
Service AvailabilityTM Forum
Application Interface Specification

Information Model Management Service SAI-AIS-IMM-A.02.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-IMM-A.02.01 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-IMM-A.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
Table of Contents Information Model Management Service
1 Document Introduction . 9
 1.1 Document Purpose . 9
 1.2 AIS Documents Organization . 9
 1.3 History . 9
 1.3.1 New Topics . 9
 1.3.2 Clarifications . 12
 1.3.3 Superseded and Superseding Functions . 12
 1.3.4 Changes in Return Values of API Functions . 14
 1.3.5 Other Changes . 14
 1.4 References . 15
 1.5 How to Provide Feedback on the Specification . 15
 1.6 How to Join the Service Availability™ Forum . 15
 1.7 Additional Information . 16
 1.7.1 Member Companies . 16
 1.7.2 Press Materials . 16

2 Overview . 17
 2.1 Information Model Management Service . 17

3 Information Model Management Service API . 19
 3.1 Object Naming . 21
 3.2 Internal Persistent Repository . 22
 3.3 Unavailability of the IMM API on a Non-Member Node . 23
 3.3.1 A Member Node Leaves or Rejoins the Cluster Membership . 23
 3.3.2 Guidelines for IMM Service Implementers . 24

4 IMM Service - Object Management API Specification . 25

 4.1 Include File and Library Name . 25
 4.2 Type Definitions . 25
 4.2.1 Handles Used by the IMM Service . 25
 4.2.2 Various IMM Service Names . 26
 4.2.3 SaImmValueTypeT . 26
 4.2.4 SaImmClassCategoryT . 26
 4.2.5 SaImmAttrFlagsT . 27
 4.2.6 SaImmAttrValueT . 28
 4.2.7 SaImmAttrDefinitionT_2 . 28
 4.2.8 SaImmAttrValuesT_2 . 29
 4.2.9 SaImmAttrModificationTypeT . 29
 4.2.10 SaImmAttrModificationT_2 . 30
 4.2.11 SaImmScopeT . 30
AIS Specification SAI-AIS-IMM-A.02.01 5

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
 4.2.12 SaImmSearchOptionsT . 31
 4.2.13 SaImmSearchParametersT_2 . 32
 4.2.14 SaImmCcbFlagsT . 33
 4.2.15 SaImmContinuationIdT . 33
 4.2.16 SaImmAdminOperationIdT . 33
 4.2.17 SaImmAdminOperationParamsT_2 . 34
 4.2.18 SaImmCallbacksT . 34
 4.2.19 IMM Service Object Attributes . 34
 4.2.20 SaImmRepositoryInitModeT . 35
 4.3 Library Life Cycle . 36
 4.3.1 saImmOmInitialize() . 36
 4.3.2 saImmOmSelectionObjectGet() . 38
 4.3.3 saImmOmDispatch() . 40
 4.3.4 saImmOmFinalize() . 41
 4.4 Object Class Management . 43
 4.4.1 saImmOmClassCreate_2() . 43
 4.4.2 saImmOmClassDescriptionGet_2() . 45
 4.4.3 saImmOmClassDescriptionMemoryFree_2() . 47
 4.4.4 saImmOmClassDelete() . 48
 4.5 Object Search . 50
 4.5.1 saImmOmSearchInitialize_2() . 50
 4.5.2 saImmOmSearchNext_2() . 53
 4.5.3 saImmOmSearchFinalize() . 55
 4.6 Object Access . 57
 4.6.1 saImmOmAccessorInitialize() . 57
 4.6.2 saImmOmAccessorGet_2() . 58
 4.6.3 saImmOmAccessorFinalize() . 60
 4.7 Object Administration Ownership . 62
 4.7.1 saImmOmAdminOwnerInitialize() . 62
 4.7.2 saImmOmAdminOwnerSet() . 64
 4.7.3 saImmOmAdminOwnerRelease() . 66
 4.7.4 saImmOmAdminOwnerFinalize() . 68
 4.7.5 saImmOmAdminOwnerClear() . 70
 4.8 Configuration Changes . 72
 4.8.1 saImmOmCcbInitialize() . 73
 4.8.2 saImmOmCcbObjectCreate_2() . 74
 4.8.3 saImmOmCcbObjectDelete() . 77
 4.8.4 saImmOmCcbObjectModify_2() . 79
 4.8.5 saImmOmCcbApply() . 82
 4.8.6 saImmOmCcbFinalize() . 84
 4.9 Administrative Operations Invocation . 85
 4.9.1 saImmOmAdminOperationInvoke_2(), saImmOmAdminOperationInvokeAsync_2() 86
 4.9.2 SaImmOmAdminOperationInvokeCallbackT . 90
 4.9.3 saImmOmAdminOperationContinue(), saImmOmAdminOperationContinueAsync() 94
 4.9.4 saImmOmAdminOperationContinueClear() . 98
6 SAI-AIS-IMM-A.02.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
5 IMM Service - Object Implementer API Specification . 101
 5.1 Include File and Library Name . 101
 5.2 Type Definitions . 101
 5.2.1 IMM Service Handle . 101
 5.2.2 SaImmOiImplementerNameT . 101
 5.2.3 SaImmOiCcbIdT . 101
 5.2.4 SaImmOiCallbacksT_2 . 102
 5.3 Library Life Cycle . 103
 5.3.1 saImmOiInitialize_2() . 103
 5.3.2 saImmOiSelectionObjectGet() . 106
 5.3.3 saImmOiDispatch() . 107
 5.3.4 saImmOiFinalize() . 109
 5.4 Object Implementer . 111
 5.4.1 saImmOiImplementerSet() . 111
 5.4.2 saImmOiImplementerClear() . 113
 5.4.3 saImmOiClassImplementerSet() . 114
 5.4.4 saImmOiClassImplementerRelease() . 116
 5.4.5 saImmOiObjectImplementerSet() . 118
 5.4.6 saImmOiObjectImplementerRelease() . 120
 5.5 Runtime Objects Management . 122
 5.5.1 saImmOiRtObjectCreate_2() . 122
 5.5.2 saImmOiRtObjectDelete() . 125
 5.5.3 saImmOiRtObjectUpdate_2() . 126
 5.5.4 SaImmOiRtAttrUpdateCallbackT . 128
 5.6 Configuration Objects Implementer . 130
 5.6.1 SaImmOiCcbObjectCreateCallbackT_2 . 132
 5.6.2 SaImmOiCcbObjectDeleteCallbackT . 134
 5.6.3 SaImmOiCcbObjectModifyCallbackT_2 . 135
 5.6.4 SaImmOiCcbCompletedCallbackT . 136
 5.6.5 SaImmOiCcbApplyCallbackT . 138
 5.6.6 SaImmOiCcbAbortCallbackT . 139
 5.7 Administrative Operations . 140
 5.7.1 SaImmOiAdminOperationCallbackT_2 . 140
 5.7.2 saImmOiAdminOperationResult() . 141

6 IMM Service UML Information Model . 143
 6.1 DN Format for the IMM Service UML Class . 143
 6.2 IMM Service UML Class . 143

7 IMM Service Administration API . 145
 7.1 Administrative Operations on the IMM Service . 145
 7.2 Include File and Library Name . 145
 7.3 IMM Service Administration API . 146
AIS Specification SAI-AIS-IMM-A.02.01 7

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
 7.3.1 SA_IMM_ADMIN_EXPORT . 146

8 IMM Service Alarms and Notifications . 147

9 IMM Service Management Interface . 149

Index of Definitions . 151
8 SAI-AIS-IMM-A.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Information Model Management Service of the Application
Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is
intended for use by implementers of the Application Interface Specification and by
application developers who would use the Application Interface Specification to
develop applications that must be highly available. The AIS is defined in the C pro-
gramming language, and requires substantial knowledge of the C programming lan-
guage.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
The first (and only previous release) of the IMM Service specification was:

SAI-AIS-IMM-A.01.01

This section presents the changes of the current release, SAI-AIS-IMM-A.02.01, with
respect to the SAI-AIS-IMM-A.01.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.

1.3.1 New Topics
• Section 3.1 describes rules to construct object names.
• Section 3.2 introduces the internal persistent repository.
• Section 3.3 explains the behavior of the IMM API functions on a non-member

node. As a consequence, the SA_AIS_ERR_UNAVAILABLE return value has
been added to various API functions (see Section 1.3.4).
AIS Specification SAI-AIS-IMM-A.02.01 Section 1 9

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The SaImmAttrDefinitionT_2 structure in Section 4.2.7 replaced the
SaImmAttrDefinitionT structure of version A.01.01 due to the removal of
the attrNtfId member. As a consequence of this replacement, the functions
saImmOmClassCreate_2(), saImmOmClassDescriptionGet_2(), and
saImmOmClassDescriptionMemoryFree_2() have replaced the corre-
sponding functions of version A.01.01 (those without the “_2” in the name).

• This version allows an initial value for persistent runtime attributes when an
object is created. This enables, in particular, the configuration of the initial value
of the administrative state of Availability Management Framework objects such
as service units. To support this feature, the following changes were made:
• the definition of the attrDefaultValue member of the
SaImmAttrDefinitionT_2 structure (see Section 4.2.7) was extended;

• the description and the SA_AIS_ERR_INVALID_PARAM return code of the
functions saImmOmCcbObjectCreate_2() (see Section 4.8.2) and
saImmOiRtObjectCreate_2() (see Section 5.5.1) were extended.

• The SaImmAttrValuesT_2 structure in Section 4.2.8 replaced the
SaImmAttrValuesT structure of version A.01.01 due to the addition of the
attrValueType member.
As a consequence of this replacement, the SaImmAttrModificationT_2
structure (see Section 4.2.10) has replaced the SaImmAttrModificationT
structure of version A.01.01.
Due to these two preceding replacements, the following functions have replaced
the corresponding functions of version A.01.01 (those without the “_2” in the
name):
SaImmOiCcbObjectCreateCallbackT_2,
SaImmOiCcbObjectModifyCallbackT_2,
saImmOiRtObjectCreate_2(), saImmOiRtObjectUpdate_2(),
saImmOmAccessorGet_2(), saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectModify_2(), and saImmOmSearchNext_2().

• The SaImmSearchOneAttrT_2 structure in Section 4.2.13 replaced the
SaImmSearchOneAttrT structure of version A.01.01 because the attrName
member is no longer a pointer.
As a consequence of this replacement, the SaImmSearchParametersT_2
union has replaced the SaImmSearchParametersT structure of version
A.01.01.
This last replacement in turn has led to the replacement of the
saImmOmSearchInitialize() function of version A.01.01 with the
saImmOmSearchInitialize_2() function.

• The SaImmAdminOperationParamsT_2 structure in Section 4.2.17 replaced
the SaImmAdminOperationParamsT structure of version A.01.01 because the
type of the paramBuffer member has changed, and the paramSize member
10 SAI-AIS-IMM-A.02.01 Section 1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
has been removed from the SaImmAdminOperationParamsT structure. As a
consequence of this replacement, the functions
SaImmOiAdminOperationCallbackT_2,
saImmOmAdminOperationInvoke_2(), and
saImmOmAdminOperationInvokeAsync_2() have replaced the correspond-
ing functions of version A.01.01 (those without the “_2” in the name).

• Section 4.2.20 introduces the SaImmRepositoryInitModeT type.
• To allow the continuation of administrative operations, the API functions

saImmOmAdminOperationContinuationClear(),
saImmOmAdminOperationContinue(), and
saImmOmAdminOperationContinueAsync() have been introduced (see
Section 4.9 and subsections).
Further changes due to this new feature:
⇒ To support these functions, the SaImmContinuationIdT type has been

introduced and the continuationId parameter has been added to the
saImmOmAdminOperationInvoke_2() and
saImmOmAdminOperationInvokeAsync_2() functions (see preceding
item).

⇒ Additionally, the SA_AIS_ERR_EXIST return has been added to the functions
SaImmOiAdminOperationCallbackT_2,
saImmOmAdminOperationInvoke_2(), and
saImmOmAdminOperationInvokeAsync_2().

⇒ Furthermore, additional text has been added to the descriptions of the two
functions in Section 4.7.3 and in Section 4.7.5 to explain that the continuation
identifiers registered for the targeted objects are all cleared if these function
calls succeed.

⇒ The description of the saImmOmAdminOwnerFinalize() function in
Section 4.7.3 explains under which conditions continuation identifiers are
cleared.

⇒ The description of the saImmOmCcbObjectDelete() function in
Section 4.8.3 explains that this function also fails if one of the targeted objects
has some registered continuation identifiers.

• To allow concurrent administrative operations on an IMM Service object, the def-
inition of the SA_AIS_ERR_BUSY return value was changed in the
saImmOmAdminOperationInvoke_2() and
saImmOmAdminOperationInvokeAsync_2() function with respect to the
superseded corresponding functions of version A.01.01. Section 4.8 was also
updated accordingly.

• As superseding callback functions have been added, the
SaImmOiCallbacksT_2 in Section 5.2.4 replaced the SaImmOiCallbacksT
AIS Specification SAI-AIS-IMM-A.02.01 Section 1.3.1 11

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
structure of version A.01.01. This change has led to replacement of the
saImmOiInitialize() function of version A.01.01 with the
saImmOiInitialize_2() function.

• Chapter 6 presents the IMM Service UML Information Model.
• Chapter 7 presents the IMM Service administrative functions.
• Chapter 8 states that the IMM Service does not contain any Alarms and Notifica-

tion in this release.
• Chapter 9 states that no management interface is defined for the IMM Service in

this release.

1.3.2 Clarifications
• A sentence has been added to the definition of the SA_IMM_ATTR_CACHED

attribute in Section 4.2.5 to explain that persistent runtime attributes shall be
cached. This section also explains that RDN values must be of type
SA_IMM_ATTR_SASTRINGT or SA_IMM_ATTR_SANAMET.

• Section 4.2.8 clarifies that an attribute must have at least one value to be
present in an object. As a consequence, optional attributes that have no value
are not present in objects.

• The descriptions of the functions saImmOmDispatch() (see Section 4.3.3) and
saImmOiDispatch() (see Section 5.3.3) clarify the meaning of the
SA_AIS_OK return value.

• The descriptions of the functions saImmOmFinalize() (see Section 4.3.4) and
saImmOiFinalize() (see Section 5.3.4) clarify that these functions free all
resources allocated by the IMM Service for the process in the corresponding
association between the process and the IMM Service.

• The notion of an “operation in progress” has been clarified in Section 4.7.3.
• Section 5.6 clarifies the scope in space and time of CCB identifiers, as seen by

Object Implementers.

1.3.3 Superseded and Superseding Functions

The IMM Service defines for the version A.02.01 new functions and new type defini-
tions to replace functions and type definitions of the version A.01.01. The list of
replaced functions and type definitions in alphabetic order is presented in Table 1.

The superseded functions and type definitions are no longer supported in version
A.02.01, and no description is provided for them in this document. The names of the
superseding functions and type definitions are obtained by adding “_2” to the respec-
tive names of the previous version. Regarding the support of backward compatibility
in SA Forum AIS, refer to the Overview document ([1]).
12 SAI-AIS-IMM-A.02.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
Table 1 Superseded Functions and Type Definitions in Version A.02.01

Functions and Type Definitions of A.01.01 no
Longer Supported in A.02.01

SaImmAdminOperationParamsT

SaImmAttrDefinitionT

SaImmAttrModificationT

SaImmAttrValuesT

SaImmOiAdminOperationCallbackT

SaImmOiCallbacksT

SaImmOiCcbObjectCreateCallbackT

SaImmOiCcbObjectModifyCallbackT

saImmOiInitialize()

saImmOiRtObjectCreate()

saImmOiRtObjectUpdate()

saImmOmAccessorGet()

saImmOmAdminOperationInvoke()

saImmOmAdminOperationInvokeAsync()

saImmOmCcbObjectCreate()

saImmOmCcbObjectModify()

saImmOmClassCreate()

saImmOmClassDescriptionGet()

saImmOmClassDescriptionMemoryFree()

saImmOmSearchInitialize()

saImmOmSearchNext()

SaImmSearchOneAttrT

SaImmSearchParametersT
AIS Specification SAI-AIS-IMM-A.02.01 Section 1.3.3 13

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.4 Changes in Return Values of API Functions

The first row in the following table applies to all functions of this release. The other
rows apply only to functions that have not been superseded.

1.3.5 Other Changes
• In the description of the functions saImmOmInitialize() (see Section 4.3.1)

and saImmOiInitialize_2() (see Section 5.3.1), the sentence
“If the implementation supports the required releaseCode, and a major version
>= the required majorVersion, SA_AIS_OK is returned.”
has been replaced by the sentence
“If the implementation supports the specified releaseCode and
majorVersion, SA_AIS_OK is returned.”.

• A sentence has been added to the saImmOmInitialize() function
(see Section 4.3.1) to explain that the continuation identifier of the continuation
functions is not cleared when the process exits.

Table 2 Changes in Return Values of API Functions

API Function Return Value Change
Type

All API functions except1 saImmOmFinalize(),
saImmOiFinalize(), and all callbacks listed in
SaImmOiCallbacksT_2.

1. The SaImmOmAdminOperationInvokeCallbackT callback function has the
SA_AIS_ERR_UNAVAILABLE return value in the error parameter.

SA_AIS_ERR_UNAVAILABLE new

saImmOiImplementerClear() SA_AIS_ERR_BAD_HANDLE extended

saImmOiObjectImplementerRelease() SA_AIS_ERR_NOT_EXIST corrected

saImmOiRtObjectDelete() SA_AIS_ERR_BAD_OPERATION extended

saImmOiRtObjectDelete() SA_AIS_ERR_EXIST deleted

SaImmOmAdminOperationInvokeCallbackT SA_AIS_ERR_BAD_OPERATION

SA_AIS_ERR_BUSY

SA_AIS_ERR_EXIST

SA_AIS_ERR_NOT_EXIST

extended

saImmOmCcbObjectDelete() SA_AIS_ERR_BAD_OPERATION extended

saImmOmCcbObjectDelete() SA_AIS_ERR_EXIST deleted

saImmOmDispatch() SA_AIS_OK clarified
14 SAI-AIS-IMM-A.02.01 Section 1.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The saImmOiInitialize_2() function (see Section 5.3.1) was changed to
clarify that If immOiCallbacks is set to NULL, no callback is registered.

• Section 5.4.4 on the saImmOiClassImplementerRelease() now states that
this function removes all “non-persistent cached runtime attributes” from all
objects of that class. In the preceding version, it stated that “cached runtime
attributes” were removed. An analogous change was made for the
saImmOiObjectImplementerRelease() function in Section 5.4.6.

1.4 References
The following document contains information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.04.01

[2] Service AvailabilityTM Forum, Information Model in XML Metadata Interchange
(XMI) v2.1 format, SAI-XMI-A.03.01

[3] Service AvailabilityTM Forum, IMM XML Schema Definition,
SAI-AIS-IMM-XSD.A.01.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.03.01

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the Forum’s website
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.
AIS Specification SAI-AIS-IMM-A.02.01 Section 1.4 15

http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
16 SAI-AIS-IMM-A.02.01 Section 1.7 AIS Specification

http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Information Model Management Service within the
Application Interface Specification (AIS).

The IMM Service is a cluster-wide service that must be highly-available in the sense
that no single failure should take the entire service down.

2.1 Information Model Management Service
The different entities of an SA Forum cluster, such as components provided by the
Availability Management Framework, checkpoints provided by the Checkpoint Ser-
vice, or message queues provided by the Message Service are represented by vari-
ous objects of the SA Forum Information Model.

The SA Forum Information Model (IM) is specified in UML and managed by the Infor-
mation Model Management (IMM) Service.

The objects in the Information Model are provided with their attributes and administra-
tive operations (that is, operations that can be performed on the represented entities
through system management interfaces). For management applications or Object
Managers, the IMM provides the APIs to create, access, and manage these objects.

The IMM Service delivers the requested operations to the appropriate AIS Services
or applications (referred to as Object Implementers) that implement these objects
for execution.

Information Model objects and attributes can be classified into two categories:

• Configuration objects and attributes
• Runtime objects and attributes

The IMM Service defines two sets of APIs:

(1) An Object Management API (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An Object Implementer API (OI-API) restricted to Object Implementers.
AIS Specification SAI-AIS-IMM-A.02.01 Section 2 17

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
18 SAI-AIS-IMM-A.02.01 Section 2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3 Information Model Management Service API
The Service AvailabilityTM Forum (SA Forum) Information Model (IM) is specified in
UML and represents the various objects that constitute an SA Forum system. The SA
Forum IM also specifies the attributes of these objects and administrative operations
that can be performed on the entities by using system management interfaces.

The Information Model Management (IMM) Service is the SA Forum Service that
manages all objects of the SA Forum Information Model and provides the APIs to
access and manage these objects.

FIGURE 1 presents an overview of the interfaces provided by the IMM Service.

FIGURE 1 IMM Service Interfaces

System
Management
Application 1

System
Management
Application 2 IMM Object

Management
API

IMM Object
Implementer

API

IMM
SERVICE

Object
Implementer 1 Object Implementer 2

IM Object

Object
Implementation
AIS Specification SAI-AIS-IMM-A.02.01 Section 3 19

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
The actual implementation of objects represented in the Information Model is not part
of the IMM Service but is provided by user applications or other AIS Services such as
the Checkpoint Service or the Availability Management Framework.

AIS Services and applications that implement the IMM objects are called Object
Implementers in the remainder of this document.

IMM objects are organized in a tree hierarchy. The hierarchy follows the structure of
the LDAP distinguished name of each object. For more information about LDAP
object names, refer to the SA Forum Overview document ([1]).

IMM objects and attributes can be classified into two categories:

• Configuration Objects and Attributes
• Configuration objects and configuration attributes are the means by which

system management applications provide input to an Object Implementer on
the desired sets of objects and on their handling. The set of configuration
objects and attributes constitute the prescriptive part of the Information Model.

• Configuration objects and attributes are typically under the control of system
management applications. They are of a persistent nature and must survive a
full cluster power-off.

• Configuration attributes are read-write attributes from an Object Management
perspective but read-only from an Object Implementer perspective.

• Runtime Objects and Attributes
• Runtime objects and runtime attributes are the means by which Object

Implementers reflect in the Information Model the current state of the objects
they implement. The set of runtime objects and attributes constitute the
descriptive part of the Information Model. Runtime objects and attributes are
typically under the control of Object Implementers.

• Runtime objects that contain persistent runtime attributes are persistent and
must survive a full cluster power-off. Non-persistent runtime attributes do not
survive a full cluster power-off.

• Runtime attributes are read-only attributes from an Object Management per-
spective but read-write from an Object Implementer perspective.

As attributes cannot exist outside of an encapsulating object, configuration attributes
can only belong to configuration objects, as opposed to runtime attributes that may
belong to objects of either category. Runtime objects can only have runtime
attributes.
20 SAI-AIS-IMM-A.02.01 Section 3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
Object Implementers cannot on their own initiative create and delete configuration
objects or modify configuration attributes by using the Object Implementer interface.
On the other hand, system management applications cannot directly create and
delete runtime objects or modify runtime attributes. However, as a consequence of
some administrative operations requested by these system management applications
Object Implementers may create or delete runtime objects or modify runtime
attributes to reflect the new system state after the completion of the administrative
operation.

The IMM Service exposes two sets of APIs:

(1) An Object Management API (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An Object Implementer API (OI-API), which is intended to be used by Object
Implementers.

Chapter 4 describes the OM-API. The OI-API is found in Chapter 5.

3.1 Object Naming
The Distinguished Name (DN) of an object (also simply called the object name) is
constructed by prefixing the DN of the object's parent in the IMM tree hierarchy with
the Relative Distinguished Name (RDN) of the object. The ',' character is used as a
separator between the RDN of the object and the DN of its parent as follows:

Object_DN = "Object_RDN,Parent_Object_DN"

Objects that are immediately under the root of the IMM hierarchy have a DN that is
equal to their RDN.

Each object must have one and only one attribute which is used to build the object
RDN as follows:

Object_RDN = "RDN_attribute_name=RDN_attribute_value"
AIS Specification SAI-AIS-IMM-A.02.01 Section 3.1 21

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.2 Internal Persistent Repository
The IMM Service maintains a copy of all its persistent entities (class definitions and
persistent objects with their persistent attributes) within an internal persistent
repository kept on stable storage. The storage holding the IMM persistent repository
must be highly available, which implies storage replication. The nature of this internal
repository is implementation-specific.

During startup of the IMM Service, the contents of its internal repository may be over-
written (or initialized if the internal repository was empty) from the contents of an XML
file. It is implementation-specific how the XML file is provided to the IMM Service at
startup. The XML file must conform to the IMM XML Schema Definition (see [3]).
Such an XML file may be the result of the SA_IMM_ADMIN_EXPORT administrative
operation (see Section 7.3.1 on page 146). If the XML file contains the description of
non-persistent objects or attributes, these objects and attributes are ignored. The
configuration parameter saImmRepositoryInit of the SaImmMngt object class
(see Section 6.2 on page 143) specifies whether to overwrite or not the contents of
the IMM internal repository at startup of the IMM Service.

When the IMM Service starts (for example, at the initial cluster startup or after a full
cluster power-off), it contains only the class definitions and persistent objects with
their persistent attributes that are present in its internal repository. Non-persistent
runtime objects must be re-created by Object Implementers. The values of non-per-
sistent runtime attributes (cached or not) will be obtained from the Object Implement-
ers.
22 SAI-AIS-IMM-A.02.01 Section 3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.3 Unavailability of the IMM API on a Non-Member Node
The IMM Service does not provide service to processes on cluster nodes that are not
in the cluster membership (see [4]).

The following subsection describes the behavior of the IMM Service under various
conditions that cause the IMM Service to be unavailable on a cluster node.
Section 3.3.2 on page 24 contains guidelines for IMM Service implementers for deal-
ing with a temporary unavailability of the service.

3.3.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [4]) or is being administra-
tively evicted from the cluster membership, the IMM Service behaves as follows
towards processes residing on that cluster node and using or attempting to use the
service:

• Calls to saImmOmInitialize() and saImmOiInitialize_2() will fail with
SA_AIS_ERR_UNAVAILABLE.

• All IMM Service APIs that are invoked by the process and that operate on han-
dles already acquired by the process will fail with SA_AIS_ERR_UNAVAILABLE
with the following exceptions, assuming that the handle immHandle or the han-
dle immOiHandle has already been acquired:
⇒ The saImmOmAdminOperationInvokeAsync_2() function may return
SA_AIS_OK or SA_AIS_ERR_UNAVAILABLE, depending on the service
implementation. If it returns SA_AIS_OK, the callback
SaImmOmAdminOperationInvokeCallbackT will be called and will also
return SA_AIS_ERR_UNAVAILABLE in the error parameter; otherwise, the
callback will not be called.

⇒ The saImmOmFinalize() and saImmOiFinalize() functions, which are
used to free the Object Management or Object Implementer library handles
and all resources associated with these handles.

• An outstanding callback SaImmOmAdminOperationInvokeCallbackT will
return SA_AIS_ERR_UNAVAILABLE in the error parameter.

If the cluster node rejoins the cluster membership, processes executing on the cluster
node will be able to reinitialize new library handles and use the entire set of IMM Ser-
vice APIs that operate on these new handles. However, invocation of APIs that oper-
ate on handles acquired by any process before the cluster node left the membership
will continue to fail with SA_AIS_ERR_UNAVAILABLE (or with the special treatment
described above for asynchronous calls) with the exception of saImmOmFinalize()
and saImmOiFinalize(), which are used to free the library handles and all
resources associated with these handles. Hence, it is recommended for the pro-
AIS Specification SAI-AIS-IMM-A.02.01 Section 3.3 23

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
cesses to finalize the library handles as soon as the processes detect that the cluster
node left the membership.

When the cluster node leaves the membership, the IMM Service executing on the
remaining nodes of the cluster behaves as if all processes that were using the IMM
Service on the leaving cluster node had been terminated. In particular, if a process on
the leaving cluster node was registered as an Object Implementer, the IMM Service
will unregister it automatically (see Section 5.4.2 on page 113).

3.3.2 Guidelines for IMM Service Implementers

The implementation of the IMM Service must leverage the SA Forum Cluster Mem-
bership Service (see [4]) to determine the membership status of a cluster node for the
case explained in Section 3.3.1 on page 23 before returning
SA_AIS_ERR_UNAVAILABLE. If the Cluster Membership Service considers a cluster
node as a member of the cluster but the IMM Service experiences difficulty in provid-
ing service to its clients because of transport, communication, or other issues, it must
respond with SA_AIS_ERR_TRY_AGAIN.
24 SAI-AIS-IMM-A.02.01 Section 3.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4 IMM Service - Object Management API Specification

4.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service Object Man-
agement API:

#include <saImmOm.h>

To use the IMM Service Object Management API, an application must be bound with
the following library:

libSaImmOm.so

4.2 Type Definitions
The Information Model Management Service uses the types described in the follow-
ing sections.

4.2.1 Handles Used by the IMM Service

typedef SaUint64T SaImmHandleT;

typedef SaUint64T SaImmAdminOwnerHandleT;

typedef SaUint64T SaImmCcbHandleT;

typedef SaUint64T SaImmSearchHandleT;

typedef SaUint64T SaImmAccessorHandleT;

The acronym CCB stands for Configuration Changes Bundle. For its usage, refer
to Section 4.8 on page 72.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4 25

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.2 Various IMM Service Names

The following types represent object class names, administrative owner names, and
object class attribute names. All these names are UTF-8 encoded character strings
terminated by the NULL character.

typedef SaStringT SaImmClassNameT;

typedef SaStringT SaImmAttrNameT;

typedef SaStringT SaImmAdminOwnerNameT;

4.2.3 SaImmValueTypeT

The SaImmValueTypeT contains various data types used by the IMM Service for
class attributes and administrative operation parameters.

typedef enum {

SA_IMM_ATTR_SAINT32T = 1, /* SaInt32T */

SA_IMM_ATTR_SAUINT32T = 2, /* SaUint32T */

SA_IMM_ATTR_SAINT64T = 3, /* SaInt64T */

SA_IMM_ATTR_SAUINT64T = 4, /* SaUint64T */

SA_IMM_ATTR_SATIMET = 5, /* SaTimeT */

SA_IMM_ATTR_SANAMET = 6, /* SaNameT */

SA_IMM_ATTR_SAFLOATT = 7, /* SaFloatT */

SA_IMM_ATTR_SADOUBLET = 8, /* SaDoubleT */

SA_IMM_ATTR_SASTRINGT = 9, /* SaStringT */

SA_IMM_ATTR_SAANYT = 10 /* SaAnyT */

} SaImmValueTypeT;

4.2.4 SaImmClassCategoryT

The SaImmClassCategoryT type is used to distinguish among different categories
of object classes.

typedef enum {

SA_IMM_CLASS_CONFIG = 1,

SA_IMM_CLASS_RUNTIME = 2

} SaImmClassCategoryT;

The values of SaImmClassCategoryT indicate whether the object class is a config-
uration object class or a runtime object class.
26 SAI-AIS-IMM-A.02.01 Section 4.2.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.5 SaImmAttrFlagsT

The SaImmAttrFlagsT type used to specify the various characteristics of an
attribute of an object class.

#define SA_IMM_ATTR_MULTI_VALUE 0x00000001

#define SA_IMM_ATTR_RDN 0x00000002

#define SA_IMM_ATTR_CONFIG 0x00000100

#define SA_IMM_ATTR_WRITABLE 0x00000200

#define SA_IMM_ATTR_INITIALIZED 0x00000400

#define SA_IMM_ATTR_RUNTIME 0x00010000

#define SA_IMM_ATTR_PERSISTENT 0x00020000

#define SA_IMM_ATTR_CACHED 0x00040000

typedef SaUint64T SaImmAttrFlagsT;

The meaning of the flags listed above is:

• SA_IMM_ATTR_MULTI_VALUE: if this flag is specified, the attribute is a multi-
value attribute; otherwise, the attribute is a single-value attribute.

• SA_IMM_ATTR_RDN: the attribute is used as the Relative Distinguished Name
(RDN) for the containing object. Each object class must have one and only one
RDN attribute. This attribute must be a single-value attribute of type
SA_IMM_ATTR_SASTRINGT or SA_IMM_ATTR_SANAMET and may not be modi-
fied after the object is created. The RDN attribute of a configuration object must
be a configuration attribute.

The following two attributes are mutually exclusive, as an attribute is either a configu-
ration or a runtime attribute.

• SA_IMM_ATTR_CONFIG: the attribute is a configuration attribute. Configuration
attributes are only allowed within object classes of the SA_IMM_CLASS_CONFIG
category.

• SA_IMM_ATTR_RUNTIME: the attribute is a runtime attribute. Runtime attributes
can belong to all object class categories.

The following two attributes are only meaningful for configuration attributes. Setting
them for runtime attributes is not allowed and generates an error.

• SA_IMM_ATTR_WRITABLE: setting this flag for a configuration attribute indicates
that the attribute can be modified. If the flag is not present, the configuration
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.2.5 27

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
attribute can only be set when the object is created and cannot be modified or
deleted later on.

• SA_IMM_ATTR_INITIALIZED: setting this flag for a configuration attribute indi-
cates that a value must be specified for this attribute when the object is created.
This flag may not be set in the definition of a configuration attribute that has a
default value.

The following attributes are only meaningful for runtime attributes. Setting them for
configuration attributes is not allowed and generates an error.

• SA_IMM_ATTR_PERSISTENT: setting this flag for runtime attributes indicates
that the attribute must be stored in a persistent manner by the IMM Service. If a
runtime object has persistent attributes, or if one of its children has persistent
attributes, its RDN attribute must be persistent.

• SA_IMM_ATTR_CACHED: setting this flag for a runtime attribute indicates that the
value of the attribute must be cached by the IMM Service. This flag is automati-
cally set by the IMM Service when the SA_IMM_ATTR_PERSISTENT flag is set.

4.2.6 SaImmAttrValueT

The SaImmAttrValueT type is used to represent the values of object attributes.

typedef void *SaImmAttrValueT;

4.2.7 SaImmAttrDefinitionT_2

The SaImmAttrDefinitionT_2 type is used to specify the characteristics of an
attribute belonging to a particular object class.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaImmAttrFlagsT attrFlags;

SaImmAttrValueT attrDefaultValue;

} SaImmAttrDefinitionT_2;

The various fields of the structure above have the following usage:

• attrName: contains the attribute name.
• attrValueType: indicates what type of values can be assigned to this

attribute.
• attrFlags: contains additional characteristics of this attribute.
28 SAI-AIS-IMM-A.02.01 Section 4.2.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• attrDefaultValue: contains a value that will automatically be assigned by
the IMM Service to this attribute if no value is specified when an object contain-
ing this attribute is created. A default value shall only be provided for configura-
tion and persistent runtime attributes. Must be set to NULL if there is no default
value for this attribute.

4.2.8 SaImmAttrValuesT_2

The SaImmAttrValuesT_2 type is used to specify the values of one attribute of an
object.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaUint32T attrValuesNumber;

SaImmAttrValueT *attrValues;

} SaImmAttrValuesT_2;

The attrName field indicates the attribute name, the attrValueType field the type
of the attribute, and the attrValuesNumber field the number of attribute values
contained in the array of value descriptors to which attrValues points.

In order to be present within an object, an attribute must have at least one value.
Optional attributes that have no value are not present in objects.

4.2.9 SaImmAttrModificationTypeT

The SaImmAttrModificationTypeT type specifies the type of modification to
apply on the values of an attribute.

typedef enum {

SA_IMM_ATTR_VALUES_ADD = 1,

SA_IMM_ATTR_VALUES_DELETE = 2,

SA_IMM_ATTR_VALUES_REPLACE = 3

} SaImmAttrModificationTypeT;

• SA_IMM_ATTR_VALUES_ADD is used to add one or several values to an
attribute in an object. If the attribute did not already have a value, the attribute is
added.

• SA_IMM_ATTR_DELETE is used to remove one or several specified values from
an attribute of an object. If all values of the attribute are removed, the attribute is
also removed from the object. If the intention is to remove an attribute without
specifying all its values, the SA_IMM_ATTR_REPLACE enum can be used.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.2.8 29

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• SA_IMM_ATTR_REPLACE is used to replace all current values of an attribute
with a new set of values. If the new set of values is empty, the attribute is
removed. If one or several values are specified and the attribute does not exist in
the object, the attribute is added to the object with the new set of values.

The SaImmAttrModificationTypeT type is used to specify the modification to
apply on an object attribute.

4.2.10 SaImmAttrModificationT_2

typedef struct {

SaImmAttrModificationTypeT modType;

SaImmAttrValuesT_2 modAttr;

} SaImmAttrModificationT_2;

The modType field indicates the type of modification to perform. The modAttr field
specifies the attribute name and the values to be added to the attribute, or to be
removed from the attribute, or that will replace the existing values. An empty set of
values can be specified by setting attrValuesNumber to 0 and attrValues to
NULL in the modAttr field. It is an error to use such an empty set of values with the
SA_IMM_ATTR_VALUES_ADD or SA_IMM_ATTR_VALUES_DELETE modification
types.

4.2.11 SaImmScopeT

The SaImmScopeT type is used to specify the scope of some IMM Service opera-
tions.

typedef enum {

SA_IMM_ONE = 1,

SA_IMM_SUBLEVEL = 2,

SA_IMM_SUBTREE = 3

} SaImmScopeT;

• SA_IMM_ONE indicates that the scope of the operation is targeted to a single
object.

• SA_IMM_SUBLEVEL indicates that the scope of the operation is targeted to one
object and its direct children.

• SA_IMM_SUBTREE indicates that the scope of the operation is targeted to one
object and the entire subtree rooted at that object.
30 SAI-AIS-IMM-A.02.01 Section 4.2.10 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.12 SaImmSearchOptionsT

The SaImmSearchOptionsT is used to specify various options when performing
searches amongst IMM Service objects.

typedef SaUint64T SaImmSearchOptionsT;

Two kinds of options can be specified by SaImmSearchOptionsT:

• Options related to the search criteria. Currently, only one such option is sup-
ported by the IMM Service. It must be specified for all search operations:

#define SA_IMM_SEARCH_ONE_ATTR 0x0001

SA_IMM_SEARCH_ONE_ATTR enables the retrieval of objects containing an
attribute of a particular name and assigned to a particular value.

• Options used to specify which attributes of the objects matching the search crite-
ria must be returned to the process performing the search. One and only one of
these three options must be specified for each search operation:

#define SA_IMM_SEARCH_GET_ALL_ATTR 0x0100

#define SA_IMM_SEARCH_GET_NO_ATTR 0x0200

#define SA_IMM_SEARCH_GET_SOME_ATTR 0x0400

SA_IMM_SEARCH_GET_ALL_ATTR indicates that for each object matching the
search criteria, all its attributes along with their values must be returned to the
process performing the search.

SA_IMM_SEARCH_GET_NO_ATTR indicates that no attributes of the objects
matching the search criteria must be returned to the process performing the
search. In this case, only the names of the objects matching the search criteria
are returned.

SA_IMM_SEARCH_GET_SOME_ATTR indicates that for each object matching the
search criteria, only a subset of its attributes along with their values must be
returned to the process performing the search. The list of attribute names to be
returned is specified by another parameter of the search operation.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.2.12 31

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.13 SaImmSearchParametersT_2

The SaImmSearchParametersT_2 type is used to provide the criteria parameters
used for search operations.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaImmAttrValueT attrValue;

} SaImmSearchOneAttrT_2;

The SaImmSearchOneAttrT_2 type contains the attribute description for
SA_IMM_SEARCH_ONE_ATTR search operations. The fields attrName and
attrValue specify the attribute name and value being searched for. The
attrValueType field indicates the type of value that is assigned to the attribute.

If attrValue is not set to NULL, an object matches the search criteria if one of its
attributes has a name identical to the name to which attrName points, the values for
this attribute are of type attrValueType, and the value of the attribute (or one of its
values for multi-valued attributes) is identical to the value to which attrValue
points.

If attrValue is set to NULL, only the attribute name is used as a search criteria, and
all objects having an attribute with such a name will be retrieved by the search opera-
tion, regardless of their attribute values.

If attrName is set to NULL, attrValue must also be set to NULL. Such an empty
criterion will match all IMM Service objects. This empty criterion can be used to
browse through all IMM Service objects.

typedef union {

SaImmSearchOneAttrT_2 searchOneAttr;

} SaImmSearchParametersT_2;

Note: Searching for a particular value of a non-cached runtime attribute should be
used with care, as it forces the IMM Service to fetch all values from the Object
Implementers, which creates extra load on the system.
32 SAI-AIS-IMM-A.02.01 Section 4.2.13 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.14 SaImmCcbFlagsT

The SaImmCcbFlagsT type is used to specify the various characteristics of a CCB.
Currently, only one value is provided.

#define SA_IMM_CCB_REGISTERED_OI 0x00000001

typedef SaUint64T SaImmCcbFlagsT;

SA_IMM_CCB_REGISTERED_OI: if this flag is specified, the CCB can only hold
changes for objects that have a registered Object Implementer. This flag must be set
by applications that expect Object Implementers to validate the changes made using
the CCB. If this flag is not set, the IMM Service accepts changes on objects with no
registered implementer.

4.2.15 SaImmContinuationIdT

typedef SaUint64T SaImmContinuationIdT;

The type SaImmContinuationIdT is used to identify a particular invocation of an
administrative operation on an IMM object. Its scope is cluster-wide, and it must be
unique on a per-IMM object basis.

For more details, refer to Section 4.9 on page 85.

4.2.16 SaImmAdminOperationIdT

The SaImmAdminOperationIdT type is used to hold an identifier designating a par-
ticular administrative operation to perform on an object. The identifiers for all adminis-
trative operations of a given object class must have different integer values. However,
the same values can be used for administrative operations of different object classes.
In other words, the scope of an operation identifier is the object class.

typedef SaUint64T SaImmAdminOperationIdT;
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.2.14 33

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.17 SaImmAdminOperationParamsT_2

The SaImmAdminOperationParamsT_2 type is used to specify the parameters of
an administrative operation performed on an object.

typedef struct {

SaStringT paramName;

SaImmValueTypeT paramType;

SaImmAttrValueT paramBuffer;

} SaImmAdminOperationParamsT_2;

The paramName field indicates the name of the parameter. The paramType field
indicates the type of the parameter. The paramBuffer field contains the parameter
value.

4.2.18 SaImmCallbacksT

The SaImmCallbacksT structure defines the set of callbacks a process can provide
to the IMM Service at initialization time.

typedef struct {

SaImmOmAdminOperationInvokeCallbackT

saImmOmAdminOperationInvokeCallback;

} SaImmCallbacksT;

4.2.19 IMM Service Object Attributes

The following #define directives are used to refer to the name of attributes of objects
in the SA Forum Information Model.

#define SA_IMM_ATTR_CLASS_NAME "SaImmAttrClassName"

The IMM Service adds an attribute to each object holding the name of the class of the
object. The name of this attribute is specified by the constant
SA_IMM_ATTR_CLASS_NAME.

#define SA_IMM_ATTR_ADMIN_OWNER_NAME "SaImmAttrAdminOwnerName"

When an object has been assigned an administrative owner, the IMM Service stores
the name of the object administrative owner in one attribute of the object. The name
of this attribute is specified by the constant SA_IMM_ATTR_ADMIN_OWNER_NAME.
This attribute does not exist in objects having no administrative owners.
34 SAI-AIS-IMM-A.02.01 Section 4.2.17 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
#define SA_IMM_ATTR_IMPLEMENTER_NAME
"SaImmAttrImplementerName"

When an object has an implementer, the IMM Service stores the name of the Object
Implementer in one attribute of the object. The name of this attribute is specified by
the constant SA_IMM_ATTR_IMPLEMENTER_NAME. This attribute does not exist in
objects having no implementers.

The above attributes are single-value attributes and their value is of type
SA_IMM_ATTR_SASTRINGT. For configuration objects, these attributes are configu-
ration attributes, and for runtime objects, these attributes are runtime attributes. If the
runtime object is persistent, these attributes are also persistent.

4.2.20 SaImmRepositoryInitModeT

typedef enum {

SA_IMM_KEEP_REPOSITORY = 1,

SA_IMM_INIT_FROM_FILE = 2

} SaImmRepositoryInitModeT;

The values of SaImmRepositoryInitModeT specify how the IMM Service initial-
izes its internal repository when the IMM Service starts up.

• SA_IMM_KEEP_REPOSITORY: at startup, the IMM Service keeps the contents of
its internal repository.

• SA_IMM_INIT_FROM_FILE: at startup, the IMM Service must overwrite the
contents of its internal repository with the contents of an XML file. The location of
this initial XML file is implementation-dependent.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.2.20 35

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.3 Library Life Cycle

4.3.1 saImmOmInitialize()

Prototype

SaAisErrorT saImmOmInitialize(

SaImmHandleT *immHandle,

const SaImmCallbacksT *immCallbacks,

SaVersionT *version

);

Parameters

immHandle - [out] A pointer to the handle which identifies this particular initialization
of the IMM Service, and which is to be returned by the IMM Service. This handle pro-
vides access to the Object Management APIs of the IMM Service. The
SaImmHandleT type is defined in Section 4.2.1 on page 25.

immCallbacks - [in] If immCallbacks is set to NULL, no callback is registered; If
immCallbacks is not set to NULL, it is a pointer to an SaImmCallbacksT structure
which contains the callback functions of the process that the IMM Service may
invoke. Only non-NULL callback functions in this structure will be registered. The
SaImmCallbacksT type is defined in Section 4.2.18 on page 34.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required IMM Service version. In this case, minorVersion is ignored and
should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the IMM Service. The SaVersionT type is defined in [1].

Description

This function initializes the Object Management functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other Object
Management functions of the Information Model Management Service functionality.
The handle pointed to by immHandle is returned by the IMM Service as the refer-
ence to this association between the process and the Object Management of the IMM
Service. The process uses this handle in subsequent communication with the Object
Management of the IMM Service.
36 SAI-AIS-IMM-A.02.01 Section 4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
If the invoking process exits after successfully returning from the
saImmOmInitialize() function and before invoking saImmOmFinalize() to
finalize the handle immHandle (see Section 4.3.4 on page 41), the IMM Service
automatically finalizes this handle and any other handles that have been acquired
using the handle immHandle when the IMM Service detects the death of the pro-
cess.

If the implementation supports the specified releaseCode and major version,
SA_AIS_OK is returned. In this case, the structure pointed to by the version param-
eter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.3.1 37

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saImmOmSelectionObjectGet(), saImmOmDispatch(),
saImmOmFinalize()

4.3.2 saImmOmSelectionObjectGet()

Prototype

SaAisErrorT saImmOmSelectionObjectGet(

SaImmHandleT immHandle,

SaSelectionObjectT *selectionObject

);
38 SAI-AIS-IMM-A.02.01 Section 4.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

selectionObject - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [1].

Description

This function returns the operating system handle associated with the handle
immHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking saImmOmDispatch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect pending callbacks.

The operating system handle returned by saImmOmSelectionObjectGet() is
valid until saImmOmFinalize() is successfully invoked on the same handle
immHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.3.2 39

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmDispatch(), saImmOmFinalize()

4.3.3 saImmOmDispatch()

Prototype

SaAisErrorT saImmOmDispatch(

SaImmHandleT immHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saImmOmDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle immHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle immHandle has been finalized.
40 SAI-AIS-IMM-A.02.01 Section 4.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmSelectionObjectGet(),
saImmOmFinalize()

4.3.4 saImmOmFinalize()

Prototype

SaAisErrorT saImmOmFinalize(

SaImmHandleT immHandle

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.3.4 41

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

The saImmOmFinalize() function closes the association represented by the
immHandle parameter between the invoking process and the IMM Service. The pro-
cess must have invoked saImmOmInitialize() before it invokes this function. A
process must invoke this function once for each handle it acquired by invoking
saImmOmInitialize().

If the saImmOmFinalize() function completes successfully, it releases all
resources acquired when saImmOmInitialize() was called. Moreover, it implicitly
invokes:

• saImmOmSearchFinalize() on all search handles initialized with
immHandle and not yet finalized.

• saImmOmAccessorFinalize() on all accessor handles initialized with
immHandle and not yet finalized.

• saImmOmAdminOwnerFinalize() on all administrative owner handles initial-
ized with immHandle and not yet finalized.

Furthermore, saImmOmFinalize() cancels all pending callbacks related to asyn-
chronous operations performed with immHandle. Note that because the callback
invocation is asynchronous, it is still possible that some callback calls are processed
after this call returns successfully.

After saImmOmFinalize() returns successfully, the handle immHandle and the
selection object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saImmOmInitialize()
42 SAI-AIS-IMM-A.02.01 Section 4.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4 Object Class Management
The following APIs are used to create and delete object classes. A caller can also use
them to query the definition of an existing object class.

4.4.1 saImmOmClassCreate_2()

Prototype

SaAisErrorT saImmOmClassCreate_2(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT classCategory,

const SaImmAttrDefinitionT_2 **attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

className - [in] The name of the object class to create. The SaImmClassNameT
type is defined in Section 4.2.2 on page 26.

classCategory - [in] Category of the object class. The SaImmClassCategoryT
type is defined in Section 4.2.4 on page 26.

attrDefinitions - [in] Pointer to a NULL-terminated array of pointers to defini-
tions of the class attributes. The SaImmAttrDefinitionT_2 type is defined in
Section 4.2.7 on page 28.

Description

This function creates a new object class with the name className. The new object
class can be a configuration or runtime object class, depending on the
classCategory parameter setting.

Object class definitions are stored in a persistent manner by the IMM Service.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.4 43

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrDefinitions parameter refers to a NULL or zero length attribute name, an
invalid value type, an invalid default attribute value, or a set of attribute flags that are
inconsistent with the class category specified by the classCategory parameter.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_EXIST - An object class with a name identical to className already
exists.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize()
44 SAI-AIS-IMM-A.02.01 Section 4.4.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4.2 saImmOmClassDescriptionGet_2()

Prototype

SaAisErrorT saImmOmClassDescriptionGet_2(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT *classCategory,

SaImmAttrDefinitionT_2 ***attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

className - [in] The name of the object class for which a description is requested.
The SaImmClassNameT type is defined in Section 4.2.2 on page 26.

classCategory - [out] Pointer to an SaImmClassCategoryT structure to contain
the category of the object class. The SaImmClassCategoryT type is defined in
Section 4.2.4 on page 26.

attrDefinitions - [out] Pointer to a pointer to a NULL-terminated array of point-
ers to definitions of the class attributes. The SaImmAttrDefinitionT_2 type is
defined in Section 4.2.7 on page 28.

Description

This function returns a description of the object class identified by the name
className.

The Information Model Management Service library allocates the memory to return
the attribute definitions. When the calling process no longer needs to access the
attribute definitions, the memory must be freed by calling the
saImmOmClassDescriptionMemoryFree_2() function.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.4.2 45

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NOT_EXIST - No object class exists with a name identical to
className.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmClassCreate_2(),
saImmOmClassDescriptionMemoryFree_2()
46 SAI-AIS-IMM-A.02.01 Section 4.4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4.3 saImmOmClassDescriptionMemoryFree_2()

Prototype

SaAisErrorT saImmOmClassDescriptionMemoryFree_2(

SaImmHandleT immHandle,

SaImmAttrDefinitionT_2 **attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

attrDefinitions - [in] Pointer to a NULL-terminated array of pointers to attribute
definitions to be freed. The SaImmAttrDefinitionT_2 type is defined in
Section 4.2.7 on page 28.

Description

This function deallocates the memory that was allocated by a previous call to the
saImmOmClassDescriptionGet_2() function; this deallocation includes

• the memory areas containing the attribute definitions which are referred to by the
pointers held in the NULL-terminated array referred to by attrDefinitions
and

• the memory of the NULL-terminated array of pointers referred to by
attrDefinitions.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.4.3 47

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmClassCreate_2(),
saImmOmClassDescriptionGet_2()

4.4.4 saImmOmClassDelete()

Prototype

SaAisErrorT saImmOmClassDelete(

SaImmHandleT immHandle,

const SaImmClassNameT className

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

className - [in] Name of the object class to be deleted. The SaImmClassNameT
type is defined in Section 4.2.2 on page 26.

Description

This function deletes the object class whose name is className, provided no
objects of this class exist.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
48 SAI-AIS-IMM-A.02.01 Section 4.4.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - No object class exists with a name identical to
className.

SA_AIS_ERR_BUSY - The object class cannot be deleted as objects of this class still
exist, or a request to create an object of this class has been added to a CCB.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmClassCreate_2()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.4.4 49

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.5 Object Search
The API functions in this section are used to perform object search, that is, to search
for particular objects in the IMM Service object tree and also to obtain the values of
some of their attributes.

In order to facilitate the management of the memory allocated by the IMM Service
library to return the results of the search, the search is performed by using a search
iterator.

The search criteria is specified when the search iterator is initialized. At initialization
time, the attributes to be retrieved are also specified for each object that matches the
search criteria. Then, each invocation of the iterator returns the object name and the
specified attributes of the next object satisfying the search criteria.

The iteration is terminated by invoking the finalize API.

Every object which was created before the invocation of the
saImmOmSearchInitialize_2() function and which matches the search criteria
and has not been modified or deleted before the invocation of
saImmOmSearchFinalize(), will be returned exactly once by the
saImmOmSearchNext_2() search iterator. No other guarantees are made: objects
that are created after the iteration is initialized, or modified, or deleted before the iter-
ation is finalized, may or may not be returned by the search iterator.

4.5.1 saImmOmSearchInitialize_2()

Prototype

SaAisErrorT saImmOmSearchInitialize_2(

SaImmHandleT immHandle,

const SaNameT *rootName,

SaImmScopeT scope,

SaImmSearchOptionsT searchOptions,

const SaImmSearchParametersT_2 *searchParam,

const SaImmAttrNameT *attributeNames,

SaImmSearchHandleT *searchHandle

);
50 SAI-AIS-IMM-A.02.01 Section 4.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

rootName - [in] Pointer to the name of the root object for the search. If set to NULL,
the search starts at the root of the IMM Service tree. The SaNameT type is defined in
[1].

scope - [in] Scope of the search. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.

searchOptions - [in] Specifies the type of criteria being used as well as which
attribute values must be returned for each object matching the search criteria. The
SaImmSearchOptionsT type is defined in Section 4.2.12 on page 31.

searchParam - [in] A pointer to the search parameters according to the search cri-
teria specified in searchOption. The SaImmSearchParametersT_2 type is
defined in Section 4.2.13 on page 32.

attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be returned while iterating through all objects matching the search
criteria.
Only used if the SA_IMM_SEARCH_GET_SOME_ATTR option has been set in the
searchOptions parameter. The attributeNames pointer must be set to NULL
otherwise.
The SaImmAttrNameT type is defined in Section 4.2.2 on page 26.

searchHandle - [out] Search handle used later to iterate through all objects that
match the search criteria. The SaImmSearchHandleT type is defined in
Section 4.2.1 on page 25.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.5.1 51

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function initializes a search operation limited to a set of targeted objects identi-
fied by the scope parameter and the name to which the rootName parameter points.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object having
the name to which rootName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object having
the name to which rootName points and the entire subtree rooted at that object.

• SA_IMM_ONE is not a valid value for the scope parameter.

If the SA_IMM_SEARCH_ONE_ATTR option is not set in the searchOptions parame-
ter, the searchOptions parameter must be set to NULL. In this case, no selection
criteria is applied for the search, and all objects in the defined scope will be retrieved
by the search operation.

One and only one of the following three options must be set in the searchOptions
parameter:

• SA_IMM_SEARCH_GET_ALL_ATTR,
• SA_IMM_SEARCH_GET_NO_ATTR, or
• SA_IMM_SEARCH_GET_SOME_ATTR.

This parameter specifies which attributes must be returned for each object matching
the search criteria. If SA_IMM_SEARCH_GET_SOME_ATTR is set, the
attributeNames parameter specifies the names of the attributes to be returned.
If SA_IMM_SEARCH_GET_SOME_ATTR is not set, the attributeNames parameter
must be set to NULL.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
52 SAI-AIS-IMM-A.02.01 Section 4.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The name to which rootName points is not the name of
an existing object.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize()

4.5.2 saImmOmSearchNext_2()

Prototype

SaAisErrorT saImmOmSearchNext_2(

SaImmSearchHandleT searchHandle,

SaNameT *objectName,

SaImmAttrValuesT_2 ***attributes

);

Parameters

searchHandle - [in] Handle returned by saImmOmSearchInitialize_2(). The
SaImmSearchHandleT type is defined in Section 4.2.1 on page 25.

objectName - [out] Pointer to the name of the next object matching the search cri-
teria. The SaNameT type is defined in [1].

attributes - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures holding the names and values of the attributes (of the object whose
name is pointed to by objectName) that were selected when the search was initial-
ized. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 29.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.5.2 53

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function is used to obtain the next object matching the search criteria.

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of
saImmOmSearchNext_2() or saImmOmSearchFinalize() for the same search
handle.

If the handle searchHandle was not obtained by specifying
SA_IMM_SEARCH_GET_ALL_ATTR or SA_IMM_SEARCH_GET_SOME_ATTR in the
searchOptions parameter of the corresponding
saImmOmSearchInitialize_2() call, no attribute names and values will be
returned by this call, and the pointer to which the attributes parameter refers is
set to NULL.

If one of the attributes requested by the search has no value or is a non-persistent
runtime attribute, and no Object Implementer is registered for the object, only the
attribute name is returned (attrValuesNumber is set to 0 and attrValues is set
to NULL in the SaImmAttrValuesT_2 data structure referred to by the correspond-
ing entry in the array whose address is referred to by the attributes parameter).

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - All objects matching the search criteria have already
been returned to the calling process. The caller can now invoke the
54 SAI-AIS-IMM-A.02.01 Section 4.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
saImmOmSearchFinalize() function. Note that if no object matches the search
criteria, this value is returned at the first invocation of saImmOmSearchNext_2().

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

searchHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmInitialize(), saImmOmSearchInitialize_2(),
saImmOmSearchFinalize()

4.5.3 saImmOmSearchFinalize()

Prototype

SaAisErrorT saImmOmSearchFinalize(

SaImmSearchHandleT searchHandle

);

Parameters

searchHandle - [in] Handle returned by saImmOmSearchInitialize_2(). The
SaImmSearchHandleT type is defined in Section 4.2.1 on page 25.

Description

This function finalizes the search initialized by a previous call to
saImmOmSearchInitialize_2(). It frees all memory previously allocated by that
search, in particular, the memory used to return attribute names and values in the
previous saImmOmSearchNext_2() invocation.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.5.3 55

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Returned Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

searchHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmInitialize(), saImmOmSearchInitialize_2(),
saImmOmSearchNext_2()
56 SAI-AIS-IMM-A.02.01 Section 4.5.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.6 Object Access
The API functions in this section are used to perform object access, that is, to
access the values of some attributes of an object already known by its name. Once
an application has discovered the object hierarchy, it can use this interface to fetch
some particular attribute values.

The object accessor is a way to facilitate the management of the memory allocated
by the IMM Service library to return attribute names and values.

4.6.1 saImmOmAccessorInitialize()

Prototype

SaAisErrorT saImmOmAccessorInitialize(

SaImmHandleT immHandle,

SaImmAccessorHandleT *accessorHandle

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

accessorHandle - [out] Pointer to the object accessor handle. The
SaImmAccessorHandleT type is defined in Section 4.2.1 on page 25.

Description

This function initializes an object accessor.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.6 57

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize()

4.6.2 saImmOmAccessorGet_2()

Prototype

SaAisErrorT saImmOmAccessorGet_2(

SaImmAccessorHandleT accessorHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames,

SaImmAttrValuesT_2 ***attributes

);

Parameters

accessorHandle - [in] Object accessor handle. The SaImmAccessorHandleT
type is defined in Section 4.2.1 on page 25.

objectName - [in] Pointer to the name of the object being accessed. The SaNameT
type is defined in [1].

attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be returned. The SaImmAttrNameT type is defined in
Section 4.2.2 on page 26.
58 SAI-AIS-IMM-A.02.01 Section 4.6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
attributes - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures containing the name and values of the attributes being accessed. The
SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 29.

Description

This function uses an object accessor to obtain the values assigned to some
attributes of an object. If attributeNames is set to NULL, the values of all attributes
of the object are returned.

If one of the requested attributes has no value or is a non-persistent runtime attribute,
and there is no registered Object Implementer for the object, only the attribute name
is returned (attrValuesNumber is set to 0 and attrValues is set to NULL in the
SaImmAttrValuesT_2 data structure specified by the attributes parameter).

The memory used to return the object attribute names and values is allocated by the
library and will be deallocated at the next invocation of saImmOmAccessorGet_2()
or saImmOmAccessorFinalize().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The name to which objectName points is not the name
of an existing object, or any of the names specified by attributeNames does not
exist for the object identified by the name to which objectName points.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.6.2 59

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

accessorHandle was acquired before the cluster node left the cluster mem-
bership.

See Also

saImmOmAccessorInitialize()

4.6.3 saImmOmAccessorFinalize()

Prototype

SaAisErrorT saImmOmAccessorFinalize(

SaImmAccessorHandleT accessorHandle

);

Parameters

accessorHandle - [in] Object accessor handle. The SaImmAccessorHandleT
type is defined in Section 4.2.1 on page 25.

Description

This function finalizes the object accessor and deallocates all memory previously
allocated for this object accessor. In particular, this function frees the memory used to
return the object attribute names and values during the previous invocation of
saImmOmAccessorGet_2().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
60 SAI-AIS-IMM-A.02.01 Section 4.6.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

accessorHandle was acquired before the cluster node left the cluster mem-
bership.

See Also

saImmOmAccessorInitialize()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.6.3 61

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.7 Object Administration Ownership
Each object of the IMM Service may have at any time one and only one administra-
tive owner, which has the ability to modify the object or invoke administrative opera-
tions on the object. The administrative owner is usually distinct from the Object
Implementer. Establishing the administrative ownership of an object or a set of
objects guarantees that a process unrelated with this administrative owner will not
modify the objects concurrently.

As management operations may be performed by a set of cooperating processes, an
administrative owner is identified by its name, and several processes may perform
sequentially or concurrently administrative operations under the same administra-
tive owner name (by initializing several administrative owner handles with the same
name).

A process acting under that administrative owner name will typically release the
administrative ownership on the objects. Note that this process need not necessarily
be any of the one or more processes that set the administrative owner name of the
objects. For recovery purposes, a process with appropriate privileges can also
release the administrative ownership of a set of objects (by invoking the
saImmOmAdminOwnerClear() function) without acting under the name of their cur-
rent administrative owner.

Management applications are responsible for releasing the administrative ownership
on objects when their management activities are completed.

4.7.1 saImmOmAdminOwnerInitialize()

Prototype

SaAisErrorT saImmOmAdminOwnerInitialize(

SaImmHandleT immHandle,

const SaImmAdminOwnerNameT adminOwnerName,

SaBoolT releaseOwnershipOnFinalize,

SaImmAdminOwnerHandleT *ownerHandle

);
62 SAI-AIS-IMM-A.02.01 Section 4.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

adminOwnerName - [in] Name of the administrative owner. The
SaImmAdminOwnerNameT type is defined in Section 4.2.2 on page 26.

releaseOwnershipOnFinalize - [in] This parameter specifies how to release
administrative ownerships that were acquired with the newly initialized handle
ownerHandle when this handle is finalized. The SaBoolT type is defined in [1].

ownerHandle - [out] Pointer to the handle for the administrative owner. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

Description

This function initializes a handle for an administrative owner whose name is specified
by adminOwnerName. All objects owned by an administrative owner have the
attribute whose name is defined by the constant
SA_IMM_ATTR_ADMIN_OWNER_NAME set to the name of the administrative owner.
For objects without an administrative owner, that attribute does not exist.

If releaseOwnershipOnFinalize is set to SA_TRUE, the IMM Service automati-
cally releases all administrative ownerships that were acquired with the newly initial-
ized handle ownerHandle when this handle is finalized.
If releaseOwnershipOnFinalize is set to SA_FALSE, the IMM Service does not
automatically release the ownership when the handle is finalized. In this case, if a
management application fails while holding the administrative ownership on some
objects, it is the responsibility of the recovery procedure of the failed application to
release the administrative ownership on these objects.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.7.1 63

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize(), saImmOmAdminOwnerSet(),
saImmOmAdminOwnerFinalize()

4.7.2 saImmOmAdminOwnerSet()

Prototype

SaAisErrorT saImmOmAdminOwnerSet(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [1].
64 SAI-AIS-IMM-A.02.01 Section 4.7.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.

Description

This function sets the administrative owner identified by ownerHandle as the owner
of the set of objects identified by the scope and the objectNames parameters. This
function can be used to acquire the administrative ownership of either configuration
or runtime objects.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

The operation fails if one of the targeted objects has already an administrative owner
whose name is different from the name used to initialize ownerHandle. If the opera-
tion fails, the administrative owner of the targeted objects is not changed.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is set to the administrative owner name that was specified when
ownerHandle was initialized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.7.2 65

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already
has an administrative owner having a name different from the name used to initialize
ownerHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerRelease(),
saImmOmAdminOwnerClear()

4.7.3 saImmOmAdminOwnerRelease()

Prototype

SaAisErrorT saImmOmAdminOwnerRelease(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [1].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.
66 SAI-AIS-IMM-A.02.01 Section 4.7.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function releases the administrative owner of the set of objects identified by the
scope and objectNames parameters.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects are all cleared.

The operation fails if an administrative operation is currently in progress on one of the
targeted objects. An administrative operation is considered to be in progress on an
object if the SaImmOiAdminOperationCallbackT_2 Object Implementer's call-
back has been invoked for that operation and the Object Implementer is still regis-
tered but has not yet called saImmOiAdminOperationResult() to provide the
operation results. The operation also fails if a change request for one of the targeted
objects is included in a CCB that has not been finalized.

If the operation fails, the administrative owner of all objects in the given scope is not
changed.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.7.3 67

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object, or at least one of the objects targeted by this oper-
ation is not owned by the administrative owner whose name was used to initialize
ownerHandle.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet()

4.7.4 saImmOmAdminOwnerFinalize()

Prototype

SaAisErrorT saImmOmAdminOwnerFinalize(

SaImmAdminOwnerHandleT ownerHandle

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

Description

This function releases ownerHandle. If ownerHandle has been initialized with the
releaseOwnershipOnFinalize option set to SA_FALSE, this function neither
affects registered continuation identifiers of any object nor releases the administrative
ownership set on objects by using this handle.
68 SAI-AIS-IMM-A.02.01 Section 4.7.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
If ownerHandle has been initialized with the releaseOwnershipOnFinalize
option set to SA_TRUE, this operation also releases the administrative ownership that
has been set on objects by using this handle and clears all continuation identifiers
registered for these objects.

This function implicitly invokes saImmOmCcbFinalize() on all CCB handles initial-
ized with ownerHandle and not yet finalized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmCcbInitialize()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.7.4 69

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.7.5 saImmOmAdminOwnerClear()

Prototype

SaAisErrorT saImmOmAdminOwnerClear(

SaImmHandleT immHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize() function and which identifies this particular initialization of
the Information Model Management Service. The SaImmHandleT type is defined in
Section 4.2.1 on page 25.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [1].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.

Description

This function clears the administrative owner of the set of objects identified by the
scope and objectNames parameters.
The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

The operation succeeds even if some targeted objects do not have an administrative
owner, or if the set of targeted objects have different administrative owners.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects are all cleared.
70 SAI-AIS-IMM-A.02.01 Section 4.7.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The operation fails if an administrative operation is currently in progress on one of the
targeted objects (for the term “in progress”, see Section 4.7.3 on page 66), or if a
change request for one of the targeted objects is included in a CCB that has not been
applied or finalized.
If the operation fails, the administrative owner of all objects in the given scope is not
changed.

This function is intended to be used only when recovering from situations where
some management applications took ownership of some objects and did not release
them.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet(),
saImmOmAdminOwnerRelease()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.7.5 71

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8 Configuration Changes
All changes of IMM Service configuration objects are performed in the context of con-
figuration change bundles (CCB). Once a CCB has been initialized, change
requests can be added to a CCB. A change request can be a creation, a deletion, or
a modification. Later on, when the CCB is applied, all pending change requests
included in the CCB are applied with all-or-nothing semantics (either all change
requests are applied or none are applied). The change requests are applied in the
order they have been added to the CCB.

A CCB is associated with a single administrative owner, and all objects modified by
change requests included in one CCB must have the same administrative owner as
the CCB.

The IMM Service does not prevent applications from reading (by invoking
saImmOmSearchNext_2() or saImmOmAccessorGet_2()) the attribute values of
the objects modified by a CCB while a CCB is being applied. Therefore, it may hap-
pen, for example, that a search operation returns for some matching objects the val-
ues that their attributes had before the CCB was applied and for other objects the
values that their attributes had after the CCB was applied. However, the IMM Service
must guarantee that all CCB changes are applied atomically for each particular
object. The attribute values returned by saImmOmSearchNext_2() or
saImmOmAccessorGet_2() for a particular object must all be the values before the
CCB was applied or all be the values after the CCB was applied (in other words, mix-
ing old and new values is not allowed).

The IMM Service enforces the following limitation regarding concurrent management
tasks for a particular object: at a given time, an object can be the target of either a sin-
gle CCB or one or several administrative operations.
72 SAI-AIS-IMM-A.02.01 Section 4.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.1 saImmOmCcbInitialize()

Prototype

SaAisErrorT saImmOmCcbInitialize(

SaImmAdminOwnerHandleT ownerHandle,

SaImmCcbFlagsT ccbFlags,

SaImmCcbHandleT *ccbHandle

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

ccbFlags - [in] CCB flags. The SaImmCcbFlagsT type is defined in
Section 4.2.14 on page 33.

ccbHandle - [out] Pointer to the CCB handle. The SaImmCcbHandleT type is
defined in Section 4.2.1 on page 25.

Description

This function initializes a new CCB and returns a handle for it. The CCB is initialized
as empty (it contains no change requests).

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.1 73

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize()

4.8.2 saImmOmCcbObjectCreate_2()

Prototype

SaAisErrorT saImmOmCcbObjectCreate_2(

SaImmCcbHandleT ccbHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT_2 **attrValues

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 25.

className - [in] Object name class. The SaImmClassNameT type is defined in
Section 4.2.2 on page 26.

parentName - [in] Pointer to the name of the parent of the new object. The
SaNameT type is defined in [1].

attrValues - [in] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 29.
74 SAI-AIS-IMM-A.02.01 Section 4.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function adds to the CCB identified by its handle ccbHandle a request to create
a new IMM Service object. Once this new object is successfully created, it will be
automatically owned by the administrative owner of the CCB. The new object is cre-
ated as a child of the object designated by the name to which parentName points. If
parentName is set to NULL, the new object is created as a top level object.

This function can be used only to create configuration objects. The attributes speci-
fied by the array to which attrValues refers must match the object class definition.
Only configuration and persistent runtime attributes can be specified by this array.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_IMPLEMENTER_NAME
cannot be specified by the attrValues descriptors, as these attributes are automat-
ically set by the IMM Service.

The creation will only be performed when the CCB is applied. However, the IMM Ser-
vice invokes any existing Object Implementer synchronously to validate the creation
request and may return an error if this creation is not a valid operation.

The IMM Service adds an SA_IMM_ATTR_CLASS_NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
className parameter.

If the parent object is not administratively owned by the administrative owner of the
CCB, this function fails and returns SA_AIS_ERR_BAD_OPERATION.

If this function returns an error, the creation request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.2 75

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies a runtime object class,
• there is no valid RDN attribute specified for the new object,
• all of the configuration attributes required at object creation are not provided by

the caller,
• the attrValues parameter includes:

• non-persistent runtime attributes,
• attributes that are not defined for the specified class,
• attributes with values that do not match the defined value type for the

attribute, and
• multiple values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The parent object is not administratively owned by
the administrative owner of the CCB, or the creation of the object has been rejected
by its Object Implementer.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the parentName parameter points is not the name of an
existing object.

• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute

names for className.
• There is no registered Object Implementer for the object to be created, and the

CCB has been initialized with the SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_EXIST - An object with the same name already exists.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted due to the registration of an Object Implementer or a problem with one
of the registered Object Implementers. The CCB is now empty.

SA_AIS_ERR_NAME_TOO_LONG - The size of the new object's DN is greater than
SA_MAX_NAME_LENGTH.
76 SAI-AIS-IMM-A.02.01 Section 4.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()

4.8.3 saImmOmCcbObjectDelete()

Prototype

SaAisErrorT saImmOmCcbObjectDelete(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 25.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

Description

This function adds to the CCB identified by its handle ccbHandle a request to delete
the configuration object designated by the name to which the objectName parame-
ter points and the entire subtree of configuration objects rooted at that object.

This operation fails if one of the targeted objects is not a configuration object that is
administratively owned by the administrative owner of the CCB. It also fails if one of
the targeted objects has some registered continuation identifiers.

The deletion will only be performed when the CCB is applied. However, the IMM Ser-
vice invokes any existing Object Implementer synchronously to validate the deletion
request and may return an error if the deletion is not a valid operation.

If this function returns an error, the deletion request has not been added to the CCB.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.3 77

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - This value is returned due to one or more of the
following reasons:

• at least one of the targeted objects is not a configuration object that is owned by
the administrative owner of the CCB;

• at least one of the targeted objects has some registered continuation identifiers;
• the Object Implementer has rejected the deletion of at least one of the targeted

objects.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or both of the following
reasons:

• The name to which the objectName parameter points is not the name of an
existing object.

• There is no registered Object Implementer for at least one of the objects tar-
geted by this operation, and the CCB has been initialized with the
SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_BUSY - At least one of the targeted objects is already the target of an
administrative operation or of a change request in another CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted due to the registration of an Object Implementer or a problem with one
of the registered Object Implementers. The CCB is now empty.
78 SAI-AIS-IMM-A.02.01 Section 4.8.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()

4.8.4 saImmOmCcbObjectModify_2()

Prototype

SaAisErrorT saImmOmCcbObjectModify_2(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName,

const SaImmAttrModificationT_2 **attrMods

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 25.

objectName - [in] Pointer to the name of the object to be modified. The SaNameT
type is defined in [1].

attrMods - [in] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The SaImmAttrModificationT_2 type is defined in
Section 4.2.10 on page 30.

Description

This function adds to the CCB identified by its handle ccbHandle a request to mod-
ify configuration attributes of an IMM Service object. Only writable configuration
attributes can be modified (SA_IMM_ATTR_WRITABLE).

This operation fails if the targeted object is not administratively owned by the adminis-
trative owner of the CCB.

The modify request will only be performed when the CCB is applied. However, the
IMM Service invokes any existing Object Implementer synchronously to validate the
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.4 79

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
modify request and may return an error if the requested modifications are not
allowed.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_IMPLEMENTER_NAME
cannot be modified.

If this function returns an error, the modify request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrMods parameter includes:

• runtime attributes,
• attributes that are not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute,
• a new value for the RDN attribute,
• attributes that cannot be modified,
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The modified object is not a configuration object
owned by the administrative owner of the CCB, or its Object Implementer has
rejected the modification.
80 SAI-AIS-IMM-A.02.01 Section 4.8.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the objectName parameter points is not the name of an
existing object.

• One or more attribute names specified by the attrMods parameter are not valid
for the object class.

• There is no registered Object Implementer for the object designated by the name
to which the objectName parameter points, and the CCB has been initialized
with the SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or one or more attribute names specified by the
attrMods parameter are not valid for the object class.

SA_AIS_ERR_BUSY - The object designated by the name to which objectName
points is already the target of an administrative operation or of a change request in
another CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted due to the registration of an Object Implementer or a problem with one
of the registered Object Implementers. The CCB is now empty.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.4 81

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.5 saImmOmCcbApply()

Prototype

SaAisErrorT saImmOmCcbApply(

SaImmCcbHandleT ccbHandle

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 25.

Description

This function applies all requests included in the configuration change bundle identi-
fied by its handle ccbHandle. The requests are applied with all-or-nothing seman-
tics, that is, either all requests are applied or none are applied. All requests are
applied in the order in which they have been added to the CCB.

Any existing Object Implementer involved by the change requests contained in the
CCB is invoked to apply the changes. The Object Implementers are responsible for
checking that the set of requested changes is valid.

This operation fails if the administrative ownership of an object targeted by this CCB
has changed since the change was added to the CCB, and the new administrative
owner of the object is not anymore the administrative owner of the CCB.

When this call returns with success or failure, all requests included in the CCB when
the call was issued have been removed. The CCB is empty and can be populated
again with change requests belonging to the same administrative owner.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.
82 SAI-AIS-IMM-A.02.01 Section 4.8.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The changes requested do not constitute a valid
set of changes.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted due to the registration of an Object Implementer or a problem with one
of the registered Object Implementers. The CCB is now empty.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize(), saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectDelete(), saImmOmCcbObjectModify_2()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.8.5 83

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.6 saImmOmCcbFinalize()

Prototype

SaAisErrorT saImmOmCcbFinalize(

SaImmCcbHandleT ccbHandle

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 25.

Description

This function finalizes the CCB identified by ccbHandle.

All change requests contained in the CCB are removed without being applied.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize()
84 SAI-AIS-IMM-A.02.01 Section 4.8.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9 Administrative Operations Invocation
Processes can invoke administrative operations on IMM objects by using the
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() API functions.

The IMM Service transfers the administrative operation to the Object Implementer by
invoking its SaImmOiAdminOperationCallbackT_2 registered callback, passing
along all parameters provided to the saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() API functions.

If the invoking process exits (due to a failure, for example) before the administrative
operation completes, the IMM allows another process to carry over the invocation
and wait for its result by invoking the saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() API functions. These functions are
called continuation functions.
The administrative operation may have completed when a continuation function is
called. In this case, the continuation function can just fetch the result of the adminis-
trative operation that has been buffered by the IMM Service.
An Object Implementer is not aware of the continuation functions, the support of
which is entirely handled by the IMM Service.

In order for an administrative operation to be carried over (or continued), the original
invoker of the administrative operation must provide a nonzero continuation identi-
fier. The continuation identifier must be unique on a per-object basis. It is the respon-
sibility of the process that initiates the administrative operation to store the
continuation identifier in a location where a process that may need to continue the
operation can access it. The location where a continuation identifier is stored is not
specified by the IMM Service and is application-specific; checkpoints or files may be
used to store continuation identifiers.
The IMM registers a particular continuation identifier with an object when an adminis-
trative operation is invoked on the object by a call to
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2(). The continuation identifier will stay
registered with the object until explicitly cleared with
saImmOmAdminOperationContinuationClear(), or until the administrative
ownership on the object that was in effect at the time of the invocation of
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2()is released.
As long as a continuation identifier stays registered with the object, it is said to be a
registered continuation identifier.
Continuation identifiers are not persistent, and they are all cleared when the IMM Ser-
vice is terminated.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9 85

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The IMM Service does not allow concurrent continuation operations for the same
continuation identifier. As a consequence, saImmOmAdminOperationContinue()
and saImmOmAdminOperationContinueAsync() will fail and return an
SA_AIS_ERR_EXIST error if

• the administrative owner handle that was used when the continuation identifier
for an object was first provided in an invocation of
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() is still valid, or if

• the administrative owner handle that was used when the continuation identifier
for an object was last provided in an invocation of any of the two continuation
functions is still valid.

4.9.1 saImmOmAdminOperationInvoke_2(), saImmOmAdminOperationInvokeAsync_2()

Prototype

SaAisErrorT saImmOmAdminOperationInvoke_2(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 **params,

SaAisErrorT *operationReturnValue,

SaTimeT timeout

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

continuationId - [in] Continuation identifier for this particular invocation of the
administrative operation. In case ownerHandle is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() functions.
86 SAI-AIS-IMM-A.02.01 Section 4.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The continuationId parameter must be set to 0 if the invocation shall not be con-
tinued. The SaImmContinuationIdT type is defined in Section 4.2.15 on page 33.

operationId - [in] Identifier of the administrative operation.
The SaImmAdminOperationIdT type is defined in Section 4.2.16 on page 33.

params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.17 on page 34.

operationReturnValue - [out] Pointer to the value returned by the Object Imple-
menter for the invoked operation. This value is specific to the administrative operation
being performed, and it is valid only if the saImmOmAdminOperationInvoke_2()
function returns SA_AIS_OK. For more details about this value, refer to the Object
Implementer administrative operation description. The SaAisErrorT type is defined
in [1].

timeout - [in] The saImmOmAdminOperationInvoke_2() invocation is consid-
ered to have failed if it does not complete by the time specified.
The SaTimeT type is defined in [1].

Prototype

SaAisErrorT saImmOmAdminOperationInvokeAsync_2(

SaImmAdminOwnerHandleT ownerHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 **params

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

invocation - [in] Used to match this invocation of
saImmOmAdminOperationInvokeAsync_2() with the corresponding invocation
of the SaImmOmAdminOperationInvokeCallbackT callback.
The SaInvocationT type is defined in [1].
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.1 87

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

continuationId - [in] Continuation identifier for this particular invocation of the
administrative operation. In case ownerHandle is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() functions.
The continuationId parameter must be set to 0 if the invocation shall not be con-
tinued. The SaImmContinuationIdT type is defined in Section 4.2.15 on page 33.

operationId - [in] Identifier of the administrative operation.
The SaImmAdminOperationIdT type is defined in Section 4.2.16 on page 33.

params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.17 on page 34.

Description

Using the IMM Service as an intermediary, these two functions request the imple-
menter of the object designated by the name to which objectName points to perform
an administrative operation characterized by operationId on that object. Adminis-
trative operations can be performed on configuration or runtime objects.

Each descriptor pointed to by an element of the array of pointers to which the
params parameter points represents an input parameter of the administrative opera-
tion to execute.

The function saImmOmAdminOperationInvoke_2() is the synchronous variant
and returns only when the Object Implementer has successfully completed the exe-
cution of the administrative operation, or when an error has been detected by the
IMM Service or the Object Implementer.

The function saImmOmAdminOperationInvokeAsync_2() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request to be trans-
mitted to the Object Implementer. If the IMM Service detects an error while register-
ing the request, an error is immediately returned, and no further invocation of the
SaImmOmAdminOperationInvokeCallbackT callback must be expected for this
invocation of saImmOmAdminOperationInvokeAsync_2(). If no error is detected
by the IMM Service while registering the request, the invocation of
saImmOmAdminOperationInvokeAsync_2() completes successfully, and a later
invocation of the SaImmOmAdminOperationInvokeCallbackT callback will occur
to indicate the success or failure of the administrative operation on the target object.
88 SAI-AIS-IMM-A.02.01 Section 4.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
If the administrative owner handle ownerHandle becomes finalized before the pro-
cess could retrieve the result of the administrative operation (returned by
saImmOmAdminOperationInvoke_2() or passed to
SaImmOmAdminOperationInvokeCallbackT), the current process or another
process may invoke one of the functions saImmOmAdminOperationContinue()
or saImmOmAdminOperationContinueAsync() on a valid administrative owner
handle to continue the operation, if necessary, and retrieve its result.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could com-
plete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOmInitialize() to initialize the IMM Service and obtain the IMM Service
handle (with which the handle ownerHandle was obtained by invoking
saImmOmAdminOwnerInitialize()) was incomplete, since the
SaImmOmAdminOperationInvokeCallbackT callback function was missing.
This return value applies only to the saImmOmAdminOperationInvokeAsync_2()
function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which
objectName points is not owned by the administrative owner associated with
ownerHandle.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or there is no registered Object Implementer for
this object.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.1 89

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_EXIST - The object designated by the name to which objectName
points has already a registered continuation identifier identical to continuationId.

SA_AIS_ERR_BUSY - The object designated by the name to which objectName
points is already the target of a change request in a CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem with the
Object Implementer.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(),
SaImmOmAdminOperationInvokeCallbackT,
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync(),
saImmOmAdminOperationContinueClear()

4.9.2 SaImmOmAdminOperationInvokeCallbackT

Prototype

typedef void (*SaImmOmAdminOperationInvokeCallbackT) (

SaInvocationT invocation,

SaAisErrorT operationReturnValue,

SaAisErrorT error

);

Parameters

invocation - [in] Used to match this callback invocation to the corresponding pre-
vious invocation of either saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last. The SaInvocationT type is defined in [1].
90 SAI-AIS-IMM-A.02.01 Section 4.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
operationReturnValue - [in] Value returned by the Object Implementer for the
administrative operation requested in the corresponding previous invocation of either
saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last.
This value is specific to the administrative operation being performed, and it is valid
only if the error parameter is set to SA_AIS_OK. For more details about this value,
refer to the Object Implementer administrative operation description.
The SaAisErrorT type is defined in [1].

error - [in] Indicates whether the IMM Service succeeded or not to invoke the
Object Implementer.
The SaAisErrorT type is defined in [1].
The returned values are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such

as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle in the corresponding
invocation of either saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is invalid, since it is corrupted, uninitialized, or has
already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
• SA_AIS_ERR_NO_MEMORY - Either the IMM Service library or the provider of the

service is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other

than memory).
• SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which

the objectName parameter points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is not owned by the administrative owner associated
with ownerHandle.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.2 91

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter
points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is not the name of an existing object, or there is no reg-
istered Object Implementer for this object.

• SA_AIS_ERR_EXIST - Two cases must be distinguished:
• This callback has been requested by the
saImmOmAdminOperationInvokeAsync_2() call: the object designated
by the name to which the objectName parameter points in the
saImmOmAdminOperationInvokeAsync_2() call has already a registered
continuation identifier identical to continuationId.

• This callback has been requested by the
saImmOmAdminOperationContinueAsync() call: the object designated
by the name to which the objectName parameter points in the
saImmOmAdminOperationContinueAsync() call has already a registered
continuation identifier identical to continuationId, and the administrative
owner handle specified for this object in a preceding call to one of the following
functions (depending on which of these four functions was called last) has not
yet been finalized:
• either saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2(), or

• either saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync()

• SA_AIS_ERR_BUSY - The object designated by the name to which the
objectName parameter points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is already the target of a change request in a CCB.

• SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem
with the Object Implementer.

• SA_AIS_ERR_UNAVAILABLE - The operation requested by either the corre-
sponding saImmOmAdminOperationContinueAsync() call or the corre-
sponding saImmOmAdminOperationInvokeAsync_2() call is unavailable on
this cluster node due to one of the two reasons:
• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle
ownerHandle specified in either the corresponding
saImmOmAdminOperationContinueAsync() call or the corresponding
92 SAI-AIS-IMM-A.02.01 Section 4.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
saImmOmAdminOperationInvokeAsync_2() call was acquired before the
cluster node left the cluster membership.

Description

The IMM Service invokes this callback function when the operation requested by the
corresponding invocation of either saImmOmAdminOperationInvokeAsync_2()
or saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) completes successfully, or an error is detected.

This callback is invoked in the context of a thread calling saImmOmDispatch() on
the handle immHandle that was used to initialize the ownerHandle specified in one
of the corresponding functions saImmOmAdminOperationInvokeAsync_2() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last.

Return Values

None

See Also

saImmOmAdminOwnerInitialize(), saImmOmDispatch(),
saImmOmAdminOperationInvokeAsync_2(),
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync(),
saImmOmAdminOperationContinueClear()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.2 93

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9.3 saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync()

Prototype

SaAisErrorT saImmOmAdminOperationContinue(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

SaAisErrorT *operationReturnValue

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

continuationId - [in] Identifies the corresponding previous invocation of
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2().
The SaImmContinuationIdT type is defined in Section 4.2.15 on page 33.

operationReturnValue - [out] Pointer to the value returned by the Object Imple-
menter for the operation requested by the corresponding previous call to
saImmOmAdminOperationInvoke_2() or to
saImmOmAdminOperationInvokeAsync_2(). The value returned by the Object
Implementer is specific to the administrative operation being performed, and it is valid
only if the saImmOmAdminOperationContinue() function returns SA_AIS_OK.
For more details about this value, refer to the Object Implementer administrative
operation description. The SaAisErrorT type is defined in [1].
94 SAI-AIS-IMM-A.02.01 Section 4.9.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Prototype

SaAisErrorT saImmOmAdminOperationContinueAsync(

SaImmAdminOwnerHandleT ownerHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmContinuationIdT continuationId

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

invocation - [in] Used to match this invocation of
saImmOmAdminOperationContinueAsync() with the corresponding invocation
of the SaImmOmAdminOperationInvokeCallbackT callback.
The SaInvocationT type is defined in [1].

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

continuationId - [in] Identifies the corresponding previous invocation of
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2().
The SaImmContinuationIdT type is defined in Section 4.2.15 on page 33.

Description

These two functions allow a process to take over the continuation of an administrative
operation that had been initiated with a particular administrative handle but did not
complete before the handle was finalized (explicitly or as a side effect of the process
termination).

The process taking over the operation may use a synchronous or asynchronous con-
tinue operation regardless of whether the respective administrative operation was ini-
tiated by invoking saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2().

The function saImmOmAdminOperationContinue() is the synchronous variant
and returns only when the Object Implementer has successfully completed the exe-
cution of the administrative operation, or when an error has been detected by the
IMM Service or the Object Implementer.
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.3 95

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The function saImmOmAdminOperationContinueAsync() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request. If the IMM
Service detects an error while registering the request, an error is immediately
returned, and no further invocation of the
SaImmOmAdminOperationInvokeCallbackT callback must be expected for this
invocation of saImmOmAdminOperationContinueAsync(). If no error is detected
by the IMM Service while registering the request, the invocation of
saImmOmAdminOperationInvokeAsync_2() completes successfully, and the
SaImmOmAdminOperationInvokeCallbackT callback will be invoked later to
indicate the success or failure of the administrative operation on the target object.

The object name pointed to by objectName and the continuation identifier
continuationId must be the same that were supplied in a corresponding previous
invocation of saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOmInitialize() to initialize the IMM Service and obtain the IMM Service
handle (with which the handle ownerHandle was obtained by invoking
saImmOmAdminOwnerInitialize()) was incomplete, since the
SaImmOmAdminOperationInvokeCallbackT callback function was missing.
This return value only applies to the saImmOmAdminOperationContinueAsync()
function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).
96 SAI-AIS-IMM-A.02.01 Section 4.9.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which the
objectName parameter points is not owned by the administrative owner associated
with ownerHandle.

SA_AIS_ERR_NOT_EXIST - This error is returned if one of the following conditions
apply:

• The name to which the objectName parameter points is not the name of an
existing object, or there is no registered Object Implementer for this object.

• The continuationId parameter is not a valid continuation identifier (that is, it
is not a registered continuation identifier) for the object whose name is pointed to
by the objectName parameter.

SA_AIS_ERR_EXIST - The object designated by the name to which the
objectName parameter points has already a registered continuation identifier identi-
cal to continuationId, and the administrative owner handle specified for this
object in the last call to one of the following functions (depending on which of these
four functions was called last) has not yet been finalized:

• either saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2(), or

• either saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync()

SA_AIS_ERR_BUSY - The object designated by the name to which the objectName
parameter points is already the target of a change request in a CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem with the
Object Implementer.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2(),
SaImmOmAdminOperationInvokeCallbackT,
saImmOmAdminOperationContinueClear()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.3 97

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9.4 saImmOmAdminOperationContinueClear()

Prototype

SaAisErrorT saImmOmAdminOperationContinuationClear(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 25.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

continuationId - [in] The continuation identifier that was supplied in the corre-
sponding previous invocation of saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2().
The SaImmContinuationIdT type is defined in Section 4.2.15 on page 33.

Parameters

Description

This function instructs the IMM Service to clear all information kept to allow the con-
tinuation of the administrative operation identified by continuationId for the
object whose name is pointed to by objectName and the administrative owner iden-
tified by ownerHandle. After successful completion of this function, the
continuationId identifier is cleared, that is, it is no longer a registered continua-
tion identifier.

The object name pointed to by objectName and the continuation identifier
continuationId must be the same that were supplied in the corresponding previ-
ous invocation of saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
98 SAI-AIS-IMM-A.02.01 Section 4.9.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which the
objectName parameter points is not owned by the administrative owner associated
with ownerHandle.

SA_AIS_ERR_NOT_EXIST - This error is returned if one of the following conditions
apply:

• The name to which the objectName parameter points is not the name of an
existing object, or there is no registered Object Implementer for this object.

• The continuationId parameter is not a valid continuation identifier (that is, it
is not a registered continuation identifier) for the object whose name is pointed to
by the objectName parameter.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2(),
SaImmOmAdminOperationInvokeCallbackT,
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync()
AIS Specification SAI-AIS-IMM-A.02.01 Section 4.9.4 99

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
100 SAI-AIS-IMM-A.02.01 Section 4.9.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5 IMM Service - Object Implementer API Specification

5.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service Object Imple-
menter API:

#include <saImmOi.h>

To use the IMM Service Object Implementer API, an application must be bound with
the following library:

libSaImmOi.so

5.2 Type Definitions

5.2.1 IMM Service Handle

The following handle is used by IMM Service Object Implementer API functions:

typedef SaUint64T SaImmOiHandleT;

5.2.2 SaImmOiImplementerNameT

The SaImmOiImplementerNameT type represents an Object Implementer name; it
points to an UTF-8 encoded character string, terminated by the NULL character.

typedef SaStringT SaImmOiImplementerNameT;

5.2.3 SaImmOiCcbIdT

typedef SaUint64T SaImmOiCcbIdT;

This type is used in the IMM Service Object Implementer APIs to identify a particular
configuration change bundle (CCB).
AIS Specification SAI-AIS-IMM-A.02.01 Section 5 101

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.2.4 SaImmOiCallbacksT_2

The SaImmOiCallbacksT_2 structure defines the set of callbacks a process imple-
menting IMM Service objects can provide to the IMM Service at initialization time.

typedef struct {

SaImmOiAdminOperationCallbackT_2
saImmOiAdminOperationCallback;

SaImmOiCcbAbortCallbackT
saImmOiCcbAbortCallback;

SaImmOiCcbApplyCallbackT
saImmOiCcbApplyCallback;

SaImmOiCcbCompletedCallbackT
saImmOiCcbCompletedCallback;

SaImmOiCcbObjectCreateCallbackT_2
saImmOiCcbObjectCreateCallback;

SaImmOiCcbObjectDeleteCallbackT
saImmOiCcbObjectDeleteCallback;

SaImmOiCcbObjectModifyCallbackT_2
saImmOiCcbObjectModifyCallback;

SaImmOiRtAttrUpdateCallbackT
saImmOiRtAttrUpdateCallback;

} SaImmOiCallbacksT_2;
102 SAI-AIS-IMM-A.02.01 Section 5.2.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.3 Library Life Cycle

5.3.1 saImmOiInitialize_2()

Prototype

SaAisErrorT saImmOiInitialize_2(

SaImmOiHandleT *immOiHandle,

const SaImmOiCallbacksT_2 *immOiCallbacks,

SaVersionT *version

);

Parameters

immOiHandle - [out] A pointer to the handle which identifies this particular initializa-
tion of the IMM Service, and which is to be returned by the IMM Service. This handle
provides access to the Object Implementer APIs of the IMM Service. The
SaImmOiHandleT type is defined in Section 5.2.1 on page 101.

immOiCallbacks - [in] If immOiCallbacks is set to NULL, no callback is regis-
tered; If immOiCallbacks is not set to NULL, it is pointer to an
SaImmOiCallbacksT_2 structure which contains the callback functions of the pro-
cess that the IMM Service may invoke. Only non-NULL callback functions in this
structure will be registered. The SaImmOiCallbacksT_2 type is defined in
Section 5.2.4 on page 102.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required Information Model Management Service version. In this case,
minorVersion is ignored and should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Information Model Management Service. The SaVersionT
type is defined in [1].

Description

This function initializes the Object Implementer functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other IMM Ser-
vice Object Implementer functionality. The handle pointed to by immOiHandle is
returned by the IMM Service as the reference to this association between the process
and the IMM Service. The process uses this handle in subsequent communication
with the IMM Service.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.3 103

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
The returned handle immOiHandle is not associated with any implementer name.
The association of the handle with an implementer name is performed by the invoca-
tion of the saImmOiImplementerSet() function.

If the invoking process exits after successfully returning from the
saImmOiInitialize_2() function and before invoking saImmOiFinalize() to
finalize the handle immOiHandle (see Section 5.3.4 on page 109), the IMM Service
automatically finalizes this handle when the death of the process is detected.

If the implementation supports the required releaseCode and majorVersion,
SA_AIS_OK is returned. In this case, the structure pointed to by the version param-
eter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion
104 SAI-AIS-IMM-A.02.01 Section 5.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiFinalize(), saImmOiImplementerSet()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.3.1 105

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.3.2 saImmOiSelectionObjectGet()

Prototype

SaAisErrorT saImmOiSelectionObjectGet(

SaImmOiHandleT immOiHandle,

SaSelectionObjectT *selectionObject

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

selectionObject - [out] A pointer to the operating system handle that the invok-
ing process can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [1].

Description

This function returns the operating system handle associated with the handle
immOiHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking saImmOiDispatch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect pending callbacks.

The operating system handle returned by saImmOiSelectionObjectGet() is
valid until saImmOiFinalize() is successfully invoked on the same handle
immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
106 SAI-AIS-IMM-A.02.01 Section 5.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiDispatch(), saImmOiFinalize()

5.3.3 saImmOiDispatch()

Prototype

SaAisErrorT saImmOiDispatch(

SaImmOiHandleT immOiHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saImmOiDispatch() function, which have the values SA_DISPATCH_ONE,
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.3.3 107

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle immOiHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle immOiHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiSelectionObjectGet(),
saImmOiFinalize()
108 SAI-AIS-IMM-A.02.01 Section 5.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.3.4 saImmOiFinalize()

Prototype

SaAisErrorT saImmOiFinalize(

SaImmOiHandleT immOiHandle

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

Description

The saImmOiFinalize() function closes the association represented by the
immOiHandle parameter between the invoking process and the Information Model
Management Service. The process must have invoked saImmOiInitialize_2()
before it invokes this function. A process must invoke this function once for each han-
dle it acquired by invoking saImmOiInitialize_2().

This function does not release the associations established between object classes
or objects and the implementer name that may still be associated with the handle
immOiHandle.
The next time a process associates the same implementer name with an Object
Implementer handle, that process automatically becomes the implementer of all
objects having the same implementer name.

If the saImmOiFinalize() function completes successfully, it releases all
resources acquired when saImmOiInitialize_2() was called.
Furthermore, saImmOiFinalize() cancels all pending callbacks related to asyn-
chronous operations performed with the handle immOiHandle. Note that because
the callback invocation is asynchronous, it is still possible that some callback calls are
processed after this call returns successfully.

If a process terminates, the Information Model Management Service implicitly final-
izes all instances of the Information Model Management Service that are associated
with the process, as described in the preceding paragraph.

After saImmOiFinalize() returns successfully, the handle immOiHandle and the
selection object associated with it are no longer valid.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.3.4 109

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOiInitialize_2()
110 SAI-AIS-IMM-A.02.01 Section 5.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4 Object Implementer
As a runtime object is created by its Object Implementer, the IMM Service can auto-
matically set the name of the implementer of a runtime object when the object is cre-
ated.

On the other hand, configuration objects are typically created by management appli-
cations that are not the Object Implementers. Configuration Object Implementers
must explicitly indicate to the IMM Service which configuration objects they imple-
ment. This can be done for all objects of a given class or by targeting a particular set
of objects.

The implementer of an object is identified by an implementer name. Once the imple-
menter name is set, it remains associated with the object until explicitly released. This
association applies even if the process that was registered as the Object Implementer
(called the registered Object Implementer) clears the implementer name associ-
ated with its Object Implementer handle. This feature enables faster recovery of
Object Implementers failures, as the new Object Implementer does not have to
explicitly re-register all objects it implements. Simply registering itself with the same
implementer name allows the IMM Service to associate all objects with the same
implementer name with that process.

5.4.1 saImmOiImplementerSet()

Prototype

SaAisErrorT saImmOiImplementerSet(

SaImmOiHandleT immOiHandle,

const SaImmOiImplementerNameT implementerName

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

implementerName - [in] Name of the Object Implementer. The
SaImmOiImplementerNameT type is defined in Section 5.2.2 on page 101.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4 111

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

This function sets the implementer name specified in the implementerName param-
eter for the handle immOiHandle. In order to be a valid parameter to all Object
Implementer APIs except for saImmOiSelectionObjectGet(),
saImmOiDispatch(), saImmOiImplementerSet(), and saImmOiFinalize(),
an Object Implementer handle must be successfully associated with an implementer
name.

This function also registers the invoking process as an Object Implementer having
the name which is specified in the implementerName parameter. At any given time,
only a single process in the entire cluster can be registered under a particular Object
Implementer name.

The invoking process becomes the implementer of all existing IMM Service objects
that have an implementer name identical to implementerName.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_EXIST - An Object Implementer with the same name is already regis-
tered with the IMM Service.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiImplementerClear()
112 SAI-AIS-IMM-A.02.01 Section 5.4.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.2 saImmOiImplementerClear()

Prototype

SaAisErrorT saImmOiImplementerClear(

SaImmOiHandleT immOiHandle

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

Description

This function clears the implementer name associated with the immOiHandle handle
and unregisters the invoking process as an Object Implementer for the name previ-
ously associated with immOiHandle.

With no associated implementer name, immOiHandle is only a valid parameter for
the following APIs: saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiImplementerSet(), and saImmOiFinalize().

IMM object classes and objects that have an implementer name equal to the name
previously associated with immOiHandle keep the same implementer name, but
stay without any registered Object Implementer until a process invokes
saImmOiImplementerSet() again with the same implementer name.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4.2 113

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiImplementerSet()

5.4.3 saImmOiClassImplementerSet()

Prototype

SaAisErrorT saImmOiClassImplementerSet(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 26.

Description

This function informs the IMM Service that all the objects that are instances of the
object class whose name is specified by the className parameter are implemented
by the Object Implementer whose name has been associated with the handle
immOiHandle.

This operation fails if the object class whose name is specified by the className
parameter has already an Object Implementer whose name is different from the
implementer name associated with the handle immOiHandle.

If this operation succeeds, the current process becomes the current implementer of
all objects of the object class whose name is specified by className (existing
114 SAI-AIS-IMM-A.02.01 Section 5.4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
objects as well as objects that will be created in the future), and the IMM Service adds
to these objects an SA_IMM_ATTR_IMPLEMENTER_NAME attribute with a value equal
to the implementer name associated with the handle immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_BAD_OPERATION - The className parameter specifies the name of
a runtime object class.

SA_AIS_ERR_NOT_EXIST - The className parameter does not specify the name
of an existing class.

SA_AIS_ERR_EXIST - The object class whose name is specified by the className
parameter has already an Object Implementer whose name is different from the
implementer name associated with the handle immOiHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4.3 115

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.4 saImmOiClassImplementerRelease()

Prototype

SaAisErrorT saImmOiClassImplementerRelease(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 26.

Description

This function informs the IMM Service that the implementer whose name is associ-
ated with the handle immOiHandle must not be considered anymore as the imple-
menter of the objects that are instances of the object class whose name is specified
by className.

If the operation succeeds, the IMM Service removes the
SA_IMM_ATTR_IMPLEMENTER_NAME attribute as well as all non-persistent cached
runtime attributes from all objects of that class.

This operation fails if the invoking process is not the current implementer of the class
whose name is specified by className, or if one or more objects affected by the
operation are currently taking part in an in-progress CCB and/or administrative opera-
tions.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
116 SAI-AIS-IMM-A.02.01 Section 5.4.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The className parameter specifies the name of
a runtime object class.

SA_AIS_ERR_NOT_EXIST - The name specified by the className parameter is not
the name of an existing object class, or the implementer of object instances from the
object class whose name is specified by className is different from the imple-
menter name associated with the handle immOiHandle.

SA_AIS_ERR_BUSY - One or more objects affected by this operation are taking part
in an in-progress CCB and/or an administrative operation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiClassImplementerSet()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4.4 117

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.5 saImmOiObjectImplementerSet()

Prototype

SaAisErrorT saImmOiObjectImplementerSet(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.

Description

This function informs the IMM Service that the objects identified by the scope and
objectName parameters are implemented by the Object Implementer whose name
has been associated with the handle immOiHandle.

The current process becomes the current implementer of all targeted objects.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation is the object designated by
the name to which objectName points.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which objectName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by the name to which objectName points and the entire subtree rooted at
that object.

The operation fails if one of the targeted objects has already an implementer whose
name is different from the name associated with the handle immOiHandle. If the
operation fails, the implementer of the targeted objects is not changed.
118 SAI-AIS-IMM-A.02.01 Section 5.4.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
If the operation succeeds, the SA_IMM_ATTR_IMPLEMENTER_NAME attribute of all
targeted objects is set to the implementer name associated with the handle
immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime objects.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already
has an implementer having a name different from the name associated with the han-
dle immOiHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), saImmOiObjectImplementerRelease()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4.5 119

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.6 saImmOiObjectImplementerRelease()

Prototype

SaAisErrorT saImmOiObjectImplementerRelease(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 30.

Description

This function informs the IMM Service that the implementer whose name is associ-
ated with the handle immOiHandle must no longer be considered as the imple-
menter of the set of objects identified by scope and the name to which objectName
points.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation is the object designated by
the name to which objectName points.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which objectName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by the name to which objectName points and the entire subtree rooted at
that object.

The operation fails if one of the targeted objects is not implemented by the current
process, or if one or more objects affected by the operation are taking part in an in-
progress CCB and/or an administrative operation. If the operation fails, the imple-
menter of the targeted objects is not changed.
120 SAI-AIS-IMM-A.02.01 Section 5.4.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
If the operation succeeds, the SA_IMM_ATTR_IMPLEMENTER_NAME attribute and all
non-persistent cached runtime attributes of all targeted objects are removed from the
objects.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime objects.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or at least one of the objects targeted by this
operation does not have the same implementer name as the one associated with the
handle immOiHandle.

SA_AIS_ERR_BUSY - One or more objects affected by this operation are taking part
in an in-progress CCB and/or an administrative operation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOiInitialize_2(), saImmOiClassImplementerSet()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.4.6 121

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.5 Runtime Objects Management
The set of functions contained in this section are used by an Object Implementer to
create or delete runtime objects and update the runtime attributes of either configura-
tion or runtime objects. They are similar to the functions provided in the IMM Service
Object Management interface, the difference being that they are not part of a configu-
ration change bundle (CCB).

The values of non-cached runtime attributes are not accessible when an implementer
is not registered for the objects to which these attributes belong.

Runtime attributes whose values are cached by the IMM Service must be updated by
its Object Implementer whenever their value changes. The value of non-cached
attributes must be updated by the Object Implementer only when the IMM Service
requests such an update by invoking the SaImmOiRtAttrUpdateCallbackT call-
back function.

Updating cached runtime attribute values in the IMM Service generates some load on
the system each time the values change. Attributes whose values change frequently,
but are rarely read by using the Object Management API should typically not be
cached.

5.5.1 saImmOiRtObjectCreate_2()

Prototype

SaAisErrorT saImmOiRtObjectCreate_2(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT_2 **attrValues

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 26.
122 SAI-AIS-IMM-A.02.01 Section 5.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
parentName - [in] Pointer to the name of the parent of the new object. The
SaNameT type is defined in [1].

attrValues- [in] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 29.

Description

This function creates a new IMM Service runtime object.

The new object is created as a child of the object designated by the name to which
parentName points. If parentName is set to NULL, the new object is created as a
top level object.

The attributes referred to by the pointers in the array of pointers to which the
attrValues parameter points must match the object class definition. These
attributes can only be cached runtime attributes. One and only one of these attributes
must have the SA_IMM_ATTR_RDN flag set; this attribute is used as the Relative Dis-
tinguished Name of the new object.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_IMPLEMENTER_NAME
cannot be specified by the attrValues descriptors, as these attributes are automat-
ically set by the IMM Service.

The IMM Service adds an SA_IMM_ATTR_CLASS_NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
className parameter.

The invoking process becomes the implementer of the new object, and the IMM Ser-
vice adds an SA_IMM_ATTR_IMPLEMENTER_NAME attribute to the new object with a
value equal to the implementer name associated with the handle immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.5.1 123

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies the name of a configuration object class,
• there is no valid RDN attribute specified for the new object,
• some cached attributes do not have values,
• the attrValues parameter includes:

• attributes that are not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute,
• multiple values for a single-valued attribute, and
• non-cached runtime attributes.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the parentName parameter points is not the name of an
existing object.

• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute

names for the object class designated by the name className.

SA_AIS_ERR_EXIST - An object with the same name already exists.

SA_AIS_ERR_NAME_TOO_LONG - The size of the new object's DN is greater than
SA_MAX_NAME_LENGTH.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOiInitialize_2()
124 SAI-AIS-IMM-A.02.01 Section 5.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.5.2 saImmOiRtObjectDelete()

Prototype

SaAisErrorT saImmOiRtObjectDelete(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

Description

This function deletes the object designated by the name to which the objectName
parameter points and the entire subtree of objects rooted at that object.

This operation fails if one of the targeted objects is not a runtime object implemented
by the invoking process.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.5.2 125

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - This value is returned due to one or more of the
following reasons:

• at least one of the targeted objects is a configuration object;
• at least one of the targeted object is a runtime object not implemented by the

invoking process.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2()

5.5.3 saImmOiRtObjectUpdate_2()

Prototype

SaAisErrorT saImmOiRtObjectUpdate_2(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrModificationT_2 **attrMods

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.
126 SAI-AIS-IMM-A.02.01 Section 5.5.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
objectName - [in] Pointer to the name of the updated object. The SaNameT type is
defined in [1].

attrMods - [in] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The SaImmAttrModificationT_2 type is defined in
Section 4.2.10 on page 30.

Description

This function updates runtime attributes of a configuration or runtime object.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_IMPLEMENTER_NAME
cannot be modified.

This operation fails and returns the SA_AIS_ERR_BAD_OPERATION error code if the
targeted object is not implemented by the invoking process.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrMods parameter includes:

• configuration attributes,
• a new value for the RDN attribute,
• attributes that are not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute,
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.5.3 127

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The targeted object is not implemented by the
invoking process.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or one or more attribute names specified by the
attrMods parameter are not valid for the object class.

SA_AIS_ERR_FAILED_OPERATION - The targeted object is not implemented by the
invoking process.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2()

5.5.4 SaImmOiRtAttrUpdateCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiRtAttrUpdateCallbackT)(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

objectName - [in] Pointer to the name of the object for which the update is
requested. The SaNameT type is defined in [1].
128 SAI-AIS-IMM-A.02.01 Section 5.5.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be updated. The SaImmAttrNameT type is defined in
Section 4.2.2 on page 26.

Description

The IMM Service invokes this callback function to request an Object Implementer to
update the values of some attributes of a runtime object. These attributes are
attributes whose values are not cached by the IMM Service. The target object is iden-
tified by the name to which objectName points. The process must use the
saImmOiRtObjectUpdate_2() function to update the values of the attributes
whose names are specified by the attributeNames parameter.

If a requested attribute has no value, the SA_IMM_ATTR_VALUES_REPLACE flag of
the SaImmAttrModificationTypeT structure can be used in the
saImmOiRtObjectUpdate_2() call to set the attribute value to the empty set.

On successful return of this callback, all requested attributes have been updated.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and cannot
provide the service.

SA_AIS_ERR_NO_RESOURCES - The implementer process is out of required
resources (other than memory) to provide the service.

SA_AIS_ERR_FAILED_OPERATION - The implementer process failed to update the
requested attributes due to an error occurring in the
saImmOiRtObjectUpdate_2() invocation.

See Also

saImmOiInitialize_2()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.5.4 129

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6 Configuration Objects Implementer
The IMM Service invokes callbacks provided by an implementer of configuration
objects (called a configuration object implementer) when requests to change the
objects they implement are added to a configuration change bundle (CCB), and also
when the CCB is being applied. Each CCB-related callback is invoked with a CCB
identifier as a parameter. In situations in which an Object Implementer needs to han-
dle several CCBs in parallel (on disjoint sets of objects), the CCB identifier enables
the Object Implementer to collect the particular changes associated with each CCB.
The scope of a CCB identifier is limited to the process that implements the callbacks
(that is, different CCBs may have the same identifier in different object implement-
ers).

When any of the callbacks saImmOiCcbObjectCreateCallback(),
saImmOiCcbObjectDeleteCallback(), or
saImmOiCcbObjectModifyCallback() is invoked to indicate the addition of a
change request to a CCB, the Object Implementer must check the CCB identifier
given as parameter to determine whether the change belongs to a CCB already
known by the Object Implementer or if this is the first change of a new set of changes.
The Object Implementer is responsible for validating the change and memorizing it,
so it can react appropriately when all change requests contained in the CCB are
applied by invoking the saImmOmCcbApply() function.

After a CCB has been either applied (saImmOiCcbApplyCallback()) or aborted
(saImmOiCcbAbortCallback()), the Object Implementer shall dispose of the cor-
responding CCB identifier (as well as of the associated memorized changes), as the
IMM Service may re-use the same identifier to designate another set of changes
later.

The same CCB initialized with saImmOmCcbInitialize() may hold changes han-
dled by different Object Implementers. However, the IMM Service does not require
that the CCB identifiers passed to the different Object Implementers be identical.
Additionally, after the changes associated to a given CCB have been applied (or
aborted), the same CCB can be re-used to apply another set of changes; however, it
is not required that the CCB identifiers passed to Object Implementers' callbacks for
the second set of changes be identical to the identifiers used the first time.

If a change is added to a CCB for a particular object, but its Object Implementer did
not provide the appropriate callback for the change or the callbacks used by the IMM
Service to eventually apply or abort the CCB, the change is rejected with an
SA_AIS_ERR_FAILED_OPERATION error. Note that the change is rejected regard-
less of whether the SA_IMM_CCB_REGISTERED_OI flag is set or not in the CCB.

Each change request added to a CCB must be validated by the Object Implementer
with the understanding that the new request will be applied after all requests already
130 SAI-AIS-IMM-A.02.01 Section 5.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
present in the CCB are applied. Thus, the validation should not consider the current
state of the IMM Information Model but the state it would have with all prior requests
being applied. Before invoking the Object Implementer callbacks, the IMM Service
validates that the Information Model tree hierarchy is consistent:

• It checks that a newly created object has a parent in the hierarchy,
• and it checks that an object being deleted has no child.

If changes are made on configuration objects for which there is no registered Object
Implementer, the IMM Service still applies the changes when the CCB is applied,
without invoking any Object Implementer callbacks for these changes.

If an Object Implementer either registers or unregisters itself, while some registered
CCB changes are still pending for objects it implements (that is, the IMM Service has
not yet passed the step of successfully invoking all
SaImmOiCcbCompletedCallbackT functions of registered Object Implementers
for the CCB), the IMM Service aborts the CCBs that hold these changes.

When the user of the Object Management API requests the IMM Service to apply all
change requests contained in a CCB, the IMM Service gives a last chance to the
Object Implementers to check that all changes will bring the set of configuration
objects they implement in a consistent state. As a CCB may contain change requests
for objects having different implementers, the IMM Service applies a CCB in two
steps:

• In the first step, the IMM Service indicates to each Object Implementer that has
at least one object changed by the CCB requests that the CCB is now complete
and that the Object Implementer must validate the entire set of CCB changes.
This indication is done by invoking the SaImmOiCcbCompletedCallbackT
callback function. If one of the Object Implementers returns an error, the attempt
to apply the CCB fails, and the saImmOmCcbApply() function returns an error.

• If all implementers agreed with the proposed changes, the IMM Service applies
the changes. In a second step, the IMM Service informs the implementers that
the changes have been applied by invoking the SaImmOiCcbApplyCallbackT
callback function. If one implementer rejected the proposed changes, the IMM
Service informs implementers affected by the CCB that the CCB is aborted by
invoking the SaImmOiCcbAbortCallbackT callback function.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.6 131

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6.1 SaImmOiCcbObjectCreateCallbackT_2

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectCreateCallbackT_2)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT_2 **attr

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 26.

parentName - [in] Pointer to the name of the parent of the new object. The
SaNameT type is defined in [1].

attr - [in] Pointer to a NULL-terminated array of pointers to attribute descriptors.
The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 29.

Description

The IMM Service invokes this callback function to enable an Object Implementer to
validate and register a change request being added to a CCB identified by ccbId.
The change request is a creation request for a configuration object of a class that is
implemented by the process implementing the callback.

All parameters of the creation request are provided as parameters of the callback
function to enable the implementer process to validate and memorize the creation
request. For details on these parameters, refer to the description of the
saImmOmCcbObjectCreate_2() function. All the parameters of the creation
132 SAI-AIS-IMM-A.02.01 Section 5.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
request may be memorized by the implementer process and associated with the
ccbId identifier, because these parameters will not be provided later on when the
CCB is finally applied.

The changes will only be applied by the IMM Service after a successful invocation of
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and cannot
allocate the memory required to register the request.

SA_AIS_ERR_NO_RESOURCES - The implementer process is out of required
resources (other than memory) to register the request.

SA_AIS_ERR_BAD_OPERATION - The implementer process rejects the creation
request.

See Also

saImmOmCcbObjectCreate_2(), SaImmOiCcbCompletedCallbackT
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.6.1 133

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6.2 SaImmOiCcbObjectDeleteCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectDeleteCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaNameT *objectName

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

Description

The IMM Service invokes this callback function to enable an Object Implementer to
validate and memorize a deletion request being added to a CCB identified by ccbId.
The deletion request is a request to delete object(s) that are implemented by the pro-
cess that provided the callback function. These objects are the object designated by
the name to which the objectName parameter points and the entire subtree of
objects rooted at that object.

The name to which the objectName parameter points may be memorized by the
implementer process and associated with the ccbId identifier, because these
parameters will not be provided later on when the CCB is finally applied.

The changes will only be applied by the IMM Service after a successful invocation of
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and cannot
allocate the memory required to validate and memorize the request.
134 SAI-AIS-IMM-A.02.01 Section 5.6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_NO_RESOURCES - The implementer process is out of required
resources (other than memory) to validate and memorize the request.

SA_AIS_ERR_BAD_OPERATION - The implementer process rejects the deletion
request.

See Also

saImmOmCcbObjectDelete(), SaImmOiCcbCompletedCallbackT

5.6.3 SaImmOiCcbObjectModifyCallbackT_2

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectModifyCallbackT_2)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaNameT *objectName,

const SaImmAttrModificationT_2 **attrMods

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

attrMods - [in] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The SaImmAttrModificationT_2 type is defined in
Section 4.2.10 on page 30.

Description

The IMM Service invokes this callback function to enable an Object Implementer to
validate and memorize a change request being added to a CCB identified by ccbId.
The change request is a request to modify configuration attributes of a configuration
object implemented by the process implementing the callback.
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.6.3 135

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
All parameters of the modification request are provided as parameters of the callback
function to enable the implementer process to validate and memorize the modifica-
tion request. For details on these parameters, refer to the description of the
saImmOmCcbObjectModify_2() function. All the parameters of the modification
request may be memorized by the implementer process and associated with the
ccbId identifier, because these parameters will not be provided later on when the
CCB is finally applied.

The changes will only be applied by the IMM Service after a successful invocation of
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and cannot
allocate the memory required to validate and memorize the request.

SA_AIS_ERR_NO_RESOURCES - The implementer process is out of required
resources (other than memory) to validate and memorize the request.

SA_AIS_ERR_BAD_OPERATION - The implementer process rejects the modification
request.

See Also

saImmOmCcbObjectModify_2(), SaImmOiCcbCompletedCallbackT

5.6.4 SaImmOiCcbCompletedCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbCompletedCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.
136 SAI-AIS-IMM-A.02.01 Section 5.6.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

Description

The IMM Service invokes this callback function to inform an Object Implementer that
the CCB identified by ccbId is now complete (no additional requests will be added).
The implementer process must check that the sequence of change requests con-
tained in the CCB is valid and that no errors will be generated when these changes
are applied.

If all Object Implementers that implement objects changed by the CCB agree with the
changes, the IMM Service will apply the changes and then invoke the
SaImmOiCcbApplyCallbackT callback to notify all Object Implementers that the
CCB has been applied.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and cannot
allocate the memory required to later apply all requested changes.

SA_AIS_ERR_NO_RESOURCES - The implementer process is out of required
resources (other than memory) to later apply all requested changes.

SA_AIS_ERR_BAD_OPERATION - The validation by the implementer process of all
change requests contained in the CCB failed.

See Also

saImmOmCcbApply(), SaImmOiCcbObjectCreateCallbackT_2,
SaImmOiCcbObjectDeleteCallbackT,
SaImmOiCcbObjectModifyCallbackT_2
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.6.4 137

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6.5 SaImmOiCcbApplyCallbackT

Prototype

typedef void (*SaImmOiCcbApplyCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

Description

The IMM Service invokes this callback function to inform an Object Implementer that
the CCB identified by ccbId has been applied by the IMM Service.

All configuration changes have already been validated by the Object Implementer in a
previous call to SaImmOiCcbCompletedCallbackT.

Each Object Implementer is responsible for determining the effect of the configuration
changes.

Return Values

None

See Also

saImmOmCcbApply(), SaImmOiCcbCompletedCallbackT
138 SAI-AIS-IMM-A.02.01 Section 5.6.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6.6 SaImmOiCcbAbortCallbackT

Prototype

typedef void (*SaImmOiCcbAbortCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in
Section 5.2.3 on page 101.

Description

The IMM Service invokes this callback function to inform an Object Implementer that
the CCB identified by ccbId is aborted, so that the Object Implementer can remove
all change requests memorized for this CCB.

Return Values

None

See Also

saImmOmCcbApply()
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.6.6 139

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.7 Administrative Operations

5.7.1 SaImmOiAdminOperationCallbackT_2

Prototype

typedef void (*SaImmOiAdminOperationCallbackT_2) (

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 **params

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

invocation - [in] Used to match this invocation of
SaImmOiAdminOperationCallbackT_2 with the corresponding invocation of
saImmOiAdminOperationResult(). The SaInvocationT type is defined in [1].

objectName - [in] Pointer to the object name. The SaNameT type is defined in [1].

operationId - [in] Identifier of the administrative operation. The
SaImmAdminOperationIdT type is defined in Section 4.2.16 on page 33.

params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.17 on page 34.

Description

The IMM Service invokes this callback function to request an Object Implementer to
execute an administrative operation on the object designated by the name to which
objectName points. The administrative operation identified by the operationId
parameter has been initiated by an invocation of the
140 SAI-AIS-IMM-A.02.01 Section 5.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() functions.

Each element referred to by a pointer of the array of pointers to which the params
parameter points represents an input parameter of the administrative operation to
execute.

The Object Implementer indicates the success or failure of the administrative opera-
tion by invoking the saImmOiAdminOperationResult() function. The
saImmOiAdminOperationResult() function can be invoked from the callback
itself or outside the callback by any thread of the process that initialized the
immOiHandle.

Return Values

None

See Also

saImmOiInitialize_2(), saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2(),
saImmOiAdminOperationResult()

5.7.2 saImmOiAdminOperationResult()

Prototype

SaAisErrorT saImmOiAdminOperationResult(

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

SaAisErrorT result

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_2() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 101.

invocation - [in] Used to match this invocation of
saImmOiAdminOperationResult() with the previous corresponding invocation of
the SaImmOiAdminOperationCallbackT_2 callback. The SaInvocationT type
is defined in [1].
AIS Specification SAI-AIS-IMM-A.02.01 Section 5.7.2 141

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
result - [in] Result of the execution of the administrative operation. The
SaAisErrorT type is defined in [1].

Description

An Object Implementer invokes this function to inform the IMM Service about the
result of the execution of an administrative operation requested by the IMM Service
by an invocation of the SaImmOiAdminOperationCallbackT_2 callback.

This function can be called only by the process for which the
SaImmOiAdminOperationCallbackT_2 callback has been invoked.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_2(), SaImmOiAdminOperationCallbackT_2
142 SAI-AIS-IMM-A.02.01 Section 5.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
6 IMM Service UML Information Model
The IMM Service Information Model is described in UML and has been organized in a
UML class diagram.

The IMM Service UML model is implemented by the IMM Service. For further details
on this implementation, refer to the SA Forum Overview document ([1]).

The IMM Service UML class diagram has one object class, which shows the con-
tained attributes and the administrative operations applicable on this class.

6.1 DN Format for the IMM Service UML Class

6.2 IMM Service UML Class
The SaImmMngt runtime object class exports all IMM global attributes and adminis-
trative operations.

FIGURE 2 shows the SaImmMngt class. A description of each attribute of these
classes is found in the XMI file (see [2]). For additional details, refer to the SA Forum
Overview document ([1]).

FIGURE 2 IMM Service UML Class

Table 3 DN Formats for Objects of the IMM Service Class

Object Class DN Formats for Objects of the Class

SaImmMngt “safRdn=immManagement, safApp=safImmService”

<<CONFIG>>
SaImmMngt

safRdn : SaStringT [1]{RDN,CONFIG,SASTRINGT}
saImmRepositoryInit : SaImmRepositoryInitModeT [0..1] = SA_IMM_INIT_FROM_FILE{CONFIG, WRITABLE, SAUINT32T}
saImmLastUpdate : SaTimeT [1]{RUNTIME}
saImmNumOis : SaUint32T [1]{RUNTIME}
saImmNumAdminOwnedObjects : SaUint32T [1]{RUNTIME}
saImmNumInitializedCcbs : SaUint32T [1]{RUNTIME}
saImmExportFileUri : SaStringT [1]{RUNTIME}

SA_IMM_ADMIN_EXPORT()
AIS Specification SAI-AIS-IMM-A.02.01 Section 6 143

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
144 SAI-AIS-IMM-A.02.01 Section 6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
7 IMM Service Administration API
This section describes the administrative API functions that the IMM Service exposes
on behalf of itself to a system administrator. These API functions are described using
a ‘C’ API syntax. The main clients of this administrative API are system management
applications.

7.1 Administrative Operations on the IMM Service
Administrative operations on the IMM Service can be carried out using the IMM Ser-
vice API functions saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() (refer to Section 4.9 on page 85) on
an object that represents the IMM Service and for which the IMM Service is the
Object Implementer.

Return values are passed in the operationReturnValue parameter (see
Section 4.9.1 on page 86).

7.2 Include File and Library Name
The following IMM Service header file containing declarations of data types and func-
tion prototypes must be included in the source of an application using the IMM Ser-
vice Administration API:

#include <saImm.h>

To use the IMM Service Administration API, an application must be bound with the
following IMM Service library:

libSaImm.so
AIS Specification SAI-AIS-IMM-A.02.01 Section 7 145

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
7.3 IMM Service Administration API

7.3.1 SA_IMM_ADMIN_EXPORT

Parameters

operationId - [in] = SA_IMM_ADMIN_EXPORT

objectName - [in] = The LDAP name of the object of class SaImmService that
represents the IMM Service. The DN of this object is
"safRdn=immManagement,safApp=safImmService".
See [1] for SA Forum naming conventions and rules.

filePathname - [in] The standard relative POSIX pathname of the file to which the
IMM contents must be exported. This pathname is relative to an implementation
defined root directory. The type of this parameter is SaStringT, defined in [1].

Description

This administrative operation requests the IMM Service to export all its persistent
contents (class definitions as well as persistent objects and attributes) into a file
whose relative pathname is specified by the filePathname parameter.

The persistent contents will be stored into the file according to the IMM XML Schema
Definition (see [3]).

The saImmExportFileUri attribute of the SaImmMngt IMM configuration class
(see Section 6.2 on page 143) shall be used to retrieve the file after the export opera-
tion completed.

operationReturnValue

SA_AIS_OK - The operation completely successfully.

SA_AIS_ERR_TRY_AGAIN - The operation cannot be provided at this time. The
caller may retry later. This error should be generally returned in cases where the
requested administrative operation is valid but not currently possible.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources to carry out the
operation.

See Also

-

146 SAI-AIS-IMM-A.02.01 Section 7.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8 IMM Service Alarms and Notifications
The IMM Service does not issue any alarms and notifications at the time of publica-
tion of this specification.
AIS Specification SAI-AIS-IMM-A.02.01 Section 8 147

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
148 SAI-AIS-IMM-A.02.01 Section 8 AIS Specification

Service AvailabilityTM Application Interface Specification
Management Interface

1

5

10

15

20

25

30

35

40
9 IMM Service Management Interface
The IMM Service has no management interface at the time of publication of this spec-
ification.
AIS Specification SAI-AIS-IMM-A.02.01 Section 9 149

Service AvailabilityTM Application Interface Specification
Management Interface

1

5

10

15

20

25

30

35

40
150 SAI-AIS-IMM-A.02.01 Section 9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
Index of Definitions
A
administrative

operations 85
owner 62
owner name 62
ownership 62

administrative operations 85
administrative owner 62
administrative owner name 62
administrative ownership 62

C
CCB 72
change request 72
configuration

attributes 20
change bundles 72
Object Implementer 130
objects 20

configuration attributes 20
configuration change bundles 72
configuration Object Implementer 130
configuration objects 20
continuation

functions 85
identifier 85
registered continuation identifier 85

continuation functions 85
continuation identifier 85

I
IMM XML Schema Definition 22
implementer name 111
in progress 67
internal persistent repository 22

O
object access 57
object accessor 57
Object Implementer 20

API 21
implementer name 111
registered 111

Object Implementer API 21
Object Management API 21
object search 50
objects

configuration 20
runtime 20

operation in progress 67

P
pending change requests 72

R
registered continuation identifier 85
registered Object Implementer 111
repository see internal persistent repository

runtime
attributes 20
objects 20

runtime attributes 20
runtime objects 20

S
search

criteria 50
iterator 50

search criteria 50
search iterator 50
AIS Specification SAI-AIS-IMM-A.02.01 151

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
152 SAI-AIS-IMM-A.02.01 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Superseded and Superseding Functions
	1.3.4 Changes in Return Values of API Functions
	1.3.5 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Information Model Management Service

	3 Information Model Management Service API
	3.1 Object Naming
	3.2 Internal Persistent Repository
	3.3 Unavailability of the IMM API on a Non-Member Node
	3.3.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.3.2 Guidelines for IMM Service Implementers

	4 IMM Service - Object Management API Specification
	4.1 Include File and Library Name
	4.2 Type Definitions
	4.2.1 Handles Used by the IMM Service
	4.2.2 Various IMM Service Names
	4.2.3 SaImmValueTypeT
	4.2.4 SaImmClassCategoryT
	4.2.5 SaImmAttrFlagsT
	4.2.6 SaImmAttrValueT
	4.2.7 SaImmAttrDefinitionT_2
	4.2.8 SaImmAttrValuesT_2
	4.2.9 SaImmAttrModificationTypeT
	4.2.10 SaImmAttrModificationT_2
	4.2.11 SaImmScopeT
	4.2.12 SaImmSearchOptionsT
	4.2.13 SaImmSearchParametersT_2
	4.2.14 SaImmCcbFlagsT
	4.2.15 SaImmContinuationIdT
	4.2.16 SaImmAdminOperationIdT
	4.2.17 SaImmAdminOperationParamsT_2
	4.2.18 SaImmCallbacksT
	4.2.19 IMM Service Object Attributes
	4.2.20 SaImmRepositoryInitModeT

	4.3 Library Life Cycle
	4.3.1 saImmOmInitialize()
	4.3.2 saImmOmSelectionObjectGet()
	4.3.3 saImmOmDispatch()
	4.3.4 saImmOmFinalize()

	4.4 Object Class Management
	4.4.1 saImmOmClassCreate_2()
	4.4.2 saImmOmClassDescriptionGet_2()
	4.4.3 saImmOmClassDescriptionMemoryFree_2()
	4.4.4 saImmOmClassDelete()

	4.5 Object Search
	4.5.1 saImmOmSearchInitialize_2()
	4.5.2 saImmOmSearchNext_2()
	4.5.3 saImmOmSearchFinalize()

	4.6 Object Access
	4.6.1 saImmOmAccessorInitialize()
	4.6.2 saImmOmAccessorGet_2()
	4.6.3 saImmOmAccessorFinalize()

	4.7 Object Administration Ownership
	4.7.1 saImmOmAdminOwnerInitialize()
	4.7.2 saImmOmAdminOwnerSet()
	4.7.3 saImmOmAdminOwnerRelease()
	4.7.4 saImmOmAdminOwnerFinalize()
	4.7.5 saImmOmAdminOwnerClear()

	4.8 Configuration Changes
	4.8.1 saImmOmCcbInitialize()
	4.8.2 saImmOmCcbObjectCreate_2()
	4.8.3 saImmOmCcbObjectDelete()
	4.8.4 saImmOmCcbObjectModify_2()
	4.8.5 saImmOmCcbApply()
	4.8.6 saImmOmCcbFinalize()

	4.9 Administrative Operations Invocation
	4.9.1 saImmOmAdminOperationInvoke_2(), saImmOmAdminOperationInvokeAsync_2()
	4.9.2 SaImmOmAdminOperationInvokeCallbackT
	4.9.3 saImmOmAdminOperationContinue(), saImmOmAdminOperationContinueAsync()
	4.9.4 saImmOmAdminOperationContinueClear()

	5 IMM Service - Object Implementer API Specification
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 IMM Service Handle
	5.2.2 SaImmOiImplementerNameT
	5.2.3 SaImmOiCcbIdT
	5.2.4 SaImmOiCallbacksT_2

	5.3 Library Life Cycle
	5.3.1 saImmOiInitialize_2()
	5.3.2 saImmOiSelectionObjectGet()
	5.3.3 saImmOiDispatch()
	5.3.4 saImmOiFinalize()

	5.4 Object Implementer
	5.4.1 saImmOiImplementerSet()
	5.4.2 saImmOiImplementerClear()
	5.4.3 saImmOiClassImplementerSet()
	5.4.4 saImmOiClassImplementerRelease()
	5.4.5 saImmOiObjectImplementerSet()
	5.4.6 saImmOiObjectImplementerRelease()

	5.5 Runtime Objects Management
	5.5.1 saImmOiRtObjectCreate_2()
	5.5.2 saImmOiRtObjectDelete()
	5.5.3 saImmOiRtObjectUpdate_2()
	5.5.4 SaImmOiRtAttrUpdateCallbackT

	5.6 Configuration Objects Implementer
	5.6.1 SaImmOiCcbObjectCreateCallbackT_2
	5.6.2 SaImmOiCcbObjectDeleteCallbackT
	5.6.3 SaImmOiCcbObjectModifyCallbackT_2
	5.6.4 SaImmOiCcbCompletedCallbackT
	5.6.5 SaImmOiCcbApplyCallbackT
	5.6.6 SaImmOiCcbAbortCallbackT

	5.7 Administrative Operations
	5.7.1 SaImmOiAdminOperationCallbackT_2
	5.7.2 saImmOiAdminOperationResult()

	6 IMM Service UML Information Model
	6.1 DN Format for the IMM Service UML Class
	6.2 IMM Service UML Class

	7 IMM Service Administration API
	7.1 Administrative Operations on the IMM Service
	7.2 Include File and Library Name
	7.3 IMM Service Administration API
	7.3.1 SA_IMM_ADMIN_EXPORT

	8 IMM Service Alarms and Notifications
	9 IMM Service Management Interface
	Index of Definitions

