT Type

	7.4.3 Component Healthcheck Monitoring
	7.4.3.1 SaAmfHealthcheckInvocationT
	7.4.3.2 SaAmfHealthcheckKeyT

	7.4.4 Types for State Management
	7.4.4.1 HA State
	7.4.4.2 Readiness State
	7.4.4.3 Presence State
	7.4.4.4 Operational State
	7.4.4.5 Administrative State
	7.4.4.6 Assignment State
	7.4.4.7 HA Readiness State
	7.4.4.8 Proxy Status
	7.4.4.9 All Defined States

	7.4.5 Component Service Types
	7.4.5.1 SaAmfCSIFlagsT
	7.4.5.2 SaAmfCSITransitionDescriptorT
	7.4.5.3 SaAmfCSIStateDescriptorT
	7.4.5.4 SaAmfCSIAttributeListT
	7.4.5.5 SaAmfCSIDescriptorT

	7.4.6 Types for Protection Group Management
	7.4.6.1 SaAmfProtectionGroupMemberT_4
	7.4.6.2 SaAmfProtectionGroupChangesT
	7.4.6.3 SaAmfProtectionGroupNotificationT_4
	7.4.6.4 SaAmfProtectionGroupNotificationBufferT_4

	7.4.7 SaAmfRecommendedRecoveryT
	7.4.8 SaAmfCompCategoryT
	7.4.9 SaAmfRedundancyModelT
	7.4.10 SaAmfCompCapabilityModelT
	7.4.11 Notifications-Related Types
	7.4.11.1 SaAmfNotificationMinorIdT
	7.4.11.2 SaAmfAdditionalInfoIdT

	7.4.12 SaAmfCallbacksT_4

	7.5 Library Life Cycle
	7.5.1 saAmfInitialize_4()
	7.5.2 saAmfSelectionObjectGet()
	7.5.3 saAmfDispatch()
	7.5.4 saAmfFinalize()

	7.6 Component Registration
	7.6.1 saAmfComponentRegister()
	7.6.2 saAmfComponentNameGet()

	7.7 Passive Monitoring of Processes of a Component
	7.7.1 saAmfPmStart_3()
	7.7.2 saAmfPmStop()

	7.8 Component Health Monitoring
	7.8.1 saAmfHealthcheckStart()
	7.8.2 SaAmfHealthcheckCallbackT
	7.8.3 saAmfHealthcheckConfirm()
	7.8.4 saAmfHealthcheckStop()

	7.9 Component Service Instance Management
	7.9.1 saAmfHAStateGet()
	7.9.2 SaAmfCSISetCallbackT
	7.9.3 SaAmfCSIRemoveCallbackT
	7.9.4 saAmfCSIQuiescingComplete()
	7.9.5 saAmfHAReadinessStateSet()

	7.10 Component Life Cycle
	7.10.1 SaAmfComponentTerminateCallbackT
	7.10.2 SaAmfProxiedComponentInstantiateCallbackT
	7.10.3 SaAmfProxiedComponentCleanupCallbackT
	7.10.4 SaAmfContainedComponentInstantiateCallbackT
	7.10.5 SaAmfContainedComponentCleanupCallbackT

	7.11 Protection Group Management
	7.11.1 saAmfProtectionGroupTrack_4()
	7.11.2 SaAmfProtectionGroupTrackCallbackT_4
	7.11.3 saAmfProtectionGroupTrackStop()
	7.11.4 saAmfProtectionGroupNotificationFree_4()

	7.12 Error Reporting
	7.12.1 saAmfComponentErrorReport_4()
	7.12.2 saAmfComponentErrorClear_4()
	7.12.3 saAmfCorrelationIdsGet()

	7.13 Component Response to Framework Requests
	7.13.1 saAmfResponse_4()

	8 AMF UML Information Model
	8.1 Use of Entity Types in the AMF UML Information Model
	8.2 Notes on the Conventions Used in UML Diagrams
	8.3 DN Formats for Availability Management Framework UML Classes
	8.4 AMF Cluster
	8.5 Availability Management Framework Instances and Types View
	8.6 Availability Management Framework Instances View
	8.7 AMF Cluster, Node, and Node-Related Classes
	8.8 Application Classes Diagram
	8.9 Service Group Class Diagram
	8.10 Service Unit Class Diagram
	8.11 Service Instance Class Diagram
	8.12 Component Service Instance Diagram
	8.13 Component and Component Types Class Diagrams
	8.13.1 Component Type Class Diagram
	8.13.2 Component Classes Diagram

	8.14 AMF Global Component Attributes and Healthcheck Classes

	9 Administration API
	9.1 Availability Management Framework Administration API Model
	9.2 Include File and Library Name
	9.3 Type Definitions
	9.3.1 SaAmfAdminOperationIdT

	9.4 Availability Management Framework Administration API
	9.4.1 Administrative State Modification Operations
	9.4.2 SA_AMF_ADMIN_UNLOCK
	9.4.3 SA_AMF_ADMIN_LOCK
	9.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION
	9.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION
	9.4.6 SA_AMF_ADMIN_SHUTDOWN
	9.4.7 SA_AMF_ADMIN_RESTART
	9.4.8 SA_AMF_ADMIN_SI_SWAP
	9.4.9 SA_AMF_ADMIN_SG_ADJUST
	9.4.10 SA_AMF_ADMIN_REPAIRED
	9.4.11 SA_AMF_ADMIN_EAM_START
	9.4.12 SA_AMF_ADMIN_EAM_STOP

	9.5 Summary of Administrative Operation Support

	10 Basic Operational Scenarios
	10.1 Administrative Shutdown of a Service Instance in a 2N Case
	10.2 Administrative Shutdown of a Service Unit in a 2N Case
	10.3 Administrative Shutdown of a Service Unit for the N-Way Model
	10.4 Administrative Lock of a Service Instance
	10.5 Administrative Lock of a Service Unit
	10.6 A Simple Fail-Over
	10.7 Administrative Shutdown of an SI Having a Container CSI
	10.8 Administrative Lock of an SI Having a Container CSI
	10.9 Administrative Lock of a Service Unit with a Container Component
	10.10 Restart of a Container Component

	11 Alarms and Notifications
	11.1 Setting Common Attributes
	11.2 Availability Management Framework Notifications
	11.2.1 Availability Management Framework Alarms
	11.2.1.1 Component Instantiation Failed
	11.2.1.2 Component Cleanup Failed
	11.2.1.3 Cluster Reset Triggered by a Component Failure
	11.2.1.4 Service Instance Unassigned
	11.2.1.5 Proxy Status of a Component Changed to Unproxied

	11.2.2 Availability Management Framework State Change Notifications
	11.2.2.1 Administrative State Change Notify
	11.2.2.2 Operational State Change Notify
	11.2.2.3 Presence State Change Notify
	11.2.2.4 HA State Change Notify
	11.2.2.5 HA Readiness State Change Notify
	11.2.2.6 SI Assignment State Change Notify
	11.2.2.7 Proxy Status of a Component Changed to Proxied

	11.2.3 Availability Management Framework Notifications of Miscellaneous Type
	11.2.3.1 Error Report Notification
	11.2.3.2 Error Clear Notification

	Appendix A Implementation of CLC Interfaces
	Appendix B API Functions and Registered Processes
	Appendix C Example for Proxy/Proxied Association
	Appendix D Interaction with CLM
	Index of Definitions

