
Service AvailabilityTM Forum
Application Interface Specification

Event Service SAI-AIS-EVT-B.03.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-EVT-B.03.01 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-EVT-B.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Event Service
1 Document Introduction . 7
 1.1 Document Purpose . 7
 1.2 AIS Documents Organization . 7
 1.3 History . 7
 1.3.1 New Topics . 7
 1.3.2 Clarifications . 8
 1.3.3 Changes in Return Values of API Functions: . 8
 1.3.4 Removed Topics . 8
 1.3.5 Other Changes . 9
 1.4 References . 9
 1.5 How to Provide Feedback on the Specification . 9
 1.6 How to Join the Service Availability™ Forum . 10
 1.7 Additional Information . 10
 1.7.1 Member Companies . 10
 1.7.2 Press Materials . 10

2 Overview . 11

 2.1 Event Service . 11

3 SA Event Service API . 13
 3.1 Event Service Model . 13
 3.1.1 Events . 13
 3.1.2 Event Channels . 13
 3.1.3 Event Filtering . 15
 3.2 Unavailability of the Event Service API on a Non-Member Node 16
 3.2.1 A Member Node Leaves or Rejoins the Cluster Membership . 16
 3.2.2 Guidelines for Event Service Implementers . 17
 3.3 Include File and Library Name . 17
 3.4 Type Definitions . 18
 3.4.1 Handles . 18
 3.4.1.1 SaEvtHandleT . 18
 3.4.1.2 SaEvtEventHandleT . 18
 3.4.1.3 SaEvtChannelHandleT . 18
 3.4.2 SaEvtSubscriptionIdT . 18
 3.4.3 SaEvtCallbacksT . 18
 3.4.4 SaEvtChannelOpenFlagsT . 19
 3.4.5 Event Patterns and Attributes . 19
 3.4.5.1 SaEvtEventPatternT . 20
 3.4.5.2 SaEvtEventPatternArrayT . 20
 3.4.5.3 SaEvtEventPriorityT . 21
 3.4.5.4 SaEvtEventIdT . 21
AIS Specification SAI-AIS-EVT-B.03.01 5

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.4.5.5 Event Attributes . 21
 3.4.6 Event Filters . 22
 3.4.6.1 SaEvtEventFilterTypeT . 23
 3.4.6.2 SaEvtEventFilterT . 23
 3.4.6.3 SaEvtEventFilterArrayT . 23
 3.4.7 “Lost Event” Event . 25
 3.4.8 SaEvtLimitIdT . 27
 3.5 Library Life Cycle . 28
 3.5.1 saEvtInitialize() . 28
 3.5.2 saEvtSelectionObjectGet() . 30
 3.5.3 saEvtDispatch() . 32
 3.5.4 saEvtFinalize() . 33
 3.6 Event Channel Operations . 35
 3.6.1 saEvtChannelOpen() and saEvtChannelOpenAsync() . 35
 3.6.2 SaEvtChannelOpenCallbackT . 38
 3.6.3 saEvtChannelClose() . 40
 3.6.4 saEvtChannelUnlink() . 42
 3.7 Event Operations . 44
 3.7.1 saEvtEventAllocate() . 44
 3.7.2 saEvtEventFree() . 46
 3.7.3 saEvtEventAttributesSet() . 47
 3.7.4 saEvtEventAttributesGet() . 50
 3.7.5 saEvtEventPatternFree() . 53
 3.7.6 saEvtEventDataGet() . 54
 3.7.7 SaEvtEventDeliverCallbackT . 56
 3.7.8 saEvtEventPublish() . 58
 3.7.9 saEvtEventSubscribe() . 60
 3.7.10 saEvtEventUnsubscribe() . 63
 3.7.11 saEvtEventRetentionTimeClear() . 64
 3.8 Limit Fetch API . 66
 3.8.1 saEvtLimitGet() . 66

4 Event Service UML Information Model . 69

 4.1 DN Format for the Event Service UML Class . 69
 4.2 Event Service UML Class . 69

5 Event Service Administration API . 71

6 Alarms and Notifications . 73

7 Event Service Management Interface . 75

 7.1 Event Service MIB (SAF-EVT-SVC-MIB) . 75

Index of Definitions . 77
6 SAI-AIS-EVT-B.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Event Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for use by imple-
menters of the Application Interface Specification and by application developers who
would use the Application Interface Specification to develop applications that must be
highly available. The AIS is defined in the C programming language, and requires
substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
Previous releases of the Event Service specification:

(1) SAI-AIS-EVT-A.01.01
(2) SAI-AIS-EVT-B.01.01
(3) SAI-AIS-EVT-B.02.01

This section presents the changes of the current release, SAI-AIS-EVT-B.03.01, with
respect to the SAI-AIS-EVT-B.02.01 release. Editorial changes are not mentioned
here.

1.3.1 New Topics
• Section 3.2 on page 16 describes the behavior of the Event Service API on a

cluster node that is not in the cluster membership (see [4]).
• Section 3.4.8 on page 27 describes the SaEvtLimitIdT enum, which provides a

set of values that identify limits for a particular implementation of the Event Ser-
vice. The user can inquire at runtime the current value of a particular limit by
specifying the corresponding enum value when invoking the saEvtLimitGet()
function defined in Section 3.8.1 on page 66.
AIS Specification SAI-AIS-EVT-B.03.01 Section 1 7

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• Chapter 4 presents the Event Service UML Information Model. The Event Ser-
vice UML classes (see FIGURE 1 on page 70) were previously contained in [1].

• Chapter 5 states that no administration APIs are provided for the Event Service.
• Chapter 7 presents the Event Service Management Interface.

1.3.2 Clarifications
• Section 3.4.7 on page 25 clarifies when the Event Service sends “lost event” to a

subscriber.
• Section 3.5.3 on page 32 on the saEvtDispatch() function clarifies the meaning of

the SA_AIS_OK return value.
• The description of the saEvtFinalize() function (see Section 3.5.4 on page 33)

clarifies that this function frees all resources allocated by the Event Service for
the process in this association between the process and the Event Service.

• The description of the saEvtChannelClose() function (see Section 3.6.3 on page
40) clarifies which resources this function frees for the invoking process.

• The saEvtEventFree() function (see Section 3.7.2 on page 46) clarifies when the
data pertaining to the event is freed.

1.3.3 Changes in Return Values of API Functions:

1.3.4 Removed Topics

SA Forum revisited its alarm issuance directives for this release and modified the
conditions that determine when an alarm would be produced. As a consequence, AIS

Table 1 Changes in Return Values of API Functions

API Function Return Value Change Type

All API functions except
saEvtFinalize() and
SaEvtEventDeliverCallbackT

SA_AIS_ERR_UNAVAILABLE new

saEvtChannelOpen(),
saEvtChannelOpenAsync(), and
SaEvtChannelOpenCallbackT

SA_AIS_ERR_NO_RESOURCES clarified

saEvtEventAttributesSet() SA_AIS_ERR_TOO_BIG extended

saEvtEventPublish() and
saEvtEventSubscribe()

SA_AIS_ERR_TOO_BIG clarified

saEvtEventSubscribe() SA_AIS_ERR_INVALID_PARAM extended
8 SAI-AIS-EVT-B.03.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
services shall only generate alarms for situations that require an explicit intervention
by an external agent or operator, provided that the corrective measures to be taken
are well defined. Based on these directives, the alarms generated so far by the AIS
services have been revised, and it was decided to remove all alarms from the Event
Service B.03.01 version.

SA Forum does not mandate that Event Service implementations which also support
the B.02.01 version must generate the now removed alarms for the B.02.01 version.

These alarms have also been removed from the Event Service MIB for the Event Ser-
vice B.03.01 version.

1.3.5 Other Changes

In Section 3.4.5.4 on page 21 on the SaEvtEventIdT type, “LL” has been appended to
the numeric values of constants.

1.4 References
The following documents contain information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.03.01

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.02.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.02.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.03.01

[5] Service AvailabilityTM Forum, SA Forum Information Model in XML Metadata
Interchange (XMI) v2.1 format, SAI-XMI-A.02.01

[6] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).
AIS Specification SAI-AIS-EVT-B.03.01 Section 1.3.5 9

http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the Forum’s website
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
10 SAI-AIS-EVT-B.03.01 Section 1.6 AIS Specification

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Event Service within the Application Interface Specifica-
tion (AIS).

2.1 Event Service
The Event Service is a publish/subscribe multipoint-to-multipoint communication
mechanism that is based on the concept of event channels. One or more publishers
communicate asynchronously with one or more subscribers by means of events over
a cluster-wide entity named event channel.

Events consist of a standard header and zero or more bytes of publisher event data.

Multiple publishers and multiple subscribers can communicate over the same event
channel. Individual publishers and individual subscribers can communicate over mul-
tiple event channels. Subscribers are anonymous, which means that they may join
and leave an event channel at any time without involving the publisher(s).
AIS Specification SAI-AIS-EVT-B.03.01 Section 2 11

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
12 SAI-AIS-EVT-B.03.01 Section 2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3 SA Event Service API

3.1 Event Service Model

3.1.1 Events

An event consists of a standard set of event attributes (also called the event
header) and zero or more bytes of event data.

A process invokes the saEvtEventAllocate() function to allocate the event header and
the saEvtEventFree() function to deallocate it. The saEvtEventAllocate() function
returns a handle that can be used in subsequent invocations of functions provided by
the Event Service API.

A process writes the event attributes by invoking the saEvtEventAttributesSet() func-
tion and reads these attributes by invoking the saEvtEventAttributesGet() function.

An event is published by invoking the saEvtEventPublish() function and specifying as
parameters the event handle and optional additional information, the event data,
which is contained in a separate free-form data buffer. A published event is an event
that has been handed over to the Event Service by successfully invoking the
saEvtEventPublish() function and consists of the event header, which contains the set
of attributes, and optional additional information, the event data. A published event is
owned by the Event Service. This document uses in some places simply “event”
instead of “published event “ when the context makes clear what is meant.

3.1.2 Event Channels

An event channel is global to a cluster and is identified by a unique name. An event
channel enables multiple publishers to communicate with multiple subscribers. A
publisher on an event channel is a process that successfully opened the event chan-
nel with the SA_EVT_CHANNEL_PUBLISHER set. A subscriber on an event chan-
nel is a process that successfully called the saEvtEventSubscribe() function to
subscribe for events on this event channel. A process opens an event channel by
invoking one of the saEvtEventChannelOpen() or saEvtEventChannelOpenAsync()
functions. The process can specify in the open call whether it wants to access only an
existing event channel or whether the event channel is first to be created if it does not
yet exist.

A process can open an event channel to publish events and to subscribe to receive
events. Publishers can also be subscribers on the same event channel. Event chan-
nels can be deleted by invoking the saEvtChannelUnlink() function.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3 13

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Once an event has been allocated for an event channel by invoking the
saEvtEventAllocate() function, it can be published several times on the same event
channel, possibly by changing its attributes prior to each publication.

An event channel is required to satisfy the following properties:

• Best effort delivery - The Event Service provides best effort delivery of
events to an anonymous set of subscribers. A published event might be lost
or might be delivered to a proper subset of the subscribers, that is, some
subscribers might get the event while others do not. For example, it is not
guaranteed that an event is delivered to all existing subscribers if the pub-
lisher fails while publishing the event. Moreover, a subscriber might lose
events if the subscriber node1 is overwhelmed with events or if the sub-
scriber is slow to process events.

• At most once delivery - The Event Service must not deliver the same
event for a particular subscription of a particular subscriber multiple times.

• Event priority - Events are published with a certain priority. High priority
events are delivered to subscribers ahead of low priority events. In case of
overflow, low priority events are discarded from the subscriber queues to
make room for high priority events.

• Event ordering - At a particular priority level, events sent by a publisher are
received by subscribers in the order in which the publisher published the
events.

• Event completeness - A published event is complete in the sense that it
contains the entire event data provided by the caller (if any) and all event
attributes provided by the caller or supplied by the Event Service when the
event was published. The Event Service guarantees that a process sub-
scribing for events either obtains complete events or no event at all.

• Retention time - Events published with a nonzero retention time are kept
for the specified duration. This gives new subscribers the opportunity to
obtain events that had been published before their subscription on the event
channel. Processes may use the functions of the Event Service API to
remove events explicitly before the retention time expires.

An event channel may optionally support the following property:

1. The term “node” without a preceding qualifier “cluster” or “member” is used in this document in the sense of
a “member node”, as defined in the Cluster Membership Service specification (see [4]).
14 SAI-AIS-EVT-B.03.01 Section 3.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• Persistence - Published events may be persisted and may survive node
failures or a shut down (in the operating system sense) of the entire cluster,
but that is not mandated by this specification.

The Event Service API does not impose a specific layout for the published event
data. Publishers and subscribers on an event channel must agree on the structure of
the data for events published on that event channel and may use data marshalling if
heterogeneity support is desired. Conventions on the structure of the event data may
vary from one event channel to another.

To support heterogeneity of data representation between publishers and subscribers,
an implementation of the Event Service should use data marshalling for event
attributes contained in the event header.

A process subscribes to receive events on an event channel by invoking the
saEvtEventSubscribe() function. The Event Service delivers events to a subscribing
process by invoking the saEvtEventDeliverCallback() function of that process. To stop
receiving events for which a subscriber has registered, the subscriber can invoke the
saEvtEventUnsubscribe() function to unsubscribe for those events.

If a process terminates abnormally, the Event Service automatically closes all of its
open event channels.

Some API functions return an error if limits imposed by the configuration of the Event
Service are exceeded. For instance, the saEvtEventPublish() function returns:
"SA_AIS_ERR_TOO_BIG - The total size of the event is larger than the maximum
value supported by the implementation.".

3.1.3 Event Filtering

The standard set of event attributes includes an array of event patterns. The values of
these patterns are set by the event publisher and are typically used to organize
events into various categories. All users (publishers and subscribers) of an event
channel must share the same conventions regarding the number of patterns being
used, their ordering and contents, as well as meaning.

For example, an event channel used to notify changes made to a relational database
could define events that use only three patterns as follows:

• The first pattern contains the name of the database being modified.
• The second pattern contains the name of the table being modified.
• The third pattern contains the primary key of the record being modified.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.1.3 15

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
The event data can be used to provide a description of the modified fields and the old/
new values.

Event patterns play an important role in the Event Service, as they are the basis for
filtering which events must be delivered to a particular subscriber.

When a process subscribes on an event channel to receive published events, it must
specify which filters to apply on the published events. Events are only delivered to a
process if they satisfy the provided filters. For a description of the filtering process,
refer to Section 3.4.6.3 on page 23.

Using the previous example of the database notifications published on an event
channel, a subscriber can provide a filter array indicating:

• The name of a database in which the subscriber is interested.
• The name of a table in which the subscriber is interested.
• No filter for the primary key.

In this case, the process will receive all notification events related to the specified
table in the specified database for any primary key.

3.2 Unavailability of the Event Service API on a Non-Member Node
The Event Service does not provide service to processes on cluster nodes that are
not in the cluster membership (see [4]).

The following subsection describes the behavior of the Event Service under various
conditions that cause the Event Service to be unavailable on a node. Section 3.2.2
contains recommendations to Event Service implementers for dealing with a tempo-
rary unavailability of providing service.

3.2.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [4]) or is being administra-
tively evicted from the cluster membership, the Event Service behaves as follows
towards processes residing on that node and using or attempting to use the service:

⇒ Calls to saEvtInitialize() will fail with SA_AIS_ERR_UNAVAILABLE.
⇒ All Event Service APIs that are invoked by the process and that operate on han-

dles already acquired by the process will fail with SA_AIS_ERR_UNAVAILABLE
with the following exceptions, assuming that the handle evtHandle has already
been acquired:
16 SAI-AIS-EVT-B.03.01 Section 3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• The saEvtChannelOpenAsync() function may return SA_AIS_OK or
SA_AIS_ERR_UNAVAILABLE, depending on the service implementation. If it
returns SA_AIS_OK, the callback SaEvtChannelOpenCallbackT will be called
and will also return SA_AIS_ERR_UNAVAILABLE in the error parameter; oth-
erwise, the callback will not be called.

• The saEvtFinalize() function, which is used to free the library handles and all
resources associated with these handles.

⇒ An outstanding callback SaEvtChannelOpenCallbackT will return
SA_AIS_ERR_UNAVAILABLE in the error parameter.

⇒ The callback SaEvtEventDeliverCallbackT will not be called.

If the node rejoins the cluster membership, processes executing on the node will be
able to reinitialize new library handles and use the entire set of Event Service APIs
that operate on these new handles; however, invocation of APIs that operate on han-
dles acquired by any process before the node left the membership will continue to fail
with SA_AIS_ERR_UNAVAILABLE (or with the special treatment described above for
asynchronous calls) with the exception of saEvtFinalize(), which is used to free the
library handles and all resources associated with these handles. Hence, it is recom-
mended for the processes to finalize the library handles as soon as the processes
detect that the node left the membership.

When the node leaves the membership, the Event Service executing on the remain-
ing nodes of the cluster behaves as if all processes that were using the Event Service
on the leaving node had been terminated. In particular, if an saEvtChannelUnlink()
operation is pending because one or more processes on the leaving node had the
event channel open, the unlink operation can proceed now.

3.2.2 Guidelines for Event Service Implementers

The implementation of the Event Service must leverage the SA Forum Cluster Mem-
bership Service (see [4]) to determine the membership status of a node for the case
explained in Section 3.2.1 before returning SA_AIS_ERR_UNAVAILABLE. If the
Cluster Membership Service considers a node as a member of the cluster but the
Event Service experiences difficulty in providing service to its clients because of
transport, communication, or other issues, it must respond with
SA_AIS_ERR_TRY_AGAIN.

3.3 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Event Service API:
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.2.2 17

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
#include <saEvt.h>

To use the Event Service API, an application must be bound with the following library:

libSaEvt.so

3.4 Type Definitions
The Event Service uses the types described in the following sections.

3.4.1 Handles

3.4.1.1 SaEvtHandleT

typedef SaUint64T SaEvtHandleT;

This type is used for the handle that is supplied by the Event Service to a process
during initialization of the Event Service library and that is used by the process when
it invokes functions of the Event Service API.

3.4.1.2 SaEvtEventHandleT

typedef SaUint64T SaEvtEventHandleT;

This type is used for the handle to an event.

3.4.1.3 SaEvtChannelHandleT

typedef SaUint64T SaEvtChannelHandleT;

This type is used for the handle to an open event channel.

3.4.2 SaEvtSubscriptionIdT

typedef SaUint32T SaEvtSubscriptionIdT;

This type is used for an identifier representing a particular subscription by a particu-
lar process on a particular handle to an open event channel. This identifier is used to
associate delivery of events for that subscription to the process.

3.4.3 SaEvtCallbacksT

The SaEvtCallbacksT type is defined as follows:
18 SAI-AIS-EVT-B.03.01 Section 3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
 typedef struct {

SaEvtChannelOpenCallbackT saEvtChannelOpenCallback;

 SaEvtEventDeliverCallbackT saEvtEventDeliverCallback;

} SaEvtCallbacksT;

A structure of the SaEvtCallbacksT type (called a callbacks structure) is used to
specify the callback functions that the Event Service can invoke.

3.4.4 SaEvtChannelOpenFlagsT

#define SA_EVT_CHANNEL_PUBLISHER 0X1

#define SA_EVT_CHANNEL_SUBSCRIBER 0X2

#define SA_EVT_CHANNEL_CREATE 0X4

typedef SaUint8T SaEvtChannelOpenFlagsT;

The SaEvtChannelOpenFlagsT type has the following interpretation:

• SA_EVT_CHANNEL_PUBLISHER - Open the event channel for publishing
events.

• SA_EVT_CHANNEL_SUBSCRIBER - Open the event channel for subscribing
for events.

• SA_EVT_CHANNEL_CREATE - Create an event channel if one does not
already exist.

When an event channel is opened by invoking either saEvtChannelOpen() or
saEvtChannelOpenAsync(), some combination of these flags are bitwise ORed
together to provide the value of the channelOpenFlags.

3.4.5 Event Patterns and Attributes

The SaEvtEventPatternT type is defined below. An event pattern may contain a
name (for instance, process name, checkpoint name, service instance name, and so
on). Alternatively, an event pattern may characterize an event (for instance, timedOut,
newComponent, overload, and so on).
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.4.4 19

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.4.5.1 SaEvtEventPatternT

typedef struct {

SaSizeT allocatedSize;

SaSizeT patternSize;

SaUint8T *pattern;

} SaEvtEventPatternT;

In the context of the saEvtEventAttributesGet() function, these fields are used as fol-
lows:

• allocatedSize (in): size of the buffer allocated to receive the pattern value
• patternSize (out): actual size of the pattern of the received event
• pattern (out): pointer to a buffer to which the pattern value will be copied

In the context of the saEvtEventAttributesSet() or saEvtEventSubscribe() functions,
these fields are used as follows:

• allocatedSize: ignored
• patternSize (in): actual size of the pattern
• pattern (in): pointer to a buffer from which the pattern value is taken

3.4.5.2 SaEvtEventPatternArrayT

typedef struct {

SaSizeT allocatedNumber;

SaSizeT patternsNumber;

SaEvtEventPatternT *patterns;

} SaEvtEventPatternArrayT;

In the context of the saEvtEventAttributesGet() function, these fields are used as fol-
lows:

• allocatedNumber (in): number of entries allocated in the patterns buffer
• patternsNumber (out): actual number of patterns in the event
• patterns (out): pointer to a buffer to which the array of patterns will be copied
20 SAI-AIS-EVT-B.03.01 Section 3.4.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
In the context of the saEvtEventAttributesSet() function, these fields are used as fol-
lows:

• allocatedNumber: ignored
• patternsNumber (in): number of patterns in the patterns array
• patterns (in): pointer to the array of patterns

3.4.5.3 SaEvtEventPriorityT

#define SA_EVT_HIGHEST_PRIORITY 0

#define SA_EVT_LOWEST_PRIORITY 3

typedef SaUint8T SaEvtEventPriorityT;

3.4.5.4 SaEvtEventIdT

typedef SaUint64T SaEvtEventIdT;

This type is used for an event identifier. Values ranging from 0 to 1000 have special
meanings and cannot be used by the Event Service to identify regular events.

#define SA_EVT_EVENTID_NONE 0LL

Event identifier for an allocated but not yet published event.

#define SA_EVT_EVENTID_LOST 1LL

Event identifier for a “lost event”.

3.4.5.5 Event Attributes

A process has read access to all attributes of an event allocated by
saEvtEventAllocate() or obtained from saEvtEventDeliverCallback() by specifying the
event handle returned by these functions in a call to saEvtEventAttributesGet().

A process may not access the event attributes of a published event (which is owned
by the Event Service), except when discarding a published event with nonzero reten-
tion time by invoking the saEvtEventRetentionTimeClear() function to clear the reten-
tion time of the event. For this purpose, the process uses the event id that it obtained
in a previous saEvtEventPublish() call to refer to the published event.

The following list shows all event attributes. For each attribute, it is specified whether
the process in which the event resides has write access or not, as some attributes
can be set only by the Event Service. Additionally, the list gives the default value of
each attribute of an event allocated by invoking the saEvtEventAllocate() function.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.4.5.3 21

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• Event Pattern Array - An array defined earlier by the
SaEvtEventPatternArrayT structure.
Write access is permitted.
Default: no patterns

• Event Priority - An event priority is of the type SaEvtEventPriorityT. Event pri-
orities range from SA_EVT_HIGHEST_PRIORITY to
SA_EVT_LOWEST_PRIORITY.
Write access is permitted.
Default: SA_EVT_EVENT_LOWEST_PRIORITY

• Event Publish Time - The time when the event is published. This time can be
any time between the start and the end of the event publish API call. The
Event Service fills in this time when the event is published.
This attribute is read-only.
Default: SA_TIME_UNKNOWN

• Event Retention Time - The retention time is the duration for which the event
is retained.
Write access is permitted.
Default: 0

• Event Publisher Name - The name of the entity that publishes an event on
the event channel. If the publishing process is part of a component under the
control of the Availability Management Framework, this field should contain the
name of that component (in future, it is expected that in such cases it shall be
mandatory to pass the LDAP DN of a component); otherwise, any octet string
(including zeros) may be used as the name.
Write access is permitted.
Default: empty string (SaNameT.length = 0)

• Event Id - The cluster-wide unique identifier of the event on the event channel.
It should not be assumed that event ids are consecutive or increasing. The
event id attribute is set automatically by the Event Service when the event is
published.
This attribute is read-only.
Default: SA_EVT_EVENTID_NONE

3.4.6 Event Filters

The Event Service supports several different types of filters and pattern matching
algorithms, which are defined by the following enumeration type.
22 SAI-AIS-EVT-B.03.01 Section 3.4.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.4.6.1 SaEvtEventFilterTypeT

typedef enum {

SA_EVT_PREFIX_FILTER = 1,

SA_EVT_SUFFIX_FILTER = 2,

SA_EVT_EXACT_FILTER = 3,

SA_EVT_PASS_ALL_FILTER = 4

} SaEvtEventFilterTypeT;

The saEvtEventFilterTypeT enumeration type defines the types of filters.
The corresponding pattern matching algorithms are explained later in Table 2 on
page 24.

3.4.6.2 SaEvtEventFilterT

typedef struct {

SaEvtEventFilterTypeT filterType;

SaEvtEventPatternT filter;

} SaEvtEventFilterT;

The event filter type defines the filter type and the filter pattern to be applied on an
event pattern when filtering events on an event channel.

3.4.6.3 SaEvtEventFilterArrayT

typedef struct {

SaSizeT filtersNumber;

SaEvtEventFilterT *filters;

} SaEvtEventFilterArrayT;

The event filter array structure type defines one or more filters.

Filters are passed to the Event Service by a subscriber process by invoking the
saEvtEventSubscribe() function. The Event Service does the filtering to decide
whether a published event is delivered to a subscriber for a particular subscription by
matching the first filter (contents and type) against the first pattern in the event pattern
array, the second filter against the second pattern in the event pattern array, and so
on, up to the last filter. An event matches a particular subscription if all patterns of the
event match all filters provided in an invocation of the saEvtEventSubscribe() call.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.4.6.1 23

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Table 2 Filter Types and Pattern Matching Algorithms

If fewer patterns than filters are defined, the extra filters will be matched to an empty
pattern. Only a filter of size zero (filter.patternSize == 0) or of type
SA_EVT_PASS_ALL_FILTER matches an empty pattern.

If fewer filters than patterns are defined, the filter for all remaining patterns defaults to
SA_EVT_PASS_ALL_FILTER. For example, if an event has 10 patterns and
filtersNumber is 2, the first two patterns are matched against the two filters. The
remaining eight patterns are automatically considered a “match”.

Filter Type Matching Algorithm

SA_EVT_PREFIX_FILTER The entire filter must match the first filter.patternSize charac-
ters of the event pattern.
Match example: Filter=”abcd”, Event Pattern=”abcdxyz”
Match example: Filter=”abcd”, Event Pattern=”abcd”
Match example: Filter=”XYz”, Event Pattern=”XYzaB”
Non-Match example: Filter=”xyz”, Event Pattern=”abcdxyz”
Non-Match example: Filter=”Xyz”, Event Pattern=”xyzab”
Non-Match example: Filter=”xyz”, Event Pattern=”xy”
(The entire filter does not match the first part of the pattern;
only the first two characters match.)

SA_EVT_SUFFIX_FILTER The entire filter must match the last filter.patternSize charac-
ters of the event pattern.
Match example: Filter=”xyz”, Event Pattern=”abcdxyz”
Match example: Filter=”abCd”, Event Pattern=”abCd”
Non-Match example: Filter=”abcd”, Event Pattern=”abcdxyz”
Non-Match example: Filter=”xyz”, Event Pattern=”yz”
(The entire filter does not match the last part of the event pat-
tern; only the last two characters match.)

SA_EVT_EXACT_FILTER The entire filter must exactly match the entire event pattern.
Match example: Filter=”abc”, Event Pattern=”abc”
Non-Match example: Filter=”ab”, Event Pattern=”abc”
(The entire filter does not match the entire event pattern.)

SA_EVT_PASS_ALL_FILTER Always matches, regardless of the filter or event pattern.
This filter type may be used, for example, to specify a filter for
event patterns 1 and 4 and a pass-through for event patterns
2 and 3.
24 SAI-AIS-EVT-B.03.01 Section 3.4.6.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
If the patterns of an event match the filters of several different subscriptions of a par-
ticular subscriber on a single event channel, the Event Service invokes
saEvtEventDeliverCallback() (see Section 3.7.7 on page 56) only once for that event
and that subscriber. However, if a subscriber opens an event channel twice, and the
patterns of an event match the filters of the subscriptions on both open event chan-
nels, the Event Service invokes saEvtEventDeliverCallback() twice (one for each
opened channel).

3.4.7 “Lost Event” Event

A subscriber can lose events in any of the following situations:

• The subscriber handles incoming events too slowly.
• A communication failure between the subscriber and the publisher occurs.
• Communication between the subscriber and the publisher is slow.
• A node on which the subscriber or publisher is running is overloaded.

When a subscriber loses events on an event channel, the Event Service sends a lost
event event to the subscriber on the corresponding event channel. A “lost event” noti-
fies the subscriber that one or more events might have been lost. It is possible that a
subscriber receives a lost event when actually the events being lost would not have
matched the filters of the subscriber. The “lost event” event is delivered to the sub-
scriber, regardless of the filters that the subscriber has set.

Regardless of the situations mentioned above that can cause a subscriber to lose
events, an Event Service implementation must make sure that if a publisher sends
events A, B, and C in this order, and the Event Service determines that it can deliver
A and C but not B to a subscriber, it should deliver a "lost event" between A and C.

As soon as a process consumes a “lost event” event, the Event Service should
deliver another one if one or more of the situations previously described occur again.

The Event Service sets the attributes of the “lost event” event as follows:

• The first element of the event pattern array points to the character string
defined by SA_EVT_LOST_EVENT:

#define SA_EVT_LOST_EVENT “SA_EVT_LOST_EVENT_PATTERN”

• The event priority is set to SA_EVT_HIGHEST_PRIORITY.
• The event publish time is set to the time at which the Event Service noticed

that this subscriber might have lost some events.
• The event publisher name is set to the NULL string.
• The event retention time is set to 0.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.4.7 25

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• The event identifier is set to SA_EVT_EVENTID_LOST
• The event data is empty, that is, its size is zero.
26 SAI-AIS-EVT-B.03.01 Section 3.4.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.4.8 SaEvtLimitIdT

The SaEvtLimitIdT enum provides a set of values that identify limits for a particular
implementation of the Event Service. Note that the Event Service specification does
not define a configuration for these limits, which are usually predefined by the imple-
mentation.

The user can retrieve at runtime the current value of a particular limit by specifying
the identifier of the limit (one of the enum values of the type SaEvtLimitIdT, defined
below) when invoking the saEvtLimitGet() function (see Section 3.8.1 on page 66).

The limit value is returned in a parameter of a generic type (SaLimitValueT type,
defined in [1]). As the limit identified by the enum
SA_EVT_MAX_RETENTION_DURATION_ID is of type SaTimeT, the timeValue field
of SaLimitValueT must be used for further access. As all other limits defined in this
specification are of type SaUint64T, the uint64Value field of SaLimitValueT must be
used for further access.

typedef enum {

SA_EVT_MAX_NUM_CHANNELS_ID = 1,

SA_EVT_MAX_EVT_SIZE_ID = 2,

SA_EVT_MAX_PATTERN_SIZE_ID = 3,

SA_EVT_MAX_NUM_PATTERNS_ID = 4,

SA_EVT_MAX_RETENTION_DURATION_ID = 5,

} SaEvtLimitIdT;

The values of the SaEvtLimitIdT enumeration type have the following interpretation:

• SA_EVT_MAX_NUM_CHANNELS_ID - This enum can be used to retrieve the
maximum number of event channels in the cluster.

• SA_EVT_MAX_EVT_SIZE_ID - This enum can be used to retrieve the maximum
size in bytes of the event. This size includes the size of the header and the size
of the data.

• SA_EVT_MAX_PATTERN_SIZE_ID - This enum can be used to retrieve the
maximum size in bytes of a pattern of an event.

• SA_EVT_MAX_NUM_PATTERNS_ID - This enum can be used to retrieve the
maximum number of patterns an event can have. Note that the maximum num-
ber of filters that can be specified is the same as the maximum number of pat-
terns an event can have.

• SA_EVT_MAX_RETENTION_DURATION_ID - This enum can be used to
retrieve the longest period an event will be retained.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.4.8 27

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.5 Library Life Cycle

3.5.1 saEvtInitialize()

Prototype

SaAisErrorT saEvtInitialize(

SaEvtHandleT *evtHandle,

const SaEvtCallbacksT *evtCallbacks,

SaVersionT *version

);

Parameters

evtHandle - [out] A pointer to the handle which designates this particular initialization
of the Event Service, and which is to be returned by the Event Service. The
SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

evtCallbacks - [in] If evtCallbacks is set to NULL, no callback is registered; If
evtCallbacks is not set to NULL, it is a pointer to an SaEvtCallbacksT structure which
contains the callback functions of the process that the Event Service may invoke.
Only non-NULL callback functions in this structure will be registered. The
SaEvtCallbacksT type is defined in Section 3.4.3 on page 18.

version - [in/out] As an input parameter, version is a pointer to a structure containing
the required Event Service version. In this case, minorVersion is ignored and should
be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Event Service. The SaVersionT type is defined in [1].

Description

This function initializes the Event Service for the invoking process and registers the
various callback functions. This function must be invoked prior to the invocation of
any other Event Service functionality. The handle pointed to by evtHandle is returned
by the Event Service as the reference to this association between the process and
the Event Service. The process uses this handle in subsequent communication with
the Event Service.

If the implementation supports the specified releaseCode and majorVersion,
SA_AIS_OK is returned. In this case, the structure pointed to by the version parame-
ter is set by this function to:
28 SAI-AIS-EVT-B.03.01 Section 3.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can

support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can sup-
port for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can sup-
port for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.5.1 29

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the version
parameter points is not compatible with the version of the Event Service implementa-
tion.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtSelectionObjectGet(), saEvtDispatch(), saEvtFinalize()

3.5.2 saEvtSelectionObjectGet()

Prototype

SaAisErrorT saEvtSelectionObjectGet(

 SaEvtHandleT evtHandle,

 SaSelectionObjectT *selectionObject

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is defined in
[1].

Description

This function returns the operating system handle associated with the handle
evtHandle. The invoking process can use this operating system handle to detect
pending callbacks, instead of repeatedly invoking the saEvtDispatch() function for this
purpose.
30 SAI-AIS-EVT-B.03.01 Section 3.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The operating system handle returned by saEvtSelectionObjectGet() is valid until
saEvtFinalize() is invoked on the same handle evtHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtInitialize(), saEvtDispatch(), saEvtFinalize()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.5.2 31

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.5.3 saEvtDispatch()

Prototype

SaAisErrorT saEvtDispatch(

 SaEvtHandleT evtHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saEvtDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle evtHandle in the way specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle evtHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.
32 SAI-AIS-EVT-B.03.01 Section 3.5.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtInitialize(), saEvtFinalize()

3.5.4 saEvtFinalize()

Prototype

 SaAisErrorT saEvtFinalize(

 SaEvtHandleT evtHandle

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

Description

The saEvtFinalize() function closes the association represented by the evtHandle
parameter between the invoking process and the Event Service. The process must
have invoked saEvtInitialize() before it invokes this function. A process must invoke
this function once for each handle it acquired by invoking saEvtInitialize().

If the saEvtFinalize() function completes successfully, it releases all resources
acquired when the saEvtInitialize() function was called. Moreover, it closes all event
channels that are open for the particular handle. Furthermore, it cancels all pending
SaEvtChannelOpenCallbackT callbacks related to the particular handle. Note that
because the callback invocation is asynchronous, it is still possible that some call-
back calls are processed after this call returns successfully.

If a process terminates, the Event Service implicitly finalizes all instances of the Event
Service that are associated with the process, as described in the preceding para-
graph.

After saEvtFinalize() completes successfully, the handle evtHandle and the selection
object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.5.4 33

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saEvtInitialize(), saEvtChannelClose(), SaEvtChannelOpenCallbackT,
saEvtSelectionObjectGet()
34 SAI-AIS-EVT-B.03.01 Section 3.5.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.6 Event Channel Operations

3.6.1 saEvtChannelOpen() and saEvtChannelOpenAsync()

Prototype

SaAisErrorT saEvtChannelOpen(

SaEvtHandleT evtHandle,

const SaNameT *channelName,

SaEvtChannelOpenFlagsT channelOpenFlags,

SaTimeT timeout,

SaEvtChannelHandleT *channelHandle

);

SaAisErrorT saEvtChannelOpenAsync(

SaEvtHandleT evtHandle,

SaInvocationT invocation,

const SaNameT *channelName,

SaEvtChannelOpenFlagsT channelOpenFlags

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

invocation - [in] This parameter allows the invoking process to match this invocation
of saEvtChannelOpenAsync() with the corresponding callback call. The
SaInvocationT type is defined in [1].

channelName - [in] A pointer to the name of the event channel that identifies an event
channel globally in a cluster. The SaNameT type is defined in [1].

channelOpenFlags - [in] The requested access modes of the event channel. The
value of this parameter is obtained by a bitwise OR of the
SA_EVT_CHANNEL_PUBLISHER, SA_EVT_CHANNEL_SUBSCRIBER, and
SA_EVT_CHANNEL_CREATE flags, as defined for the SaEvtChannelOpenFlagsT
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.6 35

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
type in Section 3.4.4 on page 19. If SA_EVT_CHANNEL_PUBLISHER is set, the pro-
cess may use the returned event channel handle when invoking saEvtEventPublish().
If SA_EVT_CHANNEL_SUBSCRIBER is set, the process may use the returned
event channel handle when invoking saEvtEventSubscribe(). If the user intends to
open only an existing event channel, the SA_EVT_CHANNEL_CREATE flag may not
be set. If the user intends to open an event channel or create and open an event
channel if it does not exist, the SA_EVT_CHANNEL_CREATE flag must be set.

timeout - [in] The saEvtChannelOpen() invocation is considered to have failed if it
does not complete by the time specified. An event channel may still be created. The
SaTimeT type is defined in [1].

channelHandle - [out] A pointer to the memory area (provided by the invoking pro-
cess in the address space of the process) to hold the channel handle. If the event
channel is opened successfully, the Event Service stores in this memory area the
handle that the process uses to access the channel in subsequent invocations of the
functions of the Event Service API. In the case of saEvtChannelOpenAsync(), this
handle is returned in the corresponding callback. The SaEvtChannelHandleT type is
defined in Section 3.4.1.3 on page 18.

Description

The saEvtChannelOpen() and saEvtChannelOpenAsync() functions open an event
channel. If the event channel does not exist, and the SA_EVT_CHANNEL_CREATE
flag is set in the channelOpenFlags parameter, the event channel is first created.

The saEvtChannelOpen() function is a blocking operation and returns a new event
channel handle.

Completion of the saEvtChannelOpenAsync() function is signaled by an invocation of
the associated saEvtChannelOpenCallback() callback function, which must have
been supplied when the process invoked the saEvtInitialize() call. The process sup-
plies the value of invocation when it invokes the saEvtChannelOpenAsync() function
and the Event Service gives that value of invocation back to the application when it
invokes the corresponding saEvtChannelOpenCallback() function. The invocation
parameter is a mechanism that enables the process to determine which call triggered
which callback.

An event channel may be opened multiple times by the same or different processes
for publishing events and subscribing to events. If a process opens an event channel
multiple times, it may receive the same event multiple times. However, a process
shall never receive an event more than once on a particular event channel handle.
If a process opens a channel twice and an event is matched on both open channels,
the Event Service performs two callbacks -- one for each opened channel.
36 SAI-AIS-EVT-B.03.01 Section 3.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout specified by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saEvtInitialize() to initialize the Event
Service was incomplete, since the saEvtChannelOpenCallback() callback function is
missing. This applies only to the saEvtChannelOpenAsync() function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if SA_EVT_CHANNEL_CREATE is set in channelOpenFlags, and
the name to which channelName points is not a DN, or the type of its first RDN is not
safChnl.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). In particular, this value is returned if the number of event channels in the
cluster has reached its limit, and the call would create a new event channel. Refer to
the description of the enum SA_EVT_MAX_NUM_CHANNELS_ID in Section 3.4.8
on page 27.

SA_AIS_ERR_NOT_EXIST - The SA_EVT_CHANNEL_CREATE flag is not set and
the event channel designated by the name to which channelName points does not
exist.

SA_AIS_ERR_BAD_FLAGS - The channelOpenFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

SaEvtChannelOpenCallbackT, saEvtInitialize(), saEvtChannelClose()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.6.1 37

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.6.2 SaEvtChannelOpenCallbackT

Prototype

typedef void (*SaEvtChannelOpenCallbackT)(

SaInvocationT invocation,

SaEvtChannelHandleT channelHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saEvtChannelOpenAsync() function and is used by the Event Service in
this callback. The invocation parameter allows the process to match the invocation of
that function with this callback. The SaInvocationT type is defined in [1].

channelHandle - [in] The handle that designates the event channel. The
SaEvtChannelHandleT type is defined in Section 3.4.1.3 on page 18.

error - [in] This parameter indicates whether the saEvtChannelOpenAsync() function
was successful. The SaAisErrorT type is defined in [1]. The values that can be
returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_BAD_HANDLE - The handle evtHandle in the corresponding
invocation of the saEvtChannelOpenAsync() function is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly in the cor-
responding invocation of the saEvtChannelOpenAsync() function. In particular,
this value is returned if SA_EVT_CHANNEL_CREATE is set in
channelOpenFlags, and the name to which channelName points is not a DN,
or the type of its first RDN is not safChnl.
38 SAI-AIS-EVT-B.03.01 Section 3.6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider
of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory). In particular, this value is returned if the number of event chan-
nels in the cluster has reached its limit, and the call would create a new event
channel. Refer to the description of the enum
SA_EVT_MAX_NUM_CHANNELS_ID in Section 3.4.8 on page 27.

• SA_AIS_ERR_NOT_EXIST - In the corresponding invocation of the
saEvtChannelOpenAsync() function, the SA_EVT_CHANNEL_CREATE flag
is not set, and the event channel designated by the name to which
channelName points does not exist.

• SA_AIS_ERR_BAD_FLAGS - The channelOpenFlags parameter in the corre-
sponding invocation of the saEvtChannelOpenAsync() function is invalid.

• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-
able on this cluster node because it is not a member node.

Description

The Event Service invokes this callback function when the operation requested by the
invocation of saEvtChannelOpenAsync() completes.

This callback is invoked in the context of a thread calling saEvtDispatch() on the han-
dle evtHandle that was specified in the saEvtChannelOpenAsync() call.

If this function succeeds, the handle to the opened/created event channel is returned
in channelHandle; otherwise, an error is returned in the error parameter.

Return Values

None

See Also

saEvtChannelOpenAsync(), saEvtDispatch()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.6.2 39

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.6.3 saEvtChannelClose()

Prototype

SaAisErrorT saEvtChannelClose(

SaEvtChannelHandleT channelHandle

);

Parameters

channelHandle - [in] The handle of the event channel to close. The channelHandle
parameter must have been obtained previously in an invocation of
saEvtChannelOpen() or saEvtChannelOpenCallback(). The SaEvtChannelHandleT
type is defined in Section 3.4.1.3 on page 18.

Description

This API function closes the event channel which is designated by channelHandle
and which was opened by an earlier invocation of saEvtChannelOpen() or
saEvtChannelOpenAsync().

After this invocation, the handle channelHandle is no longer valid.

This call frees all resources allocated for this process by the Event Service on the
event channel identified by the handle channelHandle. In particular, this call uninstalls
any subscriptions of this process on the event channel and frees any resources allo-
cated by the Event Service for the subscriptions. Additionally, this call frees events
allocated for the process by saEvtEventAllocate() or saEvtEventDeliverCallback()
(and that have not yet been freed by saEvtEventFree()) and frees memory allocated
for the process by saEvtEventAttributesGet() that has not yet been freed by
saEvtEventPatternFree().

This call cancels all pending callbacks that refer directly or indirectly to the handle
channelHandle. Note that because the callback invocation is asynchronous, it is still
possible that some callback calls are processed after this call returns successfully.

If the invocation of the saEvtChannelClose() function completes successfully, and no
process has the event channel open any longer, and the deletion of the event chan-
nel was pending as a result of invoking the saEvtChannelUnlink() function, the event
channel is deleted immediately.

The deletion (unlink) of an event channel (see Section 3.6.4) frees all resources allo-
cated by the Event Service for it, such as published events with nonzero retention
time.
40 SAI-AIS-EVT-B.03.01 Section 3.6.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtChannelOpen(), saEvtChannelOpenAsync(), SaEvtChannelOpenCallbackT,
saEvtChannelUnlink(), saEvtEventSubscribe(), saEvtEventAllocate(),
saEvtEventDeliverCallback(), saEvtEventAttributesGet(), saEvtEventFree(),
saEvtEventPatternFree()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.6.3 41

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.6.4 saEvtChannelUnlink()

Prototype

SaAisErrorT saEvtChannelUnlink(

SaEvtHandleT evtHandle,

const SaNameT *channelName

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

channelName - [in] A pointer to the name of the event channel that is to be unlinked.
The SaNameT type is defined in [1].

Description

This function deletes from the cluster an event channel designated by the name to
which channelName points.

After successful completion of the invocation:

• The name to which channelName points is no longer valid, that is, any invocation
of a function of the Event Service API that uses this event channel name returns
an error unless an event channel is re-created with this name. The event chan-
nel is re-created by specifying in an saEvtChannelOpen() call or an
saEvtChannelOpenAsync() call the SA_EVT_CHANNEL_CREATE flag and the
same name of the event channel to be unlinked. This way, a new instance of the
event channel is created while the old instance of the event channel is possibly
not yet finally deleted.
Note that this behavior is similar to the way POSIX treats files.

• If no process has the event channel open when saEvtChannelUnlink() is invoked,
the event channel is immediately deleted.

• Any process that has the event channel open can still continue to access it. Dele-
tion of the event channel will occur when the last saEvtChannelClose() operation
is performed.

Note that the only way to delete an existing event channel from the cluster
namespace is by invoking saEvtChannelUnlink() on the event channel.
42 SAI-AIS-EVT-B.03.01 Section 3.6.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
The deletion of an event channel frees all resources allocated by the Event Service
for it, such as published events with nonzero retention time.

This API can be invoked by any process, and the invoking process need not be the
creator or opener of the event channel.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - The event channel identified by the name to which
channelName points does not exist.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtInitialize(), saEvtChannelClose()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.6.4 43

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.7 Event Operations

3.7.1 saEvtEventAllocate()

Prototype

SaAisErrorT saEvtEventAllocate(

SaEvtChannelHandleT channelHandle,

SaEvtEventHandleT *eventHandle

);

Parameters

channelHandle - [in] The handle of the event channel on which the event is to be pub-
lished. The channelHandle parameter must have been obtained previously in an invo-
cation of saEvtChannelOpen() or saEvtChannelOpenCallback(). The
SaEvtChannelHandleT type is defined in Section 3.4.1.3 on page 18.

eventHandle - [out] A pointer to the handle for the newly allocated event. It is the
responsibility of the invoking process to allocate memory for this handle before invok-
ing this function. The Event Service will assign the value of the handle when this func-
tion returns successfully. The SaEvtEventHandleT type is defined in Section 3.4.1.2
on page 18.

Description

The saEvtEventAllocate() function allocates memory for the event header and initial-
izes all event attributes to default values, as described in Section 3.4.5.5 on page 21.
The event allocated by saEvtEventAllocate() must be freed by invoking
saEvtEventFree().

This function fails with the SA_AIS_ERR_ACCESS error code if the
SA_EVT_CHANNEL_PUBLISHER flag was not set when the instance of the event
channel identified by channelHandle was opened.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
44 SAI-AIS-EVT-B.03.01 Section 3.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_PUBLISHER flag was not set
when the instance of the event channel identified by channelHandle was opened.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventFree(), saEvtEventPublish()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.1 45

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.7.2 saEvtEventFree()

Prototype

SaAisErrorT saEvtEventFree(

SaEvtEventHandleT eventHandle

);

Parameters

eventHandle - [in] The handle of the event whose memory can now be freed by the
Event Service. The SaEvtEventHandleT type is defined in Section 3.4.1.2 on page
18.

Description

The function is used to free events allocated by saEvtEventAllocate() or obtained
from saEvtEventDeliverCallback().

The saEvtEventFree() function gives the Event Service permission to deallocate the
event header and memory associated with the event attributes for the event identified
by the handle eventHandle. If the event was allocated by the Event Service during a
prior invocation of saEvtEventDeliverCallback(), saEvtEventFree() also gives the
Event Service permission to deallocate the event data.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.
46 SAI-AIS-EVT-B.03.01 Section 3.7.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

SaEvtEventDeliverCallbackT, saEvtEventAllocate(), saEvtChannelOpen(),
saEvtChannelOpenAsync()

3.7.3 saEvtEventAttributesSet()

Prototype

SaAisErrorT saEvtEventAttributesSet(

SaEvtEventHandleT eventHandle,

const SaEvtEventPatternArrayT *patternArray,

SaEvtEventPriorityT priority,

SaTimeT retentionTime,

const SaNameT *publisherName

);

Parameters

eventHandle - [in] The handle of the event whose attributes are to be set. The
SaEvtEventHandleT type is defined in Section 3.4.1.2 on page 18.

patternArray - [in] A pointer to a structure that contains the array of patterns to be
copied into the event pattern array and the number of such patterns. The
SaEvtEventPatternArrayT type is defined in Section 3.4.5.2 on page 20.

priority - [in] The priority of the event. The SaEvtEventPriorityT type is defined in Sec-
tion 3.4.5.3 on page 21.

retentionTime - [in] The duration for which the event will be retained. The SaTimeT
type is defined in [1].

publisherName - [in] A pointer to the name of the publisher of the event. The
SaNameT type is defined in [1].
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.3 47

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Description

This function is used to set all the writeable event attributes in the header of the event
designated by the handle eventHandle. These attributes are the array of patterns to
which patternArray points, priority, retentionTime, and publisherName. If patternArray
or publisherName is NULL, the corresponding attributes are not changed.

Once the call to saEvtEventAttributesSet() returns, the memory for the structure to
which patternArray points can be freed.

It is possible to invoke this API function on any event allocated by
saEvtEventAllocate() or received from saEvtEventDeliverCallback() on the instance
of the opened event channel on which eventHandle was obtained.

This function fails with the SA_AIS_ERR_ACCESS error code if the
SA_EVT_CHANNEL_PUBLISHER flag was not set when either saEvtChannelOpen()
or saEvtChannelOpenAsync() was called to open the instance of the event channel
on which the handle eventHandle was obtained.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.
48 SAI-AIS-EVT-B.03.01 Section 3.7.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_PUBLISHER flag was not set
when either saEvtChannelOpen() or saEvtChannelOpenAsync() was called to open
the instance of the event channel on which the handle eventHandle was obtained.

SA_AIS_ERR_TOO_BIG - One or more of the following conditions occur:

• The value of patternArray->patternsNumber is larger than the maximum value
supported by the implementation. Refer to the description of the enum
SA_EVT_MAX_NUM_PATTERNS_ID in Section 3.4.8 on page 27.

• The patternSize value of one or more patterns
(patternArray->patterns[i].patternSize where i is an index to one of the patterns)
is larger than the maximum value supported by the implementation. Refer to the
description of the enum SA_EVT_MAX_PATTERN_SIZE_ID in Section 3.4.8 on
page 27.

• The specified retentionTime exceeds the maximum retention time supported by
the implementation. Refer to the description of the enum
SA_EVT_MAX_RETENTION_DURATION_ID in Section 3.4.8 on page 27.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventAllocate(), saEvtEventFree(), SaEvtEventDeliverCallbackT,
saEvtEventAttributesGet(), saEvtChannelOpen(), saEvtChannelOpenAsync()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.3 49

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.7.4 saEvtEventAttributesGet()

Prototype

SaAisErrorT saEvtEventAttributesGet(

SaEvtEventHandleT eventHandle,

SaEvtEventPatternArrayT *patternArray,

SaEvtEventPriorityT *priority,

SaTimeT *retentionTime,

SaNameT *publisherName,

SaTimeT *publishTime,

SaEvtEventIdT *eventId

);

Parameters

eventHandle - [in] The handle of the event whose attributes are to be retrieved. The
SaEvtEventHandleT type is defined in Section 3.4.1.2 on page 18.

patternArray - [in/out] A pointer to a structure that describes the event pattern array
and the number of patterns to be retrieved. The SaEvtEventPatternArrayT type is
defined in Section 3.4.5.2 on page 20.

If the caller sets patternArray->patterns to NULL, the Event Service ignores the
patternArray->allocatedNumber field and allocates memory for
patternArray->patterns and each
patternArray->patterns[i].pattern (where i is an index to one of the patterns). The
Event Service sets the fields
patternArray->patternsNumber, patternArray->patterns,
patternArray->patterns[i].pattern, and
patternArray->patterns[i].patternSize accordingly. The invoking process is then
responsible for freeing the corresponding memory by specifying
patternArray->patterns in a call to the saEvtEventPatternFree() function.

Alternatively, the invoking process can allocate the memory to retrieve all event pat-
terns and set the fields
patternArray->allocatedNumber, patternArray->patterns,
patternArray->patterns[i].allocatedSize, and
patternArray->patterns[i].pattern accordingly. In this case, these fields are in parame-
50 SAI-AIS-EVT-B.03.01 Section 3.7.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
ters and will not be modified by the Event Service.
The Event Service copies the patterns into the successive entries of
patternArray->patterns, starting with the first entry and continuing until all event pat-
terns are copied. If patternArray->allocatedNumber is smaller than the number of
event patterns, or the size of the buffer allocated for one of the patterns is smaller
than the actual size of the pattern, the invocation fails, and the
SA_AIS_ERR_NO_SPACE error is returned. If such an error occurs, it is unspecified
whether some buffers to which patternArray->patterns[i].pattern point were changed
or not by the Event Service. Regardless of whether such an error occurs, the Event
Service sets the patternArray->patternsNumber and
patternArray->patterns[i].patternSize fields for all
patternArray->allocatedNumber individual patterns to indicate the number of event
patterns and the size of each pattern.

priority - [out] A pointer to the priority of the event. The SaEvtEventPriorityT type is
defined in Section 3.4.5.3 on page 21.

retentionTime - [out] A pointer to the duration for which the publisher will retain the
event. The SaTimeT type is defined in [1].

publisherName - [out] A pointer to the name of the publisher of the event. The
SaNameT type is defined in [1].

publishTime - [out] A pointer to the time at which the publisher published the event.
The SaTimeT type is defined in [1].

eventId - [out] A pointer to the event identifier. The SaEvtEventIdT type is defined in
Section 3.4.5.4 on page 21.

Description

This function retrieves the value of the attributes of the event designated by
eventHandle.

If the NULL pointer is specified for any of the out or in/out parameters, the Event Ser-
vice does not return the corresponding out value.

It is possible to invoke this API function on any event allocated by
saEvtEventAllocate() or received from saEvtEventDeliverCallback() on the instance
of the opened event channel on which eventHandle was obtained. This event may
have been modified by the saEvtEventAttributesSet() function after the event has
been allocated or received.

Only if this API is invoked on a received event, the attributes
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.4 51

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• "publish time" and
• "event id"

have the values set by the Event Service at event publishing time. In all other cases,
the attributes will either have the initial values set by the Event Service when it allo-
cated the event or the attributes set by a prior invocation of the
saEvtEventAttributesSet() function.

This function fails with the SA_AIS_ERR_ACCESS error code if neither the
SA_EVT_CHANNEL_PUBLISHER flag nor the SA_EVT_CHANNEL_SUBSCRIBER
flag was set when saEvtChannelOpen() or saEvtChannelOpenAsync() was called to
open the instance of the event channel on which the handle eventHandle was
obtained.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_SPACE - The value of allocatedNumber in the structure to which
patternArray points is smaller than the number of event patterns, or the size of the
buffer allocated for one of the patterns is smaller than the actual size of the pattern.
52 SAI-AIS-EVT-B.03.01 Section 3.7.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
This return value applies only if the patterns pointer as an in parameter in the struc-
ture to which patternArray points is not NULL.

SA_AIS_ERR_ACCESS - Neither the SA_EVT_CHANNEL_PUBLISHER flag nor the
SA_EVT_CHANNEL_SUBSCRIBER flag was set when saEvtChannelOpen() or
saEvtChannelOpenAsync() was called to open the instance of the event channel on
which the handle eventHandle was obtained.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventPatternFree(), SaEvtEventDeliverCallbackT, saEvtEventAllocate(),
saEvtEventFree(), saEvtChannelOpen(), saEvtChannelOpenAsync(),
saEvtEventAttributesSet(), saEvtFinalize()

3.7.5 saEvtEventPatternFree()

Prototype

SaAisErrorT saEvtEventPatternFree(

SaEvtEventHandleT eventHandle,

SaEvtEventPatternT *patterns

);

Parameters

eventHandle - [in] The handle of the event whose attributes are to be retrieved. The
SaEvtEventHandleT type is defined in Section 3.4.1.2 on page 18.

patterns - [in] A pointer to the memory that was allocated by the Event Service library
in the saEvtEventAttributesGet() function and is to be deallocated. The
SaEvtEventPatternT type is defined in Section 3.4.5.1 on page 20.

Description

This function frees the memory to which patterns points and which was allocated by
the Event Service library in a previous call to the saEvtEventAttributesGet() function.

For details, refer to the description of the patternArray parameter of the
saEvtEventAttributesGet() function.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.5 53

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventAttributesGet()

3.7.6 saEvtEventDataGet()

Prototype

SaAisErrorT saEvtEventDataGet(

SaEvtEventHandleT eventHandle,

void *eventData,

SaSizeT *eventDataSize

);

Parameters

eventHandle - [in] The handle to the event that was delivered by
saEvtEventDeliverCallback(). The SaEvtEventHandleT type is defined in Section
3.4.1.2 on page 18.

eventData - [in] A non-NULL pointer to a buffer (provided by the process) into which
the Event Service stores the data associated with the delivered event.
54 SAI-AIS-EVT-B.03.01 Section 3.7.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
eventDataSize - [in/out] The in value of the *eventDataSize field is the size of the
buffer to which eventData points, and which is provided by the invoking process. If
this buffer is not large enough to hold all of the data associated with this event, no
data will be copied into the buffer, and the value SA_AIS_ERR_NO_SPACE will be
returned. The out value of the field to which eventDataSize points is valid only if the
function returns either SA_AIS_OK or SA_AIS_ERR_NO_SPACE and is the size of
the data associated with this event, which may be less than, equal to, or greater than
the in value of the field to which eventDataSize points. The SaSizeT type is defined in
[1].

Description

The saEvtEventDataGet() function allows a process to retrieve the data associated
with an event previously delivered by saEvtEventDeliverCallback().

This function fails with the SA_AIS_ERR_ACCESS error code if the
SA_EVT_CHANNEL_SUBSCRIBER flag was not set when either
saEvtChannelOpen() or saEvtChannelOpenAsync() was called to open the instance
of the event channel on which eventHandle was obtained.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventDeliverCallback() function,
or saEvtEventFree() has already been invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.6 55

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The buffer provided by the process is too small to hold
the data associated with the delivered event.

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_SUBSCRIBER flag was not set
when either saEvtChannelOpen() or saEvtChannelOpenAsync() was called to open
the instance of the event channel on which the handle eventHandle was obtained.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

SaEvtEventDeliverCallbackT, saEvtEventFree(), saEvtChannelOpen(),
saEvtChannelOpenAsync()

3.7.7 SaEvtEventDeliverCallbackT

Prototype

typedef void(*SaEvtEventDeliverCallbackT)(

 SaEvtSubscriptionIdT subscriptionId,

SaEvtEventHandleT eventHandle,

SaSizeT eventDataSize

);

Parameters

subscriptionId - [in] An identifier which a process supplied in an
saEvtEventSubscribe() invocation, and which enables the process to determine
which subscription resulted in the delivery of the event. The SaEvtSubscriptionIdT
type is defined in Section 3.4.2 on page 18.

eventHandle - [in] The handle to the event delivered by this callback. The
SaEvtEventHandleT type is defined in Section 3.4.1.2 on page 18.

eventDataSize - [in] The size of the data associated with the event. The SaSizeT type
is defined in [1].
56 SAI-AIS-EVT-B.03.01 Section 3.7.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Description

The Event Service invokes this callback function to notify a subscribing process that
an event has been received.

This callback is invoked in the context of a thread calling saEvtDispatch() on the han-
dle evtHandle that was specified in the corresponding saEvtChannelOpen() or
saEvtChannelOpenAsync() call to obtain the channel handle to the instance of the
event channel on which eventHandle was obtained.

A published event is received when it has an event pattern matching the filter of a
subscription of this process. This filter is established by calling the
saEvtEventSubscribe() function. For details on filtering, refer to Section 3.4.6 on page
22.

The process may invoke saEvtEventAttributesGet() to obtain the attributes associ-
ated with the event and saEvtEventDataGet() to obtain the data associated with the
event.

It is the responsibility of the process to free the event by invoking the
saEvtEventFree() function.

The validity of the eventHandle parameter is not limited to the scope of this callback
function.

To ensure that the subscriptionId provided to the event delivery callback is unique in
applications that use the same event delivery callback function for subscriptions on
more than one event channel, the application should provide subscriptionIds that are
unique across all open event channels when calling the saEvtEventSubscribe() func-
tion.

Return Values

None

See Also

saEvtEventAttributesGet(), saEvtEventDataGet(), saEvtEventSubscribe(),
saEvtChannelOpen(), saEvtChannelOpenAsync(), saEvtEventFree(),
saEvtDispatch()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.7 57

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.7.8 saEvtEventPublish()

Prototype

SaAisErrorT saEvtEventPublish(

SaEvtEventHandleT eventHandle,

const void *eventData,

SaSizeT eventDataSize,

SaEvtEventIdT *eventId

);

Parameters

eventHandle - [in] The handle of the event that is to be published. The event must
have been allocated by saEvtEventAllocate() or obtained from
saEvtEventDeliverCallback(). If changes are required, the patterns must have been
set by a prior call to saEvtEventAttributesSet(). The SaEvtEventHandleT type is
defined in Section 3.4.1.2 on page 18.

eventData - [in] A pointer to a buffer that contains additional event information for the
event being published. This parameter must be set to NULL if no additional informa-
tion is associated with the event. The process may deallocate the memory for
eventData when saEvtEventPublish() returns.

eventDataSize - [in] The number of bytes in the buffer to which eventData points. This
parameter is ignored if eventData is NULL. The SaSizeT type is defined in [1].

eventId - [out] A pointer to an identifier of the event. The SaEvtEventIdT type is
defined in Section 3.4.5.4 on page 21.

Description

If the saEvtEventPublish() function completes successfully, it publishes an event on
the event channel on which the event identified by eventHandle was either allocated
by invoking the saEvtEventAllocate() function or obtained from the
saEvtEventDeliverCallback() function, and it returns the event identifier in the field to
which eventId points. The event to be published consists of a standard set of
attributes (the event header) and an optional data part.

Before an event is published, the publisher process may invoke the
saEvtEventAttributesSet() function to set the writeable event attributes. The pub-
58 SAI-AIS-EVT-B.03.01 Section 3.7.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
lished event is delivered to subscribers whose subscription filters match the event
patterns.

When the Event Service publishes an event, it automatically sets the following read-
only event attributes into the published event:

• Event publish time
• Event identifier

In addition to the event attributes, a process can supply values for the eventData and
eventDataSize parameters for publication as part of the event.

The event attributes and the event data of the event identified by eventHandle are not
affected by this API function.

The invocation of saEvtEventPublish() copies the event attributes and the event data
into internal memory of the Event Service. The invoking process can free the event by
invoking saEvtEventFree() after saEvtEventPublish() returns.

This function fails with the SA_AIS_ERR_ACCESS error code if the
SA_EVT_CHANNEL_PUBLISHER flag was not set when either saEvtChannelOpen()
or saEvtChannelOpenAsync() was called to open the instance of the event channel
on which the handle eventHandle was obtained.

Return Values

SA_AIS_OK - The function call completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained with the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.8 59

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_PUBLISHER flag was not set
when either saEvtChannelOpen() or saEvtChannelOpenAsync() was called to open
the instance of the event channel on which the handle eventHandle was obtained.

SA_AIS_ERR_TOO_BIG - The total size of the event is larger than the maximum
value supported by the implementation. Refer to the description of the enum
SA_EVT_MAX_EVT_SIZE_ID in Section 3.4.8 on page 27.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventAttributesSet(), saEvtEventSubscribe(), saEvtEventAllocate(),
saEvtEventFree(), SaEvtEventDeliverCallbackT

3.7.9 saEvtEventSubscribe()

Prototype

SaAisErrorT saEvtEventSubscribe(

SaEvtChannelHandleT channelHandle,

const SaEvtEventFilterArrayT *filters,

SaEvtSubscriptionIdT subscriptionId

);

Parameters

channelHandle - [in] The handle of the event channel on which the process is sub-
scribing to receive events. The parameter channelHandle must have been obtained
previously in an invocation of saEvtChannelOpen() or saEvtChannelOpenCallback().
The SaEvtChannelHandleT type is defined in Section 3.4.1.3 on page 18.

filters - [in] A pointer to an SaEvtEventFilterArrayT structure which defines filter pat-
terns to be used to filter events received on the event channel. The process allocates
this structure and may deallocate it and the memory for the filters when
60 SAI-AIS-EVT-B.03.01 Section 3.7.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
saEvtEventSubscribe() returns. The SaEvtEventFilterArrayT type is defined in Sec-
tion 3.4.6.3 on page 23.

subscriptionId - [in] An identifier that uniquely identifies a particular subscription on
the instance of the opened event channel designated by channelHandle. This identi-
fier is used as a parameter of the saEvtEventDeliverCallback() function. The
SaEvtSubscriptionIdT type is defined in Section 3.4.2 on page 18.

Description

The saEvtEventSubscribe() function enables a process to subscribe for events on an
event channel by registering one or more filters on that event channel.

Events are delivered by the invocation of the saEvtEventDeliverCallback() callback
function, which must have been supplied when the process called the saEvtInitialize()
function.

The memory associated with the filters is not deallocated by the
saEvtEventSubscribe() function. It is the responsibility of the invoking process to de-
allocate the memory when the saEvtEventSubscribe() function returns.

For a particular subscription, the filter patterns cannot be modified. To change the fil-
ter patterns without losing events, a process must establish a new subscription with
the new filter patterns. After the new subscription is established, the old subscription
can be removed by invoking the saEvtEventUnsubscribe() function.

This function fails with the SA_AIS_ERR_ACCESS error code if the
SA_EVT_CHANNEL_SUBSCRIBER flag was not set when the instance of the event
channel identified by channelHandle was opened.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.9 61

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
• It is corrupted, was not obtained with the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saEvtInitialize() to initialize the Event
Service was incomplete, since the saEvtEventDeliverCallback() callback function is
missing.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_EXIST - A subscription using the same subscriptionId already exists
on the instance of the opened event channel designated by channelHandle.

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_SUBSCRIBER flag was not set
when the instance of the event channel identified by channelHandle was opened.

SA_AIS_ERR_TOO_BIG - The value of filtersNumber in the structure to which the
filters parameter points or the length of one or more filter strings exceeds the maxi-
mum size supported by the implementation. Refer to the description of the enums
SA_EVT_MAX_NUM_PATTERNS_ID and SA_EVT_MAX_PATTERN_SIZE_ID in
Section 3.4.8 on page 27.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

SaEvtEventDeliverCallbackT, saEvtEventUnsubscribe(), saEvtEventDataGet(),
saEvtEventAttributesGet()
62 SAI-AIS-EVT-B.03.01 Section 3.7.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
3.7.10 saEvtEventUnsubscribe()

Prototype

SaAisErrorT saEvtEventUnsubscribe(

SaEvtChannelHandleT channelHandle,

SaEvtSubscriptionIdT subscriptionId

);

Parameters

channelHandle - [in] The handle of the event channel on which the subscriber is
requesting the Event Service to delete the subscription. The channelHandle parame-
ter must have been obtained previously in an invocation of saEvtChannelOpen() or
saEvtChannelOpenCallback(). The SaEvtChannelHandleT type is defined in Section
3.4.1.3 on page 18.

subscriptionId - [in] An identifier that uniquely identifies a particular subscription on
the instance of the opened event channel designated by channelHandle. The
SaEvtSubscriptionIdT type is defined in Section 3.4.2 on page 18.

Description

The saEvtEventUnsubscribe() function allows a process to stop receiving events for a
particular subscription on an event channel by removing the subscription. The sub-
scription is identified by the pair channelHandle and subscriptionId and must have
been set up by a previous invocation of the saEvtEventSubscribe() function for the
same pair.

It is an error if the value of the subscriptionId parameter does not match a previously
registered subscription on the instance of the opened event channel identified by
channelHandle.

The saEvtEventUnsubscribe() function purges events that are queued to be delivered
to the process and that no longer match any subscription because of the removal of
the subscription identified by the pair channelHandle and subscriptionId.

A process that wants to modify a subscription without losing any events must estab-
lish the new subscription before removing the existing subscription.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.10 63

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_NOT_EXIST - The subscriptionId parameter does not match any cur-
rently registered subscription on the instance of the opened event channel desig-
nated by channelHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventSubscribe()

3.7.11 saEvtEventRetentionTimeClear()

Prototype

SaAisErrorT saEvtEventRetentionTimeClear(

SaEvtChannelHandleT channelHandle,

const SaEvtEventIdT eventId

);

Parameters

channelHandle - [in] The handle of the event channel on which the event has been
published. The handle channelHandle must have been obtained previously in an
invocation of saEvtChannelOpen() or saEvtChannelOpenCallback(). The
SaEvtChannelHandleT type is defined in Section 3.4.1.3 on page 18.
64 SAI-AIS-EVT-B.03.01 Section 3.7.11 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
eventId - [in] The identifier of the event. The SaEvtEventIdT type is defined in Section
3.4.5.4 on page 21.

Description

The saEvtEventRetentionTimeClear() function is used to clear the retention time of
the published event designated by eventId. This function indicates to the Event Ser-
vice that the Event Service does not need to keep the event any longer for potential
new subscribers. Once the value of the retention time is reset to 0, the event is no
longer available for new subscribers.

This function fails with the SA_AIS_ERR_ACCESS error code if neither the
SA_EVT_CHANNEL_PUBLISHER flag nor the SA_EVT_CHANNEL_SUBSCRIBER
flag was set when one of the saEvtChannelOpen() or saEvtChannelOpenAsync()
functions was called to open the instance of the event channel identified by
channelHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned if eventId is not a valid event identifier.

SA_AIS_ERR_NOT_EXIST - The event specified by eventId does not exist.

SA_AIS_ERR_ACCESS - Neither the SA_EVT_CHANNEL_PUBLISHER flag nor the
SA_EVT_CHANNEL_SUBSCRIBER flag was set when one of the
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.7.11 65

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
saEvtChannelOpen() or saEvtChannelOpenAsync() functions was called to open the
instance of the event channel identified by channelHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtEventPublish(), SaEvtEventDeliverCallbackT

3.8 Limit Fetch API

3.8.1 saEvtLimitGet()

Prototype

SaAisErrorT saEvtLimitGet(

SaEvtHandleT evtHandle,

SaEvtLimitIdT limitId,

SaLimitValueT *limitValue

);

Parameters

evtHandle - [in] The handle which was obtained by a previous invocation of the
saEvtInitialize() function and which designates this particular initialization of the Event
Service. The SaEvtHandleT type is defined in Section 3.4.1.1 on page 18.

limitId - [in] The Event Service limit whose implementation-specific value is to be que-
ried. The limits are defined in the SaEvtLimitIdT type in Section 3.4.8 on page 27.

limitValue - [out] Pointer to the current value of the limit specified in limitId. For details
regarding this type, refer to the SA Forum Overview document ([1]).

Description

This function enables a user application to obtain the current implementation-specific
value of an Event Service limit. The limitId parameter represents the limit to be que-
ried. When this function completes successfully, it returns the current value of the
specified limit in the memory area pointed to by limitValue.
66 SAI-AIS-EVT-B.03.01 Section 3.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. This error is
returned due to one or both of the following reasons:

• The limitId parameter contains an invalid value.
• The limitValue pointer is NULL.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Event Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saEvtInitialize()
AIS Specification SAI-AIS-EVT-B.03.01 Section 3.8.1 67

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
68 SAI-AIS-EVT-B.03.01 Section 3.8.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
4 Event Service UML Information Model
The Event Service information model is described in UML and has been organized in
a UML class diagram.

The Event Service UML model is implemented by the SA Forum IMM Service [3]. For
details on this implementation, refer to the SA Forum Overview document ([1]).

The Event Service UML class diagram has one class, which shows the contained
attributes.

4.1 DN Format for the Event Service UML Class

The ‘*’ notation at the end of a DN format indicates that zero, one or more RDNs may
be appended to the DN format.

4.2 Event Service UML Class
The Event Service UML class diagram contains one class, SaEvtChannel, which is a
runtime object class exposing various runtime attributes of an event channel.

FIGURE 1 shows the SaEvtChannel class. A description of each attribute of this
class may be found in the XMI file (see [5]). For additional details, refer to the SA
Forum Overview document ([1]).

Table 3 DN Formats for Objects of the Event Service Class

Object Class DN Format for Objects of the Class

SaEvtChannel "safChnl=…,* "
AIS Specification SAI-AIS-EVT-B.03.01 Section 4 69

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
FIGURE 1 Event Service UML Class
70 SAI-AIS-EVT-B.03.01 Section 4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
5 Event Service Administration API
The Event Service has no administration interface at the time of publication of this
specification.
AIS Specification SAI-AIS-EVT-B.03.01 Section 5 71

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
72 SAI-AIS-EVT-B.03.01 Section 5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
6 Alarms and Notifications
The Event Service does not issue any alarms and notifications at the time of publica-
tion of this specification.
AIS Specification SAI-AIS-EVT-B.03.01 Section 6 73

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
74 SAI-AIS-EVT-B.03.01 Section 6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
7 Event Service Management Interface
Currently, an SNMP MIB interface is defined for the Event Service. Other manage-
ment access methods to the Event Service may be added in future versions of this
specification.

7.1 Event Service MIB (SAF-EVT-SVC-MIB)
The Event Service MIB contains the single read-only table saEvtChannelTable, which
contains attributes for the currently created event channels in the cluster, which
include all event channels in the cluster that have not been unlinked as well as the
ones that have been unlinked but are still in-use within the cluster.

This table mimics the UML runtime object class SaEvtChannel, as described in Sec-
tion 4.2 in terms of the objects contained in the table.

Additionally, the Event Service MIB also defines SNMP traps that correspond to the
various notifications for the service, which are described in Chapter 6 of this specifi-
cation.

For a detailed description of the various objects of this MIB, refer to the
SAF-EVT-SVC-MIB that can be downloaded from
http://www.saforum.org/specification/download/get_spec.
AIS Specification SAI-AIS-EVT-B.03.01 Section 7 75

http://www.saforum.org/specification/download/get_spec

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Event Service
76 SAI-AIS-EVT-B.03.01 Section 7.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
Index of Definitions
A
at most once delivery property 14
attributes see event attributes

B
best effort delivery property 14

C
channel see event channels
completeness property 14

D
data see event data

E
event attributes 13
event channels

see also events
definition 13
at most once delivery property 14
best effort delivery property 14
completeness property 14
filter types 24
filtering 15
filters 22
ordering 14
pattern array 22
pattern matching algorithms 24
patterns 19
persistence property 15
publisher 13
retention time property 14
subscriber 13
subscription 18

event completeness property 14
event data 13
event filtering 15
event filters 22
event header 13
event id 22
event ordering 14
event pattern array 22
event patterns 19
event priority 14, 22
event publish time 22
event publisher name 22
event retention time 14, 22
events

see also event channels
definition 13
attributes 13
data 13
header 13
id 22
lost event 25
priority 22
publish time 22

published 13
publisher name 22
retention time 22

F
filter types 24
filtering see event filtering
filters see event filters

H
header see event header

I
id see event id
identification see event id

L
lost event 25

O
ordering see event ordering

P
pattern array see event pattern array
pattern matching algorithms 24
patterns see event patterns
persistence property 15
priority see event priority
publish time see event publish time
published event 13
publisher 13
publisher name see event publisher name

R
retention time see event retention time

S
subscriber 13
subscription 18
AIS Specification SAI-AIS-EVT-B.03.01 Section 77

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
78 SAI-AIS-EVT-B.03.01 Section AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Changes in Return Values of API Functions:
	1.3.4 Removed Topics
	1.3.5 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Event Service

	3 SA Event Service API
	3.1 Event Service Model
	3.1.1 Events
	3.1.2 Event Channels
	3.1.3 Event Filtering

	3.2 Unavailability of the Event Service API on a Non-Member Node
	3.2.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.2.2 Guidelines for Event Service Implementers

	3.3 Include File and Library Name
	3.4 Type Definitions
	3.4.1 Handles
	3.4.1.1 SaEvtHandleT
	3.4.1.2 SaEvtEventHandleT
	3.4.1.3 SaEvtChannelHandleT

	3.4.2 SaEvtSubscriptionIdT
	3.4.3 SaEvtCallbacksT
	3.4.4 SaEvtChannelOpenFlagsT
	3.4.5 Event Patterns and Attributes
	3.4.5.1 SaEvtEventPatternT
	3.4.5.2 SaEvtEventPatternArrayT
	3.4.5.3 SaEvtEventPriorityT
	3.4.5.4 SaEvtEventIdT
	3.4.5.5 Event Attributes

	3.4.6 Event Filters
	3.4.6.1 SaEvtEventFilterTypeT
	3.4.6.2 SaEvtEventFilterT
	3.4.6.3 SaEvtEventFilterArrayT

	3.4.7 “Lost Event” Event
	3.4.8 SaEvtLimitIdT

	3.5 Library Life Cycle
	3.5.1 saEvtInitialize()
	3.5.2 saEvtSelectionObjectGet()
	3.5.3 saEvtDispatch()
	3.5.4 saEvtFinalize()

	3.6 Event Channel Operations
	3.6.1 saEvtChannelOpen() and saEvtChannelOpenAsync()
	3.6.2 SaEvtChannelOpenCallbackT
	3.6.3 saEvtChannelClose()
	3.6.4 saEvtChannelUnlink()

	3.7 Event Operations
	3.7.1 saEvtEventAllocate()
	3.7.2 saEvtEventFree()
	3.7.3 saEvtEventAttributesSet()
	3.7.4 saEvtEventAttributesGet()
	3.7.5 saEvtEventPatternFree()
	3.7.6 saEvtEventDataGet()
	3.7.7 SaEvtEventDeliverCallbackT
	3.7.8 saEvtEventPublish()
	3.7.9 saEvtEventSubscribe()
	3.7.10 saEvtEventUnsubscribe()
	3.7.11 saEvtEventRetentionTimeClear()

	3.8 Limit Fetch API
	3.8.1 saEvtLimitGet()

	4 Event Service UML Information Model
	4.1 DN Format for the Event Service UML Class
	4.2 Event Service UML Class

	5 Event Service Administration API
	6 Alarms and Notifications
	7 Event Service Management Interface
	7.1 Event Service MIB (SAF-EVT-SVC-MIB)

	Index of Definitions

