Service Availability™ Forum
Application Interface Specification

Information Model Management Service SAI-AlS-IMM-A.03.01

SERVICE
AVAILABILITY

FORUM

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Legal Notice

FORUM

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.
The Artistic License 2.0
Copyright (c) 2000-2006, The Perl Foundation.
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble
This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

AIS Specification SAI-AIS-IMM-A.03.01 3

10

15

20

25

30

35

40

http://www.saforum.org

Service AvailabilityTM Application Interface Specification

SERVICE
Legal Notice AVAILABILITY

FORUM

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under
(i) the Original License or

(i) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4 SAI-AIS-IMM-A.03.01 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAILABILITY Table of Contents
FORUM

Table of Contents Information Model Management Service

1 Document Introductioncc.iiuiiniiiiiiiiieieeneeneeneeneenecnecnccncnas 11

1.1 Document PUIPOSEot 11

1.2 AIS Documents Organizationttt ettt e e 11

L 3 HIStO Y oottt 11

L3 L NEW TOPICS .+ o v vttt ettt e e e e e e e e e e e e 12

1.3.2 CIarificationsttt et e e e e e e e e e 15

L.3.3 Deleted ToPICS . v oottt e e e et e e e 15

1.3.4 Other Changesttt e e e e e e e e e e e e e e 15

1.3.5 Superseded and Superseding Functions i 16

1.3.6 Changes in Return Values of API and Administrative Functions 18

LA RETEICNCES oottt 19

1.5 How to Provide Feedback on the Specification, 19

1.6 How to Join the Service Availability™ Forum 19

1.7 Additional Information 20

1.7.1 Member COMPANIESottt et ettt et e e et e e e e e e et e et e et e e 20

L1.7.2 Press Materials 20

P20 3 o (-3 PP 21

2.1 Information Model Management Service ittt 21

3 Information Model Management Service APIt tiiiiiiiiiiiiinnnrnnnnns 23

3.1 IMM Service State Transitions During CCB Processing, 26

3.2 0bject NaAMINGot 29

3.3 Internal Persistent RepoSitoryt 30

3.4 Unavailability of the IMM Service APl on a Non-Member Node 31

3.4.1 A Member Node Leaves or Rejoins the Cluster Membership 31

3.4.2 Guidelines for IMM Service Implementersuuininin it 32

4 IMM Service - Object Management API Specification o, 33

4.1 Include File and Library Name e 33

4.2 Type Definitionst 33

4.2.1 Handles Used by the IMM SeIVICEottt e e e ettt 33

4.2.2 Various IMM Service NAmMESttt ettt et e e et 34

4.2.3 SalmmValueTypeT 34

4.2.4 SalmmClassCategory T i 34

4.2.5 SalmmAIEIagST ... o 35

4.2.6 SalmmAtttrValueT 36

4.2.7 SalmmAttrDefinitionT 2 e 36

4.2.8 SalmmAttrValuesT 2 37

4.2.9 SalmmAttrModificationTypeT 37

AIS Specification SAI-AIS-IMM-A.03.01 5

Service Availability-'-'vI Application Interface Specification SERVICE

Table of Contents AVA l&?ﬁ' LITY
4.2.10 SalmmAttrModificationT 2 38
4.2.11 SalmmScopeT 38
4.2.12 SaImmSearchOptionsT 39
4.2.13 SalmmSearchParametersT 2 40
4.2.14 SalmmCcbFlagsT 3 41
4.2.15 SalmmCcebldTo 41
4.2.16 SalmmContinuationldT 41
4.2.17 SalmmAdminOperationldT 42
4.2.18 SalmmAdminOperationParamsT 2 42
4.2.19 SalImmNotificationMinorIdT e 42
4.2.20 SalmmAdditionalInfoldT e 43
4.2.21 SalmmCallbacksT 3 e 43
4.2.22 IMM Service Object AtribDULESottt ettt e e 43
4.2.23 SalmmRepositoryInitModeT i 44

43 Library Life Cycle 46
4.3.1 salmmOmlnitialize 3()o 46
4.3.2 salmmOmMSelectionObJeCtGEt()o vttt ettt e e 49
4.3.3 salmmOmMDIsSpatch()t 50
4.3.4 salmmOMFINAliZE()\ i i e 52

4.4 Object Class Managementttt ettt e ettt e 54
4.4.1 salmmOMCIassCreate 2()ottt ettt et e 54
4.4.2 salmmOmMClassDescriptionGet 2()ottt 56
4.4.3 salmmOmClassDescriptionMemoryFree 2() 58
4.4.4 salmmOMClassDelete()ottt e e 59
4.50Dbject Search 61
4.5.1 salmmOmSearchlnitialize 3() i 62
4.5.2 salmmOMSEarchNEXt 2()ottt ettt e 65
4.5.3 salmmOmSearchFinalize()ttt e et 67
4.6 ODJECE ACCESS .« - v v v ettt et e e et e e e e 69
4.6.1 salmmOmAccessorInitialize 3()t 69
4.6.2 salmmOMACCESSOTGEt 2() . . . ottt ettt e e e e 71
4.6.3 salmmOmAccessorFinalize() e 73
4.7 Object Administration Ownership e 75
4.7.1 salmmOmAdminOwnerInitialize() 75
4.7.2 salmmOmMAdMINOWNEISEt()t 77
4.7.3 salmmOmAdminOwnerRelease() 79
4.7.4 salmmOmAdminOwnerFinalize() 81
4.7.5 salmmOMAdMINOWNEICLear()ottt e e e e 83

4.8 Configuration Changesttt e e e 85
4.8.1 salmmOmMCcblnitialize 3()ttt 86
4.8.2 salmmOMCcbObjectCreate 2()ottt ettt e e e e e 88
4.8.3 salmmOmMCcbObjectDelete()ot 91
4.8.4 salmmOmMCcbObjectModify 2()t 93
4.8.5 salmmOMOCCDAPPLY B3() . ottt e 95
4.8.6 salmmOMCCbFInalize() e 98

6 SAI-AIS-IMM-A.03.01 AIS Specification

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Table of Contents
FORUM
4.9 Administrative Operations Invocationttt 100
4.9.1 salmmOmAdminOperationlnvoke 3(), salmmOmAdminOperationlnvokeAsync 3() 102
4.9.2 SalmmOmAdminOperationlnvokeCallbackT 3 107
4.9.3 salmmOmAdminOperationContinue(), salmmOmAdminOperationContinueAsync() 111
4.9.4 salmmOmAdminOperationContinuationClear()ttt 115
5 IMM Service - Object Implementer API Specificationo, 117
5.1 Include File and Library Name i e e 117
S2Type Definitions 117
52.1IMM Service Handles 117
5.2.2 SalmmOilmplementerNameT e 117
5.2.3 SaImmOIRo0ICFIagsT 117
5.2.4 SalmmOiCcblteratorOptionT 118
5.2.5 SalmmOiObjectChangeT e 119
5.2.6 SalmmOiObjectTraverseT 119
5.2.7 SalmmOiCallbacksT 3 e 120
53 Library Life CycCle 121
5.3.1 salmmOilnitialize 3()ot 121
5.3.2 salmmOiSelectionObjectGet()v ottt 123
5.3.3 salmmOIDispatch()ot 125
5.3.4 salmmOIFInalize()ottt e 126
5.4 Object Implementer APL 128
5.4.1 salmmOilmplementerSet()t 130
5.4.2 salmmOilmplementerClear()ttt 132
5.4.3 salmmOiClassImplementerSet 3()ttt 133
5.4.4 salmmOiClassImplementerRelease 3() ittt i 136
5.4.5 salmmOiObjectimplementerSet 3() ottt e 138
5.4.6 salmmOiObjectlmplementerRelease 3() i 141
5.5 CCB Validator Callbacks e 144
5.5.1 SalmmOiCcbValidateCallbackT 146
5.5.2 SalmmOiCcbAbortCallbackT 3 e ettt e 147
5.5.3 SalmmOiCcbFinalizeCallbackT e 149
5.6 CCB Applier Callback e e e 150
5.6.1 SalmmOiCcbApplyCallbackT 3 151
S.7TCCB Iterator AP ... 153
5.7.1 salmmOiCcblteratorInitialize() ot e 154
5.7.2 salmmOICcbIteratorNEXt() . . .o\ v ottt e e e e 156
5.7.3 salmmOiCcblteratorFinalize() i e 158
5.8 Runtime Owner APIS 160
5.8.1 Runtime Objects Management APL. e 160
5.8.1.1 salmmOIRtObjectCreate 2()ttt 160
5.8.1.2 salmmOIRtObjectDElete()ottt e 163
5.8.1.3 salmmOIiRtObjectUpdate 2()ottt 165
5.8.1.4 SalmmOiRtAttrUpdateCallbackT 167
5.8.2 Administrative Operationsttt et e et e e e 169

AIS Specification SAI-AIS-IMM-A.03.01 7

10

15

20

25

30

40

Service Availability-'-'vI Application Interface Specification SERVICE }

Table of Contents AVAILABILITY
FORUM

5.8.2.1 SalImmOiAdminOperationCallbackT 3 169

5.8.2.2 salmmOiAdminOperationResult() i 171

6 IMM Service Administration APL i iiiiiiiiiiiiiiiiiienrennns 173

6.1 Administrative Operations onthe IMM Service, 173

6.2 Include File and Library Name e 173

6.3 Type Definitions 173

6.3.1 SalmmMngtAdminOperationT 173

6.4 IMM Service Administration API 174

6.4.1 SA IMM_ADMIN EXPORTt 174

7 IMM Service UML Information Modelo iitiiiiiiiiiiiiiiieneennennns 177

7.1 DN Formats for the IMM Service UML Class Diagram 177

7.2 IMM Service UML Classesttt e e e e e e 177

8 IMM Service Alarms and Notificationscciiiitiiiiiiiiiiiiiiienreneennes 179

8.1 Setting Common AtribULES 179

8.2 Information Model Management Service Notifications 181

8.2.1 Information Model Management Service Alarmsotiti i 181

8.2.2 Information Model Management Service Notifications of Miscellaneous Type 181

8.2.2.1 Administrative Operation Start e 181

8.2.2.2 Administrative Operation End 183

8.2.2.3 Configuration Update Start 185

8.2.2.4 Configuration Update End 186

Appendix A Example Use Caseciuitiuitiniinrinrnereereoseosessoscascnscnsos 187

Appendix B Sequence Diagramsiitiiitiiiiiiiiitiiitiiitiiitttttatoeasons 191

Appendix C Compatibility Issuescoiuiiiiiiiiiiiiiiiiiiiiiiireeeeecneenscnns 197

C.1 Object Manager Considerationsttt ittt et es 197

C.2 Example Using Object Implementers of Different Versions 198

Index of Definitionsciutiniiiiiiiiiiiiiiineeeeeereneeosesseseescnscnsonsns 201

8 SAI-AIS-IMM-A.03.01 AIS Specification

35

40

Service AvailabilityTM Application Interface Specification

SERVICE
AVAILABILITY Table of Contents

FORUM

List of Figures

Figure 1: IMM Service Interfaces i e e 23
Figure 2: CCB State Machine e 28
Figure 3: IMM Service UML Classesttt et 178
Figure 4: Example of Using the IMM Service to Change the Configuration of a Real Application . . . 187
Figure 5: Successful CCB, Independent CCB Appliers and Validators 192
Figure 6: Failed CCB, Independent CCB Appliers and Validators 193
Figure 7: Successful CCB, OlI is both CCB Validator and CCB Applier 194
Figure 8: Failed CCB, Ol is both CCB Validator and CCB Applier 195
Figure 9: IMM Service Mediating Between Object Implementers of Different Versions 199
List of Tables

Table 1: Superseded Functions and Type Definitions in Version A.03.01 16
Table 2: Changes in Return Values of API and Administrative Functions 18
Table 3: DN Formats for Objects of the IMM Service Class Diagram 177
Table 4: Administrative Operation Start. i 182
Table 5: Administrative Operation End 184
Table 6: Configuration Update Start. e 185
Table 7: Configuration Update End i 186

AIS Specification SAI-AIS-IMM-A.03.01 9

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Document Introduction

FORUM

1 Document Introduction

1.1 Document Purpose

This document defines the Information Model Management Service of the Application
Interface Specification (AlS) of the Service Availability™ Forum (SA Forum). It is
intended for use by implementers of the Application Interface Specification and by
application developers who would use the Application Interface Specification to
develop applications that must be highly available. The AIS is defined in the C pro-
gramming language, and requires substantial knowledge of the C programming lan-
guage.

Typically, the Service Availability™ Forum Application Interface Specification will be
used in conjunction with the Service Availability™ Forum Hardware Platform Interface
Specification (HPI).

1.2 AIS Documents Organization

The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
The previous releases of the IMM Service specification are:
SAI-AIS-IMM-A.01.01
SAI-AlIS-IMM-A.02.01
This section presents the changes of the current release, SAI-AIS-IMM-A.03.01, with

respect to the SAI-AIS-IMM-A.02.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 1 1

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Document Introduction AVAILABILITY

FORUM

1.3.1 New Topics
= To deal with configuration changes that affect objects of different object imple-

menters, the tasks performed by an object implementer have been split in three
parts, and the following roles have been introduced for each of these tasks: CCB
validator, CCB applier, and runtime owner.

The CCB validator verifies the changes proposed to an object in a CCB from a
particular aspect, and different aspects can be verified by different CCB valida-
tors. Therefore, an IMM object may have multiple CCB validators. For a CCB to
be applied, in a first step, all CCB validators of all affected objects need to accept
the proposed changes. If so, the IMM Service applies the changes to the SA
Forum Information Model.

CCB appliers deploy the changes contained in the SA Forum Information Model.
As changes proposed to a configuration object may affect multiple entities in the
system, an object may have multiple CCB appliers.

The runtime owner is responsible for updating the state information reflected in
the SA Forum Information Model and for carrying out administrative operations.
Each object in the SA Forum Information Model can have only one runtime
owner.

The introduction of this functional split implied a fair amount of changes in the
IMM Service specification. The changes are listed next:

. The SA | MM_CCB_REQ STERED_ O flag was replaced with the
SA | MM _CCB_ALLOW ABSENT_VALI DATORS and
SA | MM_CCB_ALLOW ABSENT_APPLI ERS flags and the Sal mTCcbFl agsT
type was superseded by Sal mCcbFl agsT_3 (see
Section 4.2.14 on page 41). Note that these flags indicate that the registration
of the given category of object implementers is not required for the success of
the CCB.

. The SA | MM_ATTR | MPLEMENTER_NAME attribute is no longer supported.
Instead, three separate attributes of an object are defined (see
Section 4.2.22 on page 43), one for each object implementer role:
SA | M _ATTR_VALI DATOR_NAME, SA | M _ATTR_APPLI ER_NAME, and
SA | MM ATTR_RUNTI ME_OANER_NAME. These attributes of a configuration
object are persistent runtime attributes, and as such, they can be configured.

. The ccbl d used in callbacks of the Ol interface was made global, and its life
time is now tied to the life time of the CCB handle of a created CCB. The
cchl dis returned in the sal nmOCcbl ni ti al i ze_3() function (see
Section 4.8.1 on page 86). A nonzero valid ccbl d can be specified in the

12

SAI-AIS-IMM-A.03.01 Section 1.3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Document Introduction

sal mmOrSearchlnitialize_3() and

sal mmOmAccessorlnitialize_ 3() functions (see

Section 4.5.1 on page 62 and Section 4.6.1 on page 69, respectively), so that
an object implementer can perform object search and use the accessor func-
tions using this CCB identifier.

The Sal nmO Ccbl dT was replaced with the Sal nmCcbl dT type (see
Section 4.2.15 on page 41).

The sal mmOnCcbCbj ect Create_2(), sal mOnCcbObj ect Del ete(),
and sal mOnCcbObj ect Modi fy_2() functions (see

Section 4.8.2 on page 88, Section 4.8.3 on page 91, and

Section 4.8.4 on page 93, respectively) no longer trigger the invocation of the
corresponding callback functions of object implementers

Sal O CcbObj ect Creat eCal | backT_2,

Sal MmO CcbQbj ect Del et eCal | backT, and

Sal O CcbObj ect Modi fyCal | backT_2. Instead, as explained in the
next item, the validation of the CCB changes is now performed in the

Sal O CcbVal i dat eCal | backT function (which supersedes the

Sal O CcbConpl et edCal | backT function), and the deployment of the
CCB changes is performed in the Sal O CcbAppl yCal | backT_3 function.

The sal mmOTCcbAppl y_3() function (see Section 4.8.5 on page 95) trig-
gers the invocation of the sal O CcbVal i dat eCal | back() function of
validators (see Section 5.5.1 on page 146), which perform local and global val-
idation (for the meaning of these terms, see Section 5.5 on page 144). If all
CCB validators accept the CCB changes, the IMM Service applies these
changes to the SA Forum Information Model and invokes the

sal nmO CcbAppl yCal | back() (see Section 5.6.1 on page 151) of all CCB
appliers to deploy these changes.

The sal mmOTCcbFi nal i ze() (see Section 4.8.6 on page 98) function also
invalidates the CCB identifier associated with the CCB handle to be finalized.
Additionally, the description of this function was extended to state when it is
allowed to invoke it.

The object implementer roles CCB validator, CCB applier, and runtime owner
are defined in the Sal MO Rol eFl agsT type in Section 5.2.3 on page 117. In
several places in this document, these more specific terms are used instead of
the generic term “object implementer”.

A new r ol e parameter has been added to the following functions to specify
the role of an object implementer: sal O Cl assl npl enent er Set _3(),
sal nmQO C assl npl enent er Rel ease_3(),

sal O Qbj ect | npl enent er Set _3() , and

sal MmO bj ect | npl enent er Rel ease_3() (see

Section 5.4.3 on page 133 up to Section 5.4.6 on page 141).

AIS Specification

SAI-AIS-IMM-A.03.01 Section 1.3.1 13

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

SERVICE
Document Introduction AVAILABILITY

FORUM

The superseding functions Sal O CcbVal i dat eCal | backT (see

Section 5.5.1 on page 146), Sal MmO CcbAbort Cal | backT_3 (see

Section 5.5.2 on page 147, and Sal O CcbAppl yCal | backT_3 (see
Section 5.6.1 on page 151) use Sal mtCcbl dT for the ccbl d type and have
extended semantics.

To enable a CCB validator to dispose of the CCB identifier and of any associ-
ated state in case the CCB has been successfully validated by all CCB valida-
tors, the Sal MmO CcbFi nal i zeCal | backT function has been defined (see
Section 5.5.3 on page 149).

Due to the aforementioned changes in object implementer callback functions,
the Sal O Cal | backsT_2 type was replaced with

Sal O Cal | backsT_3 (see Section 5.2.7 on page 120). This modification,
in turn, has led to the replacement of the sal MmO I ni ti al i ze_2() function
with the sal Qi I niti alize_3() function (see

Section 5.3.1 on page 121).

The description of the sal nmO Adm nOper ati onResul t () (see

Section 5.8.2.2 on page 171) has been extended to explain the IMM Service
actions if the runtime owner unregisters during the execution of an administra-
tive operation.

A CCB iterator API has been introduced (see Section 5.7 on page 153) to
allow CCB validators and appliers to iterate through configuration changes
associated with a given CCB identifier. The following types have been intro-
duced for this API:

. Sal MmO Ccbl t er at or Handl eT (see Section 5.2.1 on page 117);

. Sal m0O Rol eFl agsT, Sal O Ccbl t erat or Opti onT,
Sal MmO Obj ect ChangeT, and Sal O Obj ect Tr aver seT (see
Section 5.2.3 on page 117 up to Section 5.2.6 on page 119).

The IMM Service UML model was extended by a new object class,

Sal mCcbAppl i er (see Section 7.2 on page 177). This class contains the
sal mCcbAppl i er Rank configuration attribute, which represents the rank
that the IMM Service uses to determine in which order it invokes the

sal nmO CcbAppl yCal | back() function of CCB appliers.

Appendix A on page 187 shows a use case for the usage of CCB validators
and appliers.

Appendix B on page 191 provides a series of sequence diagrams showing the
API functions needed to update a configuration using CCBs.

Appendix C on page 197 discusses compatibility issues that occur when
object managers and object implementers use different versions of the IMM
Service API.

14

SAI-AIS-IMM-A.03.01 Section 1.3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Document Introduction

= To support notifications and correlation Ids, the following changes have been
made to the IMM document:

Section 4.2.19 on page 42 and Section 4.2.20 on page 43 have been intro-
duced.

The correl ati onl ds parameter has been added to the functions

sal mmOmAdm nOper at i onl nvoke_2(),

sal mmOmAdm nOper at i onl nvokeAsync_2(), and

sal mmOTCcbAppl y() . As a consequence, these function have been super-
seded, see Section 4.9.1 on page 102 and Section 4.8.5 on page 95.

The noti fi cati onl d parameter has been added to the

Sal mOmAdm nQper at i onl nvokeCal | backT function, which was super-
seded, see Section 4.9.2 on page 107. Due to this replacement, the

Sal nmCal | backsT type was replaced with the Sal mrCal | backsT_3 type
(see Section 4.2.21 on page 43). This latter modification has led, in turn, to the
replacement of the sal nmOmM ni ti al i ze() function with the

salmOm ni ti alize_3() function (see Section 4.3.1 on page 46).

The correl ati onl ds parameter has been added to the

Sal O Admi nOper ati onCal | backT_2 function (which was superseded,
see Section 5.8.2.1 on page 169) and to the

Sal O CcbAppl yCal | backT_3 function (see Section 5.6.1 on page 151).

Chapter 8 now contains notifications produced by the IMM Service.

1.3.2 Clarifications

Chapter 3 clarifies in a paragraph when runtime objects are persistent.

1.3.3 Deleted Topics

Chapter 9 of the IMM Service specification A.02.01 on the IMM Service management
interface, which was intended to indicate that the SNMP MIBs were not yet available,
has been removed, as no MIBs are provided in the IMM Service specification
A.03.01.

1.3.4 Other Changes

. The description of all attributes of Section 4.2.22 on page 43 has been corrected
to state that, even for configuration objects, these attributes are runtime
attributes and not configuration attributes. The names of the two attributes
sal mmAt t r Gl assNanme and sal nmAt t r Admi nOaner Nane were corrected to start
with lower case.

AIS Specification

SAI-AIS-IMM-A.03.01 Section 1.3.2 15

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Document Introduction AVAILABILITY

FORUM

The value for the SA_ | MM_ADM N_EXPORT oper at i onl d of the

SA | MM ADM N_EXPORT administrative operation (see

Section 6.4.1 on page 174) was missing in the previous version of this specifica-
tion; it is now defined in Section 6.3.1 on page 173.

In Section 7.2 on page 177, a correction has been made to state that the
Sal mmvhgt is a configuration object class and not a runtime object class.

In function signatures having an i n parameter that is a pointer to another pointer
y (or to an array of pointers z), the const qualifier has been added to the perti-
nent parameter to indicate that y (or z) must not be modified in the called func-
tion. The following non-superseded functions have been affected:

sal mmOrCl assCreate_2(), sal mmOmAdni nOmner Set (),

sal mmOmMAdm nOmner Rel ease(), sal nmmOmMAdm nOmner C ear (),

sal mmOTCcbObj ect Create_2(), sal mOnCchbObj ect Modi fy_2(),

sal MmO Rt Obj ect Create_2(), sal MmO Rt Gbj ect Update 2().

1.3.5 Superseded and Superseding Functions

The IMM Service defines for the version A.03.01 new functions and new type defini-
tions to replace functions and type definitions of the version A.02.01. The superseded
functions and type definitions are no longer supported in version A.03.01, and no
description is provided for them in this document. Regarding the support of backward
compatibility in SA Forum AIS, refer to [2].

The list of replaced functions and type definitions is presented in alphabetic order in
Table 1.

The names of the superseding functions and type definitions are obtained by adding
“ 3" to the respective names of the previous version or by replacing “_2" by “ 3" if the
superseded functions or type definitions had already “_2” at the end of their names.
Exceptions to these rules are indicated by footnotes in Table 1.

Table 1 Superseded Functions and Type Definitions in Version A.03.01

Functions and Type Definitions of Version A.02.01 no Longer Supported in A.03.01

Sal mCal | backsT

Sal mmO Admi nQper ati onCal | backT_2
Sal mCcbFI agsT

Sal O Cal | backsT_2

Sal O CcbAbort Cal | backT

16 SAI-AIS-IMM-A.03.01 Section 1.3.5 AIS Specification

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Document Introduction

Table 1 Superseded Functions and Type Definitions in Version A.03.01 (Continued)

Functions and Type Definitions of Version A.02.01 no Longer Supported in A.03.01

Sal O CcbAppl yCal | backT

Sal MO CcbhConpl et edCal | backT!

Sal O Cebl dT?

Sal MO CcbObj ect Cr eat eCal | backT_23
Sal MO CcbObj ect Del et eCal | backT?
Sal MmO CcbObj ect Modi f yCal | backT_23

sal MmO d assl npl enent er Rel ease()

sal O C assl npl enent er Set ()
salmmO I nitialize 2()

sal MmO Qbj ect | npl enment er Rel ease()

sal O Qbj ect | npl enent er Set ()

sal nmOmAccessorlnitialize()

sal mmOmAdm nCOper at i onl nvoke_2()

sal mmOmAdm nOper at i onl nvokeAsync_2()
sal nmmOTCcbAppl y()

sal mmOnCcbl nitialize()

salmOmM nitialize()

sal nmOrSearchlnitialize 2()

1. The name of the superseding function is

Sal MO CcbVal i dat eCal | backT

2. This type definition was replaced with the Sal nmCcbl dT type.

3. This function has been removed. To a great extent, its functionality is now provided by the
Sal 0O CcbVal i dat eCal | backT function together with the object iterator API functions.

AIS Specification SAI-AIS-IMM-A.03.01 Section 1.3.5

17

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction

SERVICE
AVAILABILITY’

FORUM

1.3.6 Changes in Return Values of APl and Administrative Functions

The following table applies only to functions that have not been superseded.

Table 2 Changes in Return Values of APl and Administrative Functions

: han
Function Return Value Change
Type
SA | MM ADM N_EXPORT administrative operation SA Al'S ERR | NVALI D_PARAM new
SA Al S ERR_TI MEQUT
SA_Al'S ERR_NO MEMORY
sal O | npl enent er Set () SA AIS ERRINT new
sal MmO Rt Obj ect Create_2(), SA Al'S ERR | NVALI D_PARAM changed
sal MmO Rt Obj ect Update_2()
sal MmO Rt Obj ect Create_2(), SA Al'S ERR VERSI ON! new
sal MmO Rt Obj ect Update_2(),
sal mDmAccessor Get _2(),
sal mOmAdm nQOper ati onCont i nuati onC ear (),
sal mmOmAdm nOper at i onConti nue(),
sal mmOmAdm nQper ati onCont i nueAsync(),
sal mOnCcbObj ect Create_2(),
sal mDnCcbOhj ect Modi fy_2(),
sal mOnCl assCreate_2(),
sal mOnCl assDescri ptionCGet _2(),
sal mDnCl assDescri pti onMenoryFree_2(),
sal mOnBear chNext _2()
sal nmOmAdm nOaner Fi nal i ze() SA Al S ERR BUSY new
sal mDnCcbhj ect Create_2(), SA Al S ERR FAI LED OPERATI ON extended
sal mOnCcbQbj ect Del et e(),
sal mOMCcbObj ect Modi fy_2()
sal mDnCcbhj ect Create_2(), SA AI'S_ERR TI MEQUT changed
sal mOnCcbQbj ect Del et e(), SA AI'S ERR BAD OPERATI ON
sal mOnCcbObj ect Modi fy_2() SA Al S_ERR _NOT_EXI ST
sal mDnCcbhj ect Create_2(), SA Al'S ERR | NVALI D_PARAM changed
sal mOnCcbOhj ect Modi fy_ 2()

1. This return value should have been added in the IMM Service B.02.01 specification to all functions in this row.

18

SAI-AIS-IMM-A.03.01 Section 1.3.6

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Document Introduction

FORUM

1.4 References

The following document contains information that is relevant to the specification:
[1] Service Availability™ Forum, Service Availability Interface, Overview, SAI-Over-
view-B.05.01

[2] Service Availability™ Forum, Service Availability Interface, C Programming
Model, SAI-AIS-CPROG-B.05.01

[3] Service Availability™ Forum, Information Model in XML Metadata Interchange
(XMI) v2.1 format, SAI-IM-XMI-A.04.01.xml.zip

[4] Service Availability™ Forum, IMM XML Schema Definition,
SAI-AIS-IMM-XSD.A.01.01.xsd

[5] Service Availability™ Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.04.01

[6] Service Availability™ Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.03.01

[7] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[8] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

1.5 How to Provide Feedback on the Specification

If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum Web site (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum

The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

AIS Specification SAI-AIS-IMM-A.03.01 Section 1.4 19

10

15

20

25

30

35

40

http://www.saforum.org
http://www.saforum.org

Service Availability™ Application Interface Specification SERVICE
Document Introduction AVAILABILITY

FORUM

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the SA Forum Web site (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the SA Forum
Web site (http://www.saforum.org).

20 SAI-AIS-IMM-A.03.01 Section 1.7 AIS Specification

10

15

20

25

30

35

40

http://www.saforum.org
http://www.saforum.org

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY’ Overview

FORUM

2 Overview

This specification defines the Information Model Management Service within the
Application Interface Specification (AIS).

The IMM Service is a cluster-wide service that must be highly-available in the sense
that no single failure should take the entire service down.

2.1 Information Model Management Service

The different entities of an SA Forum cluster, such as components provided by the
Availability Management Framework, checkpoints provided by the Checkpoint Ser-
vice, or message queues provided by the Message Service are represented by vari-
ous objects of the SA Forum Information Model.

The SA Forum Information Model (IM) is specified in UML and managed by the Infor-
mation Model Management (IMM) Service.

The objects in the SA Forum Information Model are provided with their attributes and
administrative operations (that is, operations that can be performed on the repre-
sented entities through system management interfaces). For management applica-
tions or object managers, the IMM Service provides the APIs to create, access, and
manage these objects.

The IMM Service delivers the requested operations to the appropriate AlS Services
or applications (referred to as object implementers) that implement these objects for
execution.

Information Model objects and attributes can be classified into two categories:

Configuration objects and attributes
Runtime objects and attributes

The IMM Service defines two sets of APlIs:

(1) An object management APl (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An object implementer API (OI-API) restricted to object implementers.

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 2 21

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
System Description and System Model

3 Information Model Management Service API

The Service Availability™ Forum (SA Forum) Information Model (IM) is specified in
UML, and it is the collection of various managed objects that represent the logical
entities of an SA Forum system. The SA Forum IM also specifies the attributes of

these managed objects and administrative operations that can be performed on the
entities they represent by using system management interfaces.

The Information Model Management (IMM) Service is the SA Forum Service that
manages all objects of the SA Forum Information Model and provides the APIs to

access and manage these objects.

FIGURE 1 presents an overview of the interfaces provided by the IMM Service.

FIGURE 1 IMM Service Interfaces
o System ¢ M System .
anagemen anagemen :
Application 1 Application 2 il/}/illll\l/lalg)[etl)i]leefltt
A
- >
IMM
IM Object /\ SERVICE
/\w
N “ IMM Object
y \\ » Implementer
\ \ \ \ API
~ \ \ \ >
\ WoN
\
\ Y ‘/ Object
. Implementation
Object .

Implementer 1

Object Implementer 2

AIS Specification

SAI-AIS-IMM-A.03.01 Chapter 3

23

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
System Description and System Model AVAILABILITY

FORUM

The implementation of the logical entities represented by the different managed
objects in the SA Forum Information Model is not part of the IMM Service; instead, it
is provided by user applications or other AIS Services such as the Checkpoint Ser-
vice or the Availability Management Framework.

AIS Services and applications that implement the logical entities represented by IMM
objects are called object implementers in the remainder of this document.

IMM objects are organized in a tree hierarchy. The hierarchy follows the structure of
the LDAP distinguished name of each object. For more information about LDAP
object names, refer to [2].

IMM objects and attributes can be classified into two categories:

. Configuration Objects and Attributes

. Configuration objects and configuration attributes are the means by which
system management applications provide input to an object implementer on
the desired sets of objects and on their handling. The set of configuration
objects and attributes constitute the prescriptive part of the SA Forum Informa-
tion Model.

. Configuration objects and attributes are typically under the control of system
management applications. They are of a persistent nature and must survive a
full cluster power-off.

. Configuration attributes are read-write attributes from an object management
perspective but read-only from an object implementer perspective.

« Runtime Objects and Attributes

. Runtime objects and runtime attributes are the means by which object
implementers reflect in the SA Forum Information Model the current state of
the entities they implement. The set of runtime objects and attributes consti-
tute the descriptive part of the SA Forum Information Model. Runtime objects
and attributes are typically under the control of object implementers.

. Runtime objects that contain persistent runtime attributes or have persistent
children (configuration or runtime objects) are persistent and must survive a
full cluster power-off. Non-persistent runtime attributes do not survive a full
cluster power-off.

. Runtime attributes are read-only attributes from an object management per-
spective but read-write from an object implementer perspective.

24

SAI-AIS-IMM-A.03.01 Chapter 3 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY" System Description and System Model

As attributes cannot exist outside of an encapsulating object, configuration attributes
can only belong to configuration objects, as opposed to runtime attributes that may
belong to objects of either category. Runtime objects can only have runtime
attributes.

Object implementers cannot on their own initiative create and delete configuration
objects or modify configuration attributes by using the object implementer interface.
On the other hand, system management applications cannot directly create and
delete runtime objects or modify runtime attributes. However, as a consequence of
some administrative operations requested by these system management applica-
tions, object implementers may create or delete runtime objects or modify runtime
attributes to reflect the new system state after the completion of the administrative
operation.

The IMM Service exposes two sets of APIs:

(1) An object management APl (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An object implementer API (OI-API), which is intended to be used by object
implementers.

The OM-API is described in Chapter 4. The OI-API is found in Chapter 5.

The IMM Service acts as a mediator between object managers and object implement-
ers. In particular, an object manager uses the object management API to carry out
configuration changes and administrative operations on entities of the system imple-
mented by different object implementers. In order to do this, an object manager
manipulates the managed object of the SA Forum Information Model maintained by
the IMM Service. In turn, the IMM Service propagates these manipulations to the
appropriate object implementers for deployment using the object implementer API.
All configuration changes of IMM Service configuration objects are performed in the
context of configuration change bundles (CCB). To carry out these configuration
changes, object implementers are invoked by the IMM Service in different roles.
Object implementers that verify the correctness and consistency of CCBs act in the
role of CCB validators.

Object implementers that deploy the validated CCB in the system act in the role of
CCB appliers. An object implementer registers with the IMM Service in which role or
roles it is going to act for the different configuration objects.

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 3 25

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
System Description and System Model AVAILABILITY

FORUM

3.1 IMM Service State Transitions During CCB Processing

In this section, the term “manager” is used to represent an object management appli-
cation.

When the IMM Service processes a CCB, the IMM Service associates a state
machine with that CCB. This state machine goes through a number of state transi-
tions (see FIGURE 2 on page 28).

Some of the state transitions are triggered by function calls, whereas other state tran-
sitions are triggered by the return values of the object implementer callback functions.

A manager initiates a set of configuration changes by calling the

sal mmOrCcblni ti alize_3() function, which initializes the state machine of the
IMM Service for the corresponding CCB and sets it to the populate state. The man-
ager then calls the sal mOnTCchbObj ect Create _2(),

sal MmO CcbObj ect Del et e() , and sal mOnCcbObj ect Modi fy() functions to
describe the modifications.

With the invocation of the sal mOnCcbAppl y_3() function, the manager indicates
that the set of configuration changes is now complete and needs to be applied to the
SA Forum Information Model. This call will initiate a procedure in which the IMM Ser-
vice attempts to apply the modifications to the running configuration:

(1) The IMM Service serializes simultaneous CCB application requests, so that only
one of them may enter the critical region at a time. The CCB that enters the crit-
ical region moves to the transaction start state.

(2) In the transaction start state, the IMM Service will call the
sal nmO CcbVal i dat eCal | back() function on all involved CCB validators,
which moves the CCB into the transaction validate state.

(3) If any of the CCB validators returns an error for the CCB, the IMM Service enters
the abort transaction state to abort the current CCB. In this state,

. the IMM Service invokes the sal nmO CcbAbort Cal | back() functions of
all involved CCB validators,

. the sal mMOrCcbAppl y_3() function call returns with an error,

. the current CCB exits the critical region, and the IMM Service proceeds with
the next CCB application request, if there is one pending.

After the IMM Service exits the abort transaction state, all change requests
associated with the CCB are removed, and the CCB is returned to the popu-
late state, where it will remain until used for a new set of changes or finalized.

26

SAI-AIS-IMM-A.03.01 Section 3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY System Description and System Model

FORUM

(4) If all callbacks from (2) return successfully, the CCB enters the commit transac-
tion state, and the IMM Service starts notifying all relevant CCB appliers by
invoking their sal mmO CcbAppl yCal | back() functions in the order specified
by their rank in the IMM Service configuration (see Section 5.6 on page 150).

(5) After all the CCB applier callbacks have returned,

. the IMM Service invokes the sal O CcbFi nal i zeCal | back() function
of all involved CCB validators to release the CCB identifier and any associ-
ated state,

. the sal mMOCcbAppl y_3() function call returns successfully, which noti-
fies the manager that the CCB has been successfully applied, and

. the current CCB exits the critical region, all changes associated with it are
removed, and it is returned to the populate state, where it will remain until
used to make a new set of changes or finalized.

AIS Specification SAI-AIS-IMM-A.03.01 Section 3.1 27

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

System Description and System Model

SERVICE
AVAILABILITY’

FORUM

FIGURE 2 CCB State Machine
salmmOmCcbinitialize 3{)
salmmOmCchApply_3() retums salmmOmCebFinalize()
————————————————— CCB Initilized
[
| R
: salmmOmCcbCredte_2()
| salmmOmCchDelete()
| salmmOmCcbModify_2()
[
[
I — salmmOmCebFiralize()
: Populate
[
| salmmOmCcbApply_3()
[
: CCB Transaction
| .
: iTmnsam" Sm: Critical region
| salmmOiCebValidateCallback() "‘3: 'I‘fn' ?:: gﬁifﬂ“
: region
[
:
[
: s-alranich‘u"aIidaiiaﬁallback(} retums
[I
[
: salmmOiCchAbartCallback() }& salmmDiCchApplyCallback()
: any rejact LY all 0K
[
: Commit Transaction
| i
: | Abort Transaction =almmOiCchFinalizeCallback()
[
[I '
1
[I
[I |
[! |
: salmmCiCebAbortCaliback() retums salmmOiCehApplyCallbacki) returns
Y, o '
[
! |
A CCB validator process may also be a CCB applier for the same object. However, a
CCB validator process may also validate other parts of the configuration of which it is
not the CCB applier.
A CCB that is in the critical region is termed an in-progress CCB.
28 SAI-AIS-IMM-A.03.01 Section 3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY System Description and System Model

FORUM

3.2 Object Naming

The Distinguished Name (DN) of an object (also simply called the object name) is
constructed by prefixing the DN of the object's parent in the IMM tree hierarchy with
the Relative Distinguished Name (RDN) of the object. The',' character is used as a
separator between the RDN of the object and the DN of its parent as follows:

Object_ DN = "Object_ RDN,Parent_Object DN"

Objects that are immediately under the root of the IMM hierarchy have a DN that is
equal to their RDN.

Each object must have one and only one attribute which is used to build the object
RDN as follows:

Object_RDN = "RDN_attribute_name=RDN_attribute_value"

AIS Specification SAI-AIS-IMM-A.03.01 Section 3.2 29

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
System Description and System Model AVAILABILITY

FORUM

3.3 Internal Persistent Repository

The IMM Service maintains a copy of all its persistent entities (class definitions and
persistent objects with their persistent attributes) within an internal persistent
repository kept on stable storage. The storage holding the IMM Service persistent
repository must be highly available, which implies storage replication. The nature of
this internal repository is implementation-specific.

During startup of the IMM Service, the contents of its internal repository may be over-
written (or initialized if the internal repository was empty) from the contents of an XML
file. It is implementation-specific how the XML file is provided to the IMM Service at
startup. The XML file must conform to the IMM XML Schema Definition (see [4]).
Such an XML file may be the result of the SA_ | MM_ADM N_EXPORT administrative
operation (see Section 6.4.1 on page 174). If the XML file contains the description of
non-persistent objects or attributes, these objects and attributes are ignored. The
configuration parameter sal nmReposi t oryl ni t of the Sal mrivhgt object class
(see Section 7.2 on page 177) specifies whether to overwrite or not the contents of
the IMM Service internal repository at startup of the IMM Service.

When the IMM Service starts (for example, at the initial cluster startup or after a full
cluster power-off), it contains only the class definitions and persistent objects with
their persistent attributes that are present in its internal repository. Non-persistent
runtime objects must be re-created by object implementers. The values of non-per-
sistent runtime attributes (cached or not) will be obtained from the object implement-
ers.

30

SAI-AIS-IMM-A.03.01 Section 3.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY System Description and System Model

FORUM

3.4 Unavailability of the IMM Service APl on a Non-Member Node

This section describes the behavior of the IMM Service API from the point of view of a
regular application process (as opposed to a middleware process implementing an
AIS Service).

The behavior of the IMM Service APl used by middleware processes that implement
AIS Services is not specified and is left implementation-dependent. Processes imple-
menting other AIS Services may need to access the IMM Service when a node that is
not in the cluster membership is started up or shutdown.

The IMM Service does not provide service to regular application processes on cluster
nodes that are not in the cluster membership (see [5]).

The following subsection describes the behavior of the IMM Service under various
conditions that cause the IMM Service to be unavailable on a cluster node.

Section 3.4.2 on page 32 contains guidelines for IMM Service implementers for deal-
ing with a temporary unavailability of the service.

3.4.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [5]) or is being administra-
tively evicted from the cluster membership, the IMM Service behaves as follows
towards processes residing on that cluster node and using or attempting to use the
service:

CallstosalMOm nitialize_3() andsalmO I nitialize_3() will fail
with SA Al S_ERR_UNAVAI LABLE.

All IMM Service APIs that are invoked by the process and that operate on han-

dles already acquired by the process will fail with SA_ Al S ERR_UNAVAI LABLE
with the following exceptions, assuming that the handle i rmHandl| e or the han-
dle i O Handl e has already been acquired:

= The sal mOmAdm nQper at i onl nvokeAsync_3() function may return
SA AIS OKor SA Al S ERR_UNAVAI LABLE, depending on the service
implementation. If it returns SA_Al S_OK the
sal mOmAdnm nQper at i onl nvokeCal | back() callback function of the
process will be called and will also return SA_Al S ERR_UNAVAI LABLE in the
error parameter; otherwise, the callback will not be called.

= The sal mmOnFi nal i ze() and sal MmO Fi nal i ze() functions, which are
used to free the object management or object implementer library handles and
all resources associated with these handles.

. An outstanding callback sal mMOmAdm nQper at i onl nvokeCal | back() will
return SA_Al S_ERR_UNAVAI LABLE in the error parameter.

AIS Specification SAI-AIS-IMM-A.03.01 Section 3.4 31

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
System Description and System Model AVAILABILITY

FORUM

If the cluster node rejoins the cluster membership, processes executing on the cluster
node will be able to reinitialize new library handles and use the entire set of IMM Ser-
vice APls that operate on these new handles. However, invocation of APIs that oper-
ate on handles acquired by any process before the cluster node left the membership
will continue to fail with SA_Al S_ERR_UNAVAI LABLE (or with the special treatment
described above for asynchronous calls) with the exception of sal OnTi nal i ze()
and sal O Fi nal i ze(), which are used to free the library handles and all
resources associated with these handles. Hence, it is recommended for the pro-
cesses to finalize the library handles as soon as the processes detect that the cluster
node left the membership.

When the cluster node leaves the membership, the IMM Service executing on the
remaining nodes of the cluster behaves as if all processes that were using the IMM
Service on the leaving cluster node had been terminated. In particular, if a process on
the leaving cluster node was registered as an object implementer, the IMM Service
will unregister it automatically (see Section 5.4.2 on page 132).

3.4.2 Guidelines for IMM Service Implementers

The implementation of the IMM Service must leverage the SA Forum Cluster Mem-
bership Service (see [5]) to determine the membership status of a cluster node for the
case explained in Section 3.4.1 on page 31 before returning

SA Al'S_ ERR _UNAVAI LABLE. If the Cluster Membership Service considers a cluster
node as a member of the cluster but the IMM Service experiences difficulty in provid-
ing service to its clients because of transport, communication, or other issues, it must
respond with SA_Al S ERR TRY_AGAI N.

32

SAI-AIS-IMM-A.03.01 Section 3.4.2 AIS Specification

10

15

20

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4 IMM Service - Object Management API Specification

4.1 Include File and Library Name

The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service object man-
agement API:

#i ncl ude <sal mmMOm h>
To use the IMM Service object management API, an application must be bound with
the following library:

i bSal mmMOm so

4.2 Type Definitions

The Information Model Management Service uses the types described in the follow-
ing sections.

4.2.1 Handles Used by the IMM Service

t ypedef SaUi nt 64T Sal nmHandl eT,;

t ypedef SaUi nt 64T Sal mmAdm nOwner Handl eT,;
t ypedef SaUi nt 64T Sal mtCcbHandl eT,;

t ypedef SaUi nt 64T Sal nmSear chHandl eT;

t ypedef SaUi nt 64T Sal nmAccessor Handl eT;

The acronym CCB stands for Configuration Changes Bundle. For its usage, refer
to Section 4.8 on page 85.

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 4 33

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.2.2 Various IMM Service Names

The following types represent object class names, administrative owner names, and
object class attribute names. All these names are UTF-8 encoded character strings
terminated by the NULL character.

t ypedef SaStringT Sal mCl assNaneT;
typedef SaStringT Sal mmAttr NaneT,;
typedef SaStringT Sal mAdmni nOaner NaneT,;

4.2.3 SalmmValueTypeT

The Sal nmval ueTypeT contains various data types used by the IMM Service for
class attributes and administrative operation parameters.

t ypedef enum {

SA_| M _ATTR_SAI NT32T =1, /* Salnt32T */
SA_| MM_ATTR_SAUI NT32T = 2, /* SaUint32T */
SA_| M _ATTR_SAI NT64T =3, /* Salnt64T */
SA_| MM_ATTR_SAUI NT64T = 4, /* SaUint64T */
SA_| MM_ATTR_SATI MET =5, /* SaTinmeT */

SA_| MM_ATTR_SANAVET =6, /* SaNanmeT */

SA_| MM_ATTR_SAFLOATT =7, /* SaFloatT */
SA_| MM_ATTR_SADOUBLET =8, /* SaDoubl eT */
SA_| MM_ATTR_SASTRI NGT =9, /* SaStringT */
SA_| M_ATTR_SAANYT = 10 /* SaAnyT */

} Sal mmval ueTypeT;

4.2.4 SalmmClassCategoryT

The Sal mCl assCat egor yT type is used to distinguish among different categories
of object classes.

t ypedef enum {
SA | MM _CLASS _CONFI G 1,
SA | MM _CLASS RUNTI ME
} Sal mCl assCat egoryT,;

The values of Sal mCl assCat egor y T indicate whether the object class is a config-
uration object class or a runtime object class.

34

SAI-AIS-IMM-A.03.01 Section 4.2.2 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Object Management API Specification

4.2.5 SalmmAttrFlagsT

The Sal nmAt t r Fl agsT type is used to specify the various characteristics of an

attribute of an object class.

#define SA_ | MM ATTR_MJULTI _VALUE 0x00000001
#define SA_| MM _ATTR_RDN 0x00000002
#define SA_| MM ATTR_CONFI G 0x00000100
#define SA | MM ATTR _WRI TABLE 0x00000200
#define SA | MM ATTR_I NI TI ALI ZED 0x00000400
#define SA | MM ATTR_RUNTI ME 0x00010000
#define SA | MM ATTR_PERSI STENT 0x00020000
#define SA | MM_ATTR_CACHED 0x00040000

typedef SaU nt 64T Sal mmAttrFl agsT,;

The meaning of the flags listed above is:

SA | MM ATTR_MULTI _VALUE: if this flag is specified, the attribute is a multi-
value attribute; otherwise, the attribute is a single-value attribute.

. SA | MM ATTR_RDN: the attribute is used as the Relative Distinguished Name

(RDN) for the containing object. Each object class must have one and only one

RDN attribute. This attribute must be a single-value attribute of type

SA | MM ATTR_SASTRI NGT or SA_| MM_ATTR_SANAMET and may not be modi-
fied after the object is created. The RDN attribute of a configuration object must
be a configuration attribute.

The following two attributes are mutually exclusive, as an attribute is either a configu-
ration or a runtime attribute.

. SA | MM ATTR_CONFI G the attribute is a configuration attribute. Configuration
attributes are only allowed within object classes of the SA | MM _CLASS CONFI G
category.

SA | MM ATTR_RUNTI ME: the attribute is a runtime attribute. Runtime attributes
can belong to all object class categories.

The following two attributes are only meaningful for configuration attributes. Setting
them for runtime attributes is not allowed and generates an error.

AIS Specification

SAI-AIS-IMM-A.03.01 Section 4.2.5

35

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

SA | M_ATTR_WRI TABLE: setting this flag for a configuration attribute indicates
that the attribute can be modified. If the flag is not present, the configuration
attribute can only be set when the object is created and cannot be modified or
deleted later on.

SA | MM_ATTR_I NI TI ALI ZED: setting this flag for a configuration attribute indi-
cates that a value must be specified for this attribute when the object is created.
This flag may not be set in the definition of a configuration attribute that has a
default value.

The following attributes are only meaningful for runtime attributes. Setting them for
configuration attributes is not allowed and generates an error.

SA | MM ATTR_PERSI STENT: setting this flag for runtime attributes indicates
that the attribute must be stored in a persistent manner by the IMM Service. If a
runtime object has persistent attributes, or if one of its children has persistent
attributes, its RDN attribute must be persistent.

SA | MM ATTR_CACHED: setting this flag for a runtime attribute indicates that the
value of the attribute must be cached by the IMM Service. This flag is automati-
cally set by the IMM Service when the SA | MM _ATTR_PERSI STENT flag is set.

4.2.6 SalmmAttrValueT

The Sal nmAt t r Val ueT type is used to represent the values of object attributes.
t ypedef void *Sal nmAttr Val ueT;

4.2.7 SalmmAttrDefinitionT_2

The Sal nmAt t r Def i ni ti onT_2 type is used to specify the characteristics of an
attribute belonging to a particular object class.

t ypedef struct {
Sal mmAt t r NaneT attr Nane;
Sal mVal ueTypeT attrVal ueType;
SalmmAt tr Fl agsT attrFl ags;
Sal mmAt t r Val ueT attrDef aul t Val ue;
} SalmmAttrDefinitionT _2;

The various fields of the structure above have the following usage:

at t r Nane: contains the attribute name.

at t r Val ueType: indicates what type of values can be assigned to this
attribute.

36 SAI-AIS-IMM-A.03.01 Section 4.2.6 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

at t r Fl ags: contains additional characteristics of this attribute.

at t r Def aul t Val ue: contains a value that will automatically be assigned by
the IMM Service to this attribute if no value is specified when an object contain-
ing this attribute is created. A default value shall only be provided for configura-
tion and persistent runtime attributes. Must be set to NULL if there is no default
value for this attribute.

4.2.8 SalmmAttrValuesT 2

The Sal nmAt t r Val uesT_2 type is used to specify the values of one attribute of an
object.

t ypedef struct {
Sal mmAt t r NaneT attr Nane;
Sal mVal ueTypeT attrVal ueType;
SaU nt 32T at tr Val uesNunber ;
Sal mmAt t r Val ueT *attr Val ues;
} Sal nmAttrVal uesT_2;
The at t r Nane field indicates the attribute name, the at t r Val ueType field the type

of the attribute, and the at t r Val uesNunber field the number of attribute values
contained in the array of value descriptors to which at t r Val ues points.

In order to be present within an object, an attribute must have at least one value.
Optional attributes that have no value are not present in objects.

4.2.9 SailmmAttrModificationTypeT

The Sal nmAt t r Modi fi cati onTypeT type specifies the type of modification to
apply on the values of an attribute.

t ypedef enum {
SA | MM ATTR _VALUES_ADD = 1,
SA | MM ATTR _VALUES_DELETE 2,
SA | MM ATTR _VALUES_REPLACE
} SalnmAttrModificationTypeT,;

. SA | MM ATTR_VALUES ADDis used to add one or several values to an
attribute in an object. If the attribute did not already have a value, the attribute is
added.

SA | MM ATTR _DELETE is used to remove one or several specified values from
an attribute of an object. If all values of the attribute are removed, the attribute is

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.8 37

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

also removed from the object. If the intention is to remove an attribute without
specifying all its values, the SA | MM ATTR_REPLACE enum can be used.

SA | MM ATTR_REPLACE is used to replace all current values of an attribute
with a new set of values. If the new set of values is empty, the attribute is
removed. If one or several values are specified and the attribute does not exist in
the object, the attribute is added to the object with the new set of values.

The Sal nmAt t r Modi fi cati onTypeT type is used to specify the modification to
apply on an object attribute.

4.2.10 SailmmAttrModificationT_2

t ypedef struct {
Sal mmAt t r Modi fi cati onTypeT nodType;
Sal mmAttr Val uesT_2 nodAt tr;
} SalnmAttrModificationT_2;

The nodType field indicates the type of modification to perform. The nodAt t r field
specifies the attribute name and the values to be added to the attribute, or to be
removed from the attribute, or that will replace the existing values. An empty set of
values can be specified by setting at t r Val uesNunber to 0 and at t r Val ues to
NULL in the nodAt t r field. It is an error to use such an empty set of values with the
SA | M ATTR_VALUES_ADDor SA | M ATTR_VALUES DELETE modification

types.

4.2.11 SalmmScopeT

The Sal nm5copeT type is used to specify the scope of some IMM Service opera-
tions.

t ypedef enum {
SA | MM_ONE
SA | MM_SUBLEVEL
SA | MM_SUBTREE
} Sal nmScopeT,;

SA | MM _ONE indicates that the scope of the operation is targeted to a single
object.

. SA | MM SUBLEVEL indicates that the scope of the operation is targeted to one
object and its direct children.

. SA | MM SUBTREE indicates that the scope of the operation is targeted to one
object and the entire subtree rooted at that object.

38

SAI-AIS-IMM-A.03.01 Section 4.2.10 AIS Specification

10

15

20

25

30

35

40

SERVICE

AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Object Management API Specification

4.2.12 SalmmSearchOptionsT

The Sal nmSear chQpt i onsT is used to specify various options when performing
searches amongst IMM Service objects.

t ypedef SaUi nt 64T Sal mSear chOpti onsT;

Two kinds of options can be specified by Sal mSear chOpt i onsT:

Options related to the search criteria. Currently, only one such option is sup-
ported by the IMM Service. It must be specified for all search operations:

#define SA | MM SEARCH ONE_ATTR 0x0001

SA | MM_SEARCH _ONE_ATTR enables the retrieval of objects containing an
attribute of a particular name and holding a particular value.

Options used to specify which attributes of the objects matching the search crite-
ria must be returned to the process performing the search. One and only one of
these three options must be specified for each search operation:

#define SA | MM SEARCH GET_ALL_ATTR 0x0100
#define SA | MM SEARCH GET _NO ATTR 0x0200
#define SA | MM SEARCH GET_SOMVE ATTR 0x0400

SA | MM SEARCH GET_ALL_ATTRindicates that for each object matching the
search criteria, all its attributes along with their values must be returned to the
process performing the search.

SA | MM _SEARCH _GET_NO_ATTRindicates that no attributes of the objects
matching the search criteria must be returned to the process performing the
search. In this case, only the names of the objects matching the search criteria
are returned.

SA | MM SEARCH _GET_SOVE_ATTR indicates that for each object matching the
search criteria, only a subset of its attributes along with their values must be
returned to the process performing the search. The list of attribute names to be
returned is specified by another parameter of the search operation (see the

at tri but eNanmes parameter in Section 4.5.1 on page 62).

AIS Specification

SAI-AIS-IMM-A.03.01 Section 4.2.12 39

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.2.13 SalmmSearchParametersT_2

The Sal nmSear chPar anmet er sT_2 type is used to provide the criteria parameters
used for search operations.

typedef struct {
Sal mmAt t r NaneT attr Nane;
Sal mVal ueTypeT attrVal ueType;
Sal mAttrVal ueT attrVal ue;

} Sal mrSearchOneAttrT_2;

The Sal nmSear chOneAt t r T_2 type contains the attribute description for

SA | MM_SEARCH_ONE_ATTR search operations. The fields at t r Nanme and

at t r Val ue specify the attribute name and value being searched for. The

at t r Val ueType field indicates the type of value that is assigned to the attribute.

If at t r Val ue is not set to NULL, an object matches the search criteria if one of its
attributes has a name identical to the name to which at t r Nane points, the values for
this attribute are of type at t r Val ueType, and the value of the attribute (or one of its
values for multi-valued attributes) is identical to the value to which at t r Val ue
points.

If at t r Val ue is set to NULL, only the attribute name is used as a search criteria, and
all objects having an attribute with such a name will be retrieved by the search opera-
tion, regardless of their attribute values.

If at t r Nane is set to NULL, at t r Val ue must also be set to NULL. Such an empty
criterion will match all IMM Service objects. This empty criterion can be used to
browse through all IMM Service objects.

t ypedef union {
Sal mtear chOneAttrT_2 searchOneAttr;
} Sal mrSear chPar anet ersT_2;

Note: Searching for a particular value of a non-cached runtime attribute should be
used with care, as it forces the IMM Service to fetch all values from the object
implementers, which creates extra load on the system.

SAI-AIS-IMM-A.03.01 Section 4.2.13 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.2.14 SalmmCcbFlagsT_3

The Sal nmCcbFI agsT type is used to specify the various characteristics of a CCB.
Currently, only one value is provided.

#define SA | MM CCB_ALLOW ABSENT_VALI DATORS 0x00000001
#define SA | MM CCB_ALLOW ABSENT_APPLI ERS 0x00000002
t ypedef SaU nt 64T Sal mCcbFl agsT_3;

SA | MV CCB_ALLOW ABSENT VALI DATORS—if this flag is specified, the CCB can
hold changes for objects for which CCB validators have been specified but are cur-

rently not registered. If this flag is not set, all specified validators must be registered
for all objects that are changed in the CCB.

SA | MM _CCB_ALLOW ABSENT_APPLI ERS—if this flag is specified, the CCB can
hold changes for objects for which CCB appliers have been specified but are cur-
rently not registered. If this flag is not set, all specified appliers must be registered for
all objects that are changed in the CCB.

4.2.15 SalmmCcbIdT

t ypedef SaU nt 64T Sal mCcbl dT;

This type is used to represent a CCB identifier associated with a particular configura-
tion change bundle (CCB).

4.2.16 SalmmContinuationldT

t ypedef SaU nt 64T Sal rmTConti nuati onl dT;

The type Sal mCont i nuat i onl dT is used to identify a particular invocation of an
administrative operation on an IMM object. Its scope is cluster-wide, and it must be
unique on a per-IMM object basis. For more details, refer to Section 4.9 on page 100.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.14 41

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.2.17 SalmmAdminOperationldT

The Sal mmAdm nQper at i onl dT type is used to hold an identifier designating a par-
ticular administrative operation to perform on an object. The identifiers for all adminis-
trative operations of a given object class must have different integer values. However,
the same values can be used for administrative operations of different object classes.
In other words, the scope of an operation identifier is the object class.

The IMM Service is not aware of the valid range of operation identifiers of an object
class.

t ypedef SaUi nt 64T Sal mmAdni nQper ati onl dT;

4.2.18 SalmmAdminOperationParamsT_2

The Sal nmAdm nOper at i onPar ansT_2 type is used to specify the parameters of
an administrative operation performed on an object.

t ypedef struct {
SaStringT par amNarme;
Sal mVal ueTypeT par anilype;
Sal mmAt t r Val ueT paranBuffer;
} Sal nmAdm nQper ati onPar ansT_2;
The par amNane field indicates the name of the parameter. The par anilype field

indicates the type of the parameter. The par anBuf f er field contains the parameter
value.

4.2.19 SalmmNotificationMinorldT

t ypedef enum {
SA | MM_NTFI D_OP_START =
SA | MM_NTFI D_OP_END =
SA | MM_NTFI D_CCB_APPLY_START
SA_| MM_NTFI D_CCB_APPLY_END

} Sal nmNoti ficationM norldT;

1
A WODN P

This type provides the values for the m nor | d field of notification class Identifiers
used by the IMM Service.

42

SAI-AIS-IMM-A.03.01 Section 4.2.17 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.2.20 SaimmAdditionalinfoldT

t ypedef enum {
SA | M Al _ADM N_OPERATI ON_I D
SA | M _Al _ADM N_OPERATI ON_PARAM
SA | MM _Al _ADM N_OPERATI ON_RESULT
SA IMM A _CCB ID =
SA | M Al _CCB_RETURN_VALUE
} Sal mmAddi tional | nf ol dT;

1
a » 0N

This type provides identifiers for the data that is part of the additional information por-
tion of notifications sent by the IMM Service.

4.2.21 SalmmCallbacksT_3

The Sal mCal | backsT_3 structure defines the set of callbacks a process can pro-
vide to the IMM Service at initialization time.

t ypedef struct {
Sal mmOMAdm nQper at i onl nvokeCal | backT_3
sal mmOmAdmmi nOper at i onl nvokeCal | back;
} Sal nmCal | backsT_3;

4.2.22 IMM Service Object Attributes

The following #define directives are used to refer to the name of attributes of objects
in the SA Forum Information Model.

#define SA | MM ATTR_CLASS NAME "sal nmAt t r G assNane"

The IMM Service adds an attribute to each object holding the name of the class of the
object. The name of this attribute is specified by the constant
SA | MM_ATTR_CLASS_ NAME.

#define SA | MM ATTR ADM N_ONNER_NAME "sal mmAt t r Admi nOaner Nane"

When an object has been assigned an administrative owner, the IMM Service stores
the name of the object administrative owner in one attribute of the object. The name
of this attribute is specified by the constant SA | MM ATTR_ADM N_OWNER_NAINE.
This attribute does not exist in objects having no administrative owners.

The two preceding attributes are single-value attributes and their value is of type
SA | MM ATTR_SASTRI NGT.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.20 43

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

#define SA | MM ATTR VALI DATOR_NAME
"sal rmAt t r Val i dat or Nane"

When an object has CCB validators, the IMM Service stores the names of the CCB
validators in one multi-valued attribute of the object. The name of this attribute is
specified by the constant SA_| MM _ATTR_VALI DATOR_NAME, and it is of type

SA | MM ATTR_SASTRI NGT. This attribute does not exist in objects having no CCB
validators.

#define SA | MM _ATTR_APPLI ER_NAVE
"sal mmAt t r Appl i er Nane”

When an object has CCB appliers, the IMM Service stores the names of the CCB
appliers in one multi-valued attribute of the object. The name of this attribute is speci-
fied by the constant SA_| MM ATTR_APPLI ER_NANME, and it is of type

SA | MM ATTR_SASTRI NGT. This attribute does not exist in objects having no CCB
appliers.

#define SA | MM ATTR_RUNTI ME_ OANER_NAME
"sal mmAt t r Runt i neOwner Nange"

When an object has a runtime owner, the IMM Service stores the name of the runtime
owner in one single-valued attribute of the object. The name of this attribute is speci-
fied by the constant SA_ | MM ATTR_RUNTI ME_ OANER_NAME, and it is of type

SA | MM _ATTR_SASTRI NGT. This attribute does not exist in objects having no runt-
ime owner.

All these attributes are runtime attributes, and for persistent objects (that is, configu-
ration and persistent runtime objects), these attributes are persistent runtime
attributes; otherwise, they are non-persistent runtime attributes.

4.2.23 SalmmRepositorylnitModeT

t ypedef enum {
SA | MM_KEEP_REPCSI TORY 1,
SA | M I NI T_FROM FI LE
} Sal mrReposi torylnitMdeT,

The values of Sal mReposi t or yl ni t ModeT specify how the IMM Service initial-
izes its internal repository when the IMM Service starts up.

. SA | MM KEEP_REPQCSI TORY: at startup, the IMM Service keeps the contents of
its internal repository.

44

SAI-AIS-IMM-A.03.01 Section 4.2.23 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

SA | MM I NI T_FROM FI LE: at startup, the IMM Service must overwrite the
contents of its internal repository with the contents of an XML file. The location of
this initial XML file is implementation-dependent.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.23 45

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.3 Library Life Cycle

4.3.1 salmmOmlInitialize_3()

Prototype

SaAi sErrorT sal MmO nitialize_3(
Sal rmHandl eT *i nmHandl e,
const Sal mrCal | backsT_3 *i mrCal | backs,
SaVer si onT *versi on

),

Parameters

i mrHandl e - [out] A pointer to the handle which identifies this particular initialization
of the IMM Service and which is to be returned by the IMM Service. This handle pro-
vides access to the object management APls of the IMM Service. The

Sal mmHandl| eT type is defined in Section 4.2.1 on page 33.

i mrCal | backs - [i n] If i nmCal | backs is set to NULL, no callback is registered; if
i mCal | backs is not set to NULL, it is a pointer to an Sal mmCal | backsT_3 struc-
ture which contains the callback functions of the process that the IMM Service may
invoke. Only non-NULL callback functions in this structure will be registered. The

Sal mCal | backsT_3 type is defined in Section 4.2.21 on page 43.

ver si on - [i n/out] As an input parameter, ver si on is a pointer to a structure con-
taining the required IMM Service version. In this case, m nor Ver si on is ignored and
should be set to 0x00.

As an output parameter, ver si on is a pointer to a structure containing the version
actually supported by the IMM Service. The SaVer si onT type is defined in [2].

Description

This function initializes the object management functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other object
management functions of the Information Model Management Service functionality.
The handle pointed to by i nmHandl e is returned by the IMM Service as the refer-
ence to this association between the process and the object management of the IMM
Service. The process uses this handle in subsequent communication with the object
management of the IMM Service.

46

SAI-AIS-IMM-A.03.01 Section 4.3 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

If the invoking process exits after successfully returning from the

salmOm nitialize_3() function and before invoking sal nmOnfFi nal i ze() to
finalize the handle i mHandl e (see Section 4.3.4 on page 52), the IMM Service
automatically finalizes this handle and any other handles that have been acquired
using the handle i nmHand| e when the IMM Service detects the death of the pro-
cess.

If the implementation supports the version of the Information Model Management
Service API specified by the r el easeCode and maj or Ver si on fields of the struc-
ture pointed to by the ver si on parameter, SA Al S (K is returned. In this case, the
structure pointed to by the ver si on parameter is set by this function to:

. rel easeCode = required release code

. mgj or Ver si on = highest value of the major version that this implementation
can support for the required r el easeCode

m nor Ver si on = highest value of the minor version that this implementation
can support for the required value of r el easeCode and the returned value of
maj or Ver si on

If the preceding condition cannot be met, SA_ Al S_ERR _VERSI ONis returned, and
the structure pointed to by the ver si on parameter is set to:

if (implementation supports the required r el easeCode)
r el easeCode = required r el easeCode
else {

if (implementation supports r el easeCode higher than the required
r el easeCode)

r el easeCode = the lowest value of the supported release codes that
is higher than the required r el easeCode

else

r el easeCode = the highest value of the supported release codes that
is lower than the required r el easeCode

}

maj or Ver si on = highest value of the major versions that this implementation can
support for the returned r el easeCode

m nor Ver si on = highest value of the minor versions that this implementation can
support for the returned values of r el easeCode and naj or Ver si on

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.1 47

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR VERSI ON- The version provided in the structure to which the
ver si on parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA Al S _ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

sal mmOnBel ecti onQoj ect Get (), sal mODi spat ch(),
sal nmOnFi nal i ze()

48

SAI-AIS-IMM-A.03.01 Section 4.3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.3.2 salmmOmSelectionObjectGet()

Prototype

SaAi sErrorT sal mOrBel ecti onhj ect Get (
Sal mHandl eT i mrHandl e,
SaSel ecti onObj ect T *sel ecti onObj ect

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

sel ecti on(bj ect - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSel ecti onCbj ect T type is
defined in [2].

Description

This function returns the operating system handle associated with the handle

i mrHandl e. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking sal mOnDi spat ch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the pol | () orsel ect () system calls to detect pending callbacks.

The operating system handle returned by sal nmOnSel ect i onQbj ect Get () is
valid until sal mmOnFi nal i ze() is successfully invoked on the same handle
i rmHandl e.

Return Values

SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.2 49

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i rmHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI'S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmOm nitialize 3(), sal mmOnDi spat ch(), sal nmOnFi nal i ze()

4.3.3 salmmOmDispatch()

Prototype

SaAi serror T sal mmOnDi spat ch(
Sal rmHandl eT i nmHandl e,
SaDi spat chFl agsT di spat chFl ags

),

Parameters

i mrHandl e - [i n] The handle which was obtained by a previous invocation of the
sal nmOmM ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal rmHandl eT type is defined
in Section 4.2.1 on page 33.

di spat chFl ags - [i n] Flags that specify the callback execution behavior of the
sal nmOrDi spat ch() function, which have the values SA_ DI SPATCH_ONE,
SA DI SPATCH_ALL, or SA DI SPATCH BLOCKI NG These flags are values of the
SaDi spat chFl agsT enumeration type, which is described in [2].

50

SAI-AIS-IMM-A.03.01 Section 4.3.3 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle i Handl e in a way that is specified by the di spat chFl ags parameter.

Return Values

SA Al S_OK- The function completed successfully. This value is also returned if this
function is being invoked with di spat chFl ags set to SA DI SPATCH ALL or
SA DI SPATCH BLOCKI NG and the handle i nmmHand| e has been finalized.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmmOmM nitialize_3(), sal mOntel ecti onCbj ect CGet (),
sal nmOnFi nal i ze()

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.3 51

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.3.4 salmmOmFinalize()

Prototype

SaAi sError T sal mmOnFi nal i ze(
Sal mrHandl eT i nmHandl e

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

Description

The sal nmOnFi nal i ze() function closes the association represented by the

i mHandl e parameter between the invoking process and the IMM Service. The pro-
cess must have invoked sal mmOni nitiali ze_3() before it invokes this function.
A process must invoke this function once for each handle it acquired by invoking
salmmOm nitialize _3().

If the sal mOnFi nal i ze() function completes successfully, it releases all
resources acquired when sal mOri ni ti al i ze_3() was called. Moreover, it
implicitly invokes:

sal mmOnSear chFi nal i ze() on all search handles initialized with
i mrHandl e and not yet finalized.

. sal mmOmAccessor Fi nal i ze() on all accessor handles initialized with
i mHand| e and not yet finalized.

. sal mmOmAdni nOaner Fi nal i ze() on all administrative owner handles initial-
ized with i nmHandl e and not yet finalized.

Furthermore, sal mOnFi nal i ze() cancels all pending callbacks related to asyn-
chronous operations performed with i mHandl e. Note that because the callback
invocation is asynchronous, it is still possible that some callback calls are processed
after this call returns successfully.

After sal mmOnFi nal i ze() returns successfully, the handle i nmHandl e and the
selection object associated with it are no longer valid.

52

SAI-AIS-IMM-A.03.01 Section 4.3.4 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also
salmmOm nitialize_3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.4 53

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

4.4 Object Class Management

The following APls are used to create and delete object classes. A caller can also use
them to query the definition of an existing object class.

4.4.1 salmmOmClassCreate_2()

Prototype

SaAi sErrorT sal mintCl assCreate_2(
Sal rmHandl eT i nmHandl e,
const Sal mtTl assNaneT cl assNane,
Sal Tl assCat egoryT cl assCat egory,
const SalmmAttrDefinitionT 2 *const *attrDefinitions

),

Parameters

i mrHandl e - [i n] The handle which was obtained by a previous invocation of the
salmMmOm nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal rmHandl eT type is defined
in Section 4.2.1 on page 33.

cl assNane - [i n] The name of the object class to create. The Sal Tl assNanmeT
type is defined in Section 4.2.2 on page 34.

cl assCat egory - [i n] Category of the object class. The Sal Tl assCat egoryT
type is defined in Section 4.2.4 on page 34.

attrDefinitions -[i n] Pointer to a NULL-terminated array of pointers to defini-
tions of the class attributes. The Sal mmAt t r Def i ni ti onT_2 type is defined in
Section 4.2.7 on page 36.

Description

This function creates a new object class with the name cl assNane. The new object
class can be a configuration or runtime object class, depending on the
cl assCat egor y parameter setting.

Object class definitions are stored in a persistent manner by the IMM Service.

54

SAI-AIS-IMM-A.03.01 Section 4.4 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly. In particular, the
at tr Defi ni ti ons parameter refers to a NULL or zero length attribute name, an
invalid value type, an invalid default attribute value, or a set of attribute flags that are
inconsistent with the class category specified by the cl assCat egor y parameter.

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _EXI ST - An object class with a name identical to cl assNane already
exists.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i mrHand| e was acquired before the cluster node left the cluster membership.

See Also

salmmOm nitialize _3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.1 55

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.4.2 salmmOmClassDescriptionGet_2()

Prototype

SaAi sError T sal mOnCl assDescri ptionGet _2(
Sal mmHandl eT i nHandl e,
const Sal mCl assNanmeT cl assNane,
Sal mCl assCat egoryT *cl assCat egory,
SalmmAttrDefinitionT 2 ***attrDefinitions

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

cl assNane - [i n] The name of the object class for which a description is requested.
The Sal mCl assNaneT type is defined in Section 4.2.2 on page 34.

cl assCat egory - [out] Pointer to an Sal nmCl assCat egor yT structure to contain
the category of the object class. The Sal Tl assCat egor yT type is defined in
Section 4.2.4 on page 34.

attrDefinitions -[out]Pointer to a pointer to a NULL-terminated array of point-
ers to definitions of the class attributes. The Sal mmAt t r Defi ni ti onT_2 type is
defined in Section 4.2.7 on page 36.

Description

This function returns a description of the object class identified by the name
cl assNane.

The Information Model Management Service library allocates the memory to return
the attribute definitions. When the calling process no longer needs to access the
attribute definitions, the memory must be freed by calling the

sal nmOTCl assDescri pti onMenoryFree_2() function.

SAI-AIS-IMM-A.03.01 Section 4.4.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR _NOT_EXI ST - No object class exists with a name identical to
cl assNane.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i mrHand| e was acquired before the cluster node left the cluster membership.

See Also

salmmOm nitialize_3(),sal mOnCl assCreate_2(),
sal mmOrCl assDescri pti onMenoryFree_2()

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.2 57

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.4.3 salmmOmClassDescriptionMemoryFree_2()

Prototype

SaAi sError T sal mmOnCl assDescri pti onMenor yFree_2(
Sal mmHandl eT i nHandl e,
SalmmAttrDefinitionT_2 **attrDefinitions

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

attrDefinitions-[i n]Pointer to a NULL-terminated array of pointers to attribute
definitions to be freed. The Sal mmAt t r Def i ni ti onT_2 type is defined in
Section 4.2.7 on page 36.

Description

This function deallocates the memory that was allocated by a previous call to the
sal nmOTCl assDescri pti onGet _2() function; this deallocation includes

the memory areas containing the attribute definitions which are referred to by the
pointers held in the NULL-terminated array referred to by att r Def i ni ti ons
and

the memory of the NULL-terminated array of pointers referred to by
attrDefinitions.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al'S ERR BAD HANDLE - The handle i mmHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR _VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

58

SAI-AIS-IMM-A.03.01 Section 4.4.3 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmOm nitialize 3(),sal mOnCl assCreate_2(),
sal nmOrCl assDescri pti onGet _2()

4.4.4 salmmOmClassDelete()

Prototype

SaAi sErrorT sal mOnCl assDel et e(
Sal mHandl eT i mrHandl e,
const Sal mtl assNaneT cl assNane

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
salmOm nitialize _3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mHandl| eT type is defined
in Section 4.2.1 on page 33.

cl assNane - [i n] Name of the object class to be deleted. The Sal nmCl assNaneT
type is defined in Section 4.2.2 on page 34.

Description

This function deletes the object class whose name is cl assNane, provided no
objects of this class exist.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.4 59

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i rmHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI'S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _NOT_EXI ST - No object class exists with a name identical to
cl assNane.

SA Al S ERR BUSY - The object class cannot be deleted as objects of this class still
exist, or a request to create an object of this class has been added to a CCB.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i mrHand| e was acquired before the cluster node left the cluster membership.

See Also
salmmOm nitialize_3(),sal mOnCl assCreate_2()

60

SAI-AIS-IMM-A.03.01 Section 4.4.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.5 Object Search

The API functions in this section are used to perform object search, that is, to search
for particular objects in the SA Forum Information Model and also to obtain the values
of some of their attributes.

When the object search is initialized, a valid CCB identifier (a nonzero value) can be
supplied. If it is supplied, the object search will behave as if the changes proposed
that far by the CCB in question had already been applied to the SA Forum Informa-
tion Model. When these object search API functions are used during validation of a
CCB (refer to Section 5.5 on page 144), it is guaranteed that no changes of other
pending CCBs can affect the object search, because no two CCBs are allowed to be
in the validate state (see Section 3.1 on page 26) at the same time. The

sal mmOrSear chNext _2() function returns objects, their attributes, and values of
these attributes modified according to the changes proposed that far by the CCB in
question.

If zero is provided instead of a valid CCB identifier when the object search is initial-
ized, the object search refers to the current state of the SA Forum Information Model.
Pending CCB changes, that is, CCB changes that have not yet been applied, are
invisible to the object search.

To facilitate the management of the memory allocated by the IMM Service library to
return the results of the search, the search is performed by using a search iterator.

The search criteria is specified when the search iterator is initialized. At initialization
time, the attributes to be retrieved are also specified for each object that matches the
search criteria. Then, each invocation of the iterator returns the object name and the
specified attributes of the next object satisfying the search criteria.

The iteration is terminated by invoking the finalize API.

Every object which was created before the invocation of the

sal mOnSear chinitialize 3() function and which matches the search criteria

and has not been modified or deleted before the invocation of

sal nmOrSear chFi nal i ze(), will be returned exactly once by the

sal mmOrSear chNext _2() search iterator. No other guarantees are made: objects

that are created after the iteration is initialized, or modified, or deleted before the iter-
ation is finalized, may or may not be returned by the search iterator.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5 61

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

ERVICE
Object Management API Specification AVAILABILITY

FORUM

4.5.1 salmmOmSearchlinitialize_3()

Prototype

SaAi sError T sal mmOnSearchlnitialize_ 3(
Sal mmHandl eT i nHandl e,
Sal mCcbl dT ccbl d,
const SaNanmeT *r oot Nane,
Sal mScopeT scope,
Sal mrSear chOpt i onsT sear chOpti ons,
const Sal mBear chPar anet ersT_2 *sear chParam
const Sal mmAttr NaneT *attri but eNames,
Sal mrSear chHandl eT *sear chHandl e

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti alize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

cchl d -[i n] A valid CCB identifier or zero. The Sal mTCcbl dT type is defined in
Section 4.2.15 on page 41.

r oot Name - [i n] Pointer to the name of the root object for the search. If set to NULL,
the search starts at the root of the IMM Service tree. The SaNaneT type is defined
in [2].

scope - [i n] Scope of the search. The Sal mcopeT type is defined in
Section 4.2.11 on page 38.

sear chOpt i ons - [i n] Specifies the type of criteria being used as well as which
attribute values must be returned for each object matching the search criteria. The
Sal mSear chQpt i onsT type is defined in Section 4.2.12 on page 39.

sear chPar am- [i n] A pointer to the search parameters according to the search cri-
teria specified in sear chOpt i ons. The Sal nmSear chPar anet er sT_2 type is
defined in Section 4.2.13 on page 40.

62

SAI-AIS-IMM-A.03.01 Section 4.5.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

attri but eNanes - [i n] Pointer to a NULL-terminated array of attribute names for
which values must be returned while iterating through all objects matching the search
criteria.

Only used if the SA_| MM_SEARCH_GET_SOVE_ATTR option has been set in the
sear chOpt i ons parameter. The at t ri but eNanmes pointer must be set to NULL
otherwise.

The Sal nmAt t r NaneT type is defined in Section 4.2.2 on page 34.

sear chHandl e - [out] Search handle used later to iterate through all objects that
match the search criteria. The Sal nmSear chHandl eT type is defined in
Section 4.2.1 on page 33.

Description

This function initializes a search operation limited to a set of targeted objects identi-
fied by the scope parameter and the name to which the r oot Nane parameter points.

If the ccbl d parameter is zero, the object search refers to the current state of the SA
Forum Information Model. Pending CCB changes, that is, CCB changes that have not
yet been applied, are invisible to the object search.

If the ccbl d parameter specifies a valid CCB identifier (a nonzero value), the object
search operation behaves as if the modifications proposed that far in the CCB identi-
fied by the cchl d parameter have already been applied to the SA Forum Information
Model.

The targeted set of objects is determined as follows:
If scope is SA_| MM_SUBLEVEL, the scope of the operation is the object having
the name to which r oot Nane points and its direct children.

. Ifscope is SA_| MM _SUBTREE, the scope of the operation is the object having
the name to which r oot Nane points and the entire subtree rooted at that object.

. SA | MM ONE is not a valid value for the scope parameter.
If the SA_ | MM_SEARCH_ONE_ATTRoption is not set in the sear chOpt i ons parame-
ter, the sear chQpt i ons parameter must be set to NULL. In this case, no selection

criteria is applied for the search, and all objects in the defined scope will be retrieved
by the search operation.

One and only one of the following three options must be set in the sear chOpt i ons
parameter:

. SA | MM SEARCH GET_ALL_ATTR
. SA_| MM _SEARCH GET_NO ATTR or
. SA_| MM SEARCH GET_SOME_ATTR

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.1 63

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

This parameter specifies which attributes must be returned for each object matching
the search criteria. If SA | MM _SEARCH GET_SOVE_ATTRIs set, the

at t ri but eNanes parameter specifies the names of the attributes to be returned.
If SA | MM_SEARCH _GET_SOVE_ATTRIs not set, the at t ri but eNames parameter
must be set to NULL.

Return Values

SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
error is returned if the specified ccbl d parameter is nonzero and unknown to the
IMM Service.

SA Al'S ERR_NO MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR _NOT_EXI ST - The name to which r oot Nane points is not the name of
an existing object.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmmOm nitialize 3()

64

SAI-AIS-IMM-A.03.01 Section 4.5.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.5.2 salmmOmSearchNext_2()

Prototype

SaAi sError T sal mmOrSear chNext _2(
Sal mrSear chHandl eT sear chHandl e,
SaNanmeT *obj ect Nane,
Sal mmAttrVal uesT 2 ***attributes

),

Parameters

sear chHandl e - [i n] Handle returned by sal mOntearchlnitialize_3(). The
Sal nmBear chHandl eT type is defined in Section 4.2.1 on page 33.

obj ect Nane - [out] Pointer to the name of the next object matching the search cri-
teria. The SaNaneT type is defined in [2].

attri but es - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures holding the names and values of the attributes (of the object whose
name is pointed to by obj ect Nane) that were selected when the search was initial-
ized. The Sal mmAt t r Val uesT_2 type is defined in Section 4.2.8 on page 37.

Description

This function is used to obtain the next object matching the search criteria that was
specified in the corresponding sal nmOnSear chini tialize_3() call.

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of

sal nmOrSear chNext _2() or sal nmOnSear chFi nal i ze() for the same search
handle.

If the handle sear chHandl e was not obtained by specifying

SA | MM_SEARCH GET_ALL_ATTRor SA | MM SEARCH_CGET_SOVE_ATTRIn the
sear chOpt i ons parameter of the corresponding sal mOnSear chlnitialize 3()
call, no attribute names and values will be returned by this call, and the pointer to
which the at t ri but es parameter refers is set to NULL.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.2 65

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Only the attribute name is returned (at t r Val uesNunber is set to 0 and

at tr Val ues is setto NULL in the Sal mmAt t r Val uesT_2 data structure referred to
by the corresponding entry in the array whose address is referred to by the

at t ri but es parameter) if one of the attributes requested by the search

. has no value or

. is a non-persistent runtime attribute, and no runtime owner is registered for the
object.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle sear chHandl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _NOT_EXI ST - All objects matching the search criteria have already

been returned to the calling process. The caller can now invoke the

sal nmOrSear chFi nal i ze() function. Note that if no object matches the search
criteria, this value is returned at the first invocation of sal mOntSear chNext _2() .

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
sear chHandl e was acquired before the cluster node left the cluster member-
ship.

66

SAI-AIS-IMM-A.03.01 Section 4.5.2 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

See Also

salmmOmM nitialize _3(),sal MmintSearchlnitialize 3(),
sal mmOrSear chFi nal i ze()

4.5.3 salmmOmSearchFinalize()

Prototype

SaAi serror T sal mtntSear chFi nal i ze(
Sal mtSear chHandl eT sear chHandl e

),

Parameters

sear chHandl e - [i n] Handle returned by sal nmOnSear chlnitialize_3(). The
Sal mrSear chHandl eT type is defined in Section 4.2.1 on page 33.

Description

This function finalizes the search initialized by a previous call to

sal mtOnBear chlinitialize_3(). Itfrees all memory previously allocated by that
search, in particular, the memory used to return attribute names and values in the
previous sal nmOrSear chNext _2() invocation.

Returned Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle sear chHandl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.3 67

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification ERVICE
Object Management API Specification AVAILABILITY

FORUM

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
sear chHandl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmmOm nitialize _3(),sal MmintSearchlnitialize 3(),
sal nmOrSear chNext _2()

68 SAI-AIS-IMM-A.03.01 Section 4.5.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.6 Object Access

The API functions in this section are used to perform object access, that is, to
access the values of some attributes of an object already known by its name.

Once an application has discovered the object hierarchy, it can use this interface to
fetch some particular attribute values.

When the object access is initialized, a valid CCB identifier (a nonzero value) can be
supplied. If it is supplied, the object access will behave as if the changes proposed
that far by the CCB in question had already been applied to the SA Forum Informa-
tion Model. When these object access API functions are used during validation of a
CCB (refer to Section 5.5 on page 144), it is guaranteed that no changes of other
pending CCBs can affect the object access, because no two CCBs are allowed to be
in the validate state (see Section 3.1 on page 26) at the same time. The

sal nmOmAccessor Get _2() function returns the values of the configuration
attributes modified according to the changes proposed that far by the CCB in ques-
tion.

If zero is provided instead of a valid CCB identifier when the object access is initial-
ized, the object access applies to the current state of the SA Forum Information
Model. Pending CCB changes, that is, CCB changes that have not yet been applied,
are invisible to the object access.

The object accessor is a way to facilitate the management of the memory allocated
by the IMM Service library to return attribute names and values.

4.6.1 salmmOmAccessorinitialize_3()

Prototype

SaAi sErrorT sal mOmAccessorinitialize_3(
Sal mrHandl eT i mrHandl e,
Sal mCcbl dT ccbl d,
Sal mmAccessor Handl eT *accessor Handl e

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
salmOm nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6 69

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

cchl d -[i n] A valid CCB identifier or zero. The Sal mTCcbl dT type is defined in
Section 4.2.15 on page 41.

accessor Handl e - [out] Pointer to the object accessor handle. The
Sal nmAccessor Handl eT type is defined in Section 4.2.1 on page 33.

Description

This function initializes an object accessor and returns the handle pointed to by the
accessor Handl e parameter for further references to the object accessor.

If the ccbl d parameter is zero, the object access refers to the current state of the SA
Forum Information Model. Pending CCB changes, that is, CCB changes that have not
yet been applied, are invisible to the object access.

If the ccbl d parameter specifies a valid CCB identifier (a nonzero value), the object

access operation behaves as if the modifications proposed that far in the CCB identi-
fied by the cchl d parameter have already been applied to the SA Forum Information
Model.

Return Values

SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mrHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
error is returned if the specified ccbl d parameter is nonzero and unknown to the
IMM Service.

SA Al'S ERR_NO MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

70

SAI-AIS-IMM-A.03.01 Section 4.6.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmOm nitialize 3()

4.6.2 salmmOmAccessorGet_2()

Prototype

SaAi sErrorT sal mOnmAccessor Get _2(
Sal nmAccessor Handl eT accessor Handl e,
const SaNanmeT *obj ect Nane,
const Sal nmAttr NaneT *attri but eNanes,
Sal MmmAttrVal uesT 2 ***attri butes

),

Parameters

accessor Handl e - [i n] Object accessor handle. The Sal mmAccessor Handl eT
type is defined in Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the name of the object being accessed. The SaNaneT
type is defined in [2].

attri but eNanes - [i n] Pointer to a NULL-terminated array of attribute names for
which values must be returned. The Sal nmAt t r NaneT type is defined in
Section 4.2.2 on page 34.

attri but es - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures containing the name and values of the attributes being accessed. The
Sal mmAt t r Val uesT_2 type is defined in Section 4.2.8 on page 37.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6.2 7

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Description

This function uses the object accessor referred to by the accessor Handl e parame-
ter to obtain the values assigned to some attributes of an object. Ifat t r i but eNanes
is set to NULL, the values of all attributes of the object are returned.

If one of the requested attributes has no value or is a non-persistent runtime attribute,
and there is no registered runtime owner for the object, only the attribute name is
returned (at t r Val uesNunber is setto 0 and at t r Val ues is set to NULL in the
Sal mmAt t r Val uesT_2 data structure specified by the at t ri but es parameter).

The memory used to return the object attribute names and values is allocated by the
library and will be deallocated at the next invocation of sal nmMOmAccessor Get _2()
or sal mMOmAccessor Final i ze().

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle accessor Handl e is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR _NOT_EXI ST - The name to which obj ect Nane points is not the name
of an existing object, or any of the names specified by at t ri but eNanes does not
exist for the object identified by the name to which obj ect Nane points.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S _ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

72

SAI-AIS-IMM-A.03.01 Section 4.6.2 AIS Specification

10

15

20

25

30

35

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

the cluster node has rejoined the cluster membership, but the handle
accessor Handl e was acquired before the cluster node left the cluster mem-
bership.

See Also

sal nmOmAccessorlnitialize 3()

4.6.3 salmmOmAccessorFinalize()

Prototype

SaAi sError T sal mmOMAccessor Fi nal i ze(
Sal mmAccessor Handl eT accessor Handl e

),

Parameters

accessor Handl e - [i n] Object accessor handle. The Sal mmAccessor Handl eT
type is defined in Section 4.2.1 on page 33.

Description

This function finalizes the object accessor referred to by the accessor Handl e
parameter and deallocates all memory previously allocated for this object accessor.
In particular, this function frees the memory used to return the object attribute names
and values during the previous invocation of sal mmOMmAccessor Get _2() .

Return Values

SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle accessor Handl e is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6.3 73

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification ERVICE
Object Management API Specification AVAILABILITY

FORUM

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
accessor Handl e was acquired before the cluster node left the cluster membership.

See Also

sal mmOmAccessorlnitialize 3()

74 SAI-AIS-IMM-A.03.01 Section 4.6.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.7 Object Administration Ownership

Each object of the IMM Service may have at any time one and only one administra-
tive owner, which has the ability to modify the object or invoke administrative opera-
tions on the object. The administrative owner is usually distinct from the registered
runtime owner. Establishing the administrative ownership of an object or a set of
objects guarantees that a process unrelated with this administrative owner will not
modify the objects concurrently.

As management operations may be performed by a set of cooperating processes, an
administrative owner is identified by its name, and several processes may perform
sequentially or concurrently administrative operations under the same administra-
tive owner name (by initializing several administrative owner handles with the same
name).

A process acting under that administrative owner name will typically release the
administrative ownership on the objects. Note that this process need not necessarily
be any of the one or more processes that set the administrative owner name of the
objects. For recovery purposes, a process with appropriate privileges can also
release the administrative ownership of a set of objects (by invoking the

sal nmOmAd nOaner Cl ear () function) without acting under the name of their cur-
rent administrative owner.

Management applications are responsible for releasing the administrative ownership
on objects when their management activities are completed.

4.7.1 salimmOmAdminOwnerlnitialize()

Prototype

SaAi serror T sal MmOrAdni nOmerlnitialize(
Sal rmHandl eT i nmHandl e,
const Sal nmAdm nOwner NaneT adn nOaner Nane,
SaBool T rel easeOawner shi pOnFi nal i ze,
Sal mmAdm nOmner Handl eT *owner Handl e

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7 75

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Parameters

i mrHandl e - [i n] The handle which was obtained by a previous invocation of the
salMmOm nitialize _3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mHandl| eT type is defined
in Section 4.2.1 on page 33.

adm nOaner Name - [i n] Name of the administrative owner. The
Sal mmAdnm nOaner NaneT type is defined in Section 4.2.2 on page 34.

rel easeOnner shi pOnFi nal i ze - [i n] This parameter specifies how to release
administrative ownerships that were acquired with the newly initialized handle
owner Handl e when this handle is finalized. The SaBool T type is defined in [2].

owner Handl e - [out] Pointer to the handle for the administrative owner. The
Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

Description

This function initializes a handle for an administrative owner whose name is specified
by adm nOaner Name. All objects owned by an administrative owner have the
attribute whose name is defined by the constant

SA | MM ATTR_ADM N_OWNER_NAME set to the name of the administrative owner.
For objects without an administrative owner, that attribute does not exist.

If r el easeOaner shi pOnFi nal i ze is set to SA_TRUE, the IMM Service automati-
cally releases all administrative ownerships that were acquired with the newly initial-
ized handle owner Handl e when this handle is finalized.

If r el easeOaner shi pOnFi nal i ze is set to SA_FALSE, the IMM Service does not
automatically release the ownership when the handle is finalized. In this case, if a
management application fails while holding the administrative ownership on some
objects, it is the responsibility of the recovery procedure of the failed application to
release the administrative ownership on these objects.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

76

SAI-AIS-IMM-A.03.01 Section 4.7.1 AIS Specification

10

15

20

25

30

35

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i rmHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI'S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

salmMOm nitialize 3(), sal mmOmAdm nOmner Set (),
sal mmOmAdm nOwner Fi nal i ze()

4.7.2 salimmOmAdminOwnerSet()

Prototype

SaAi sError T sal mmOMAdm nOaner Set (
Sal mmAdnm nOwner Handl eT owner Handl e,
const SaNaneT *const *obj ect Nanes,
Sal mScopeT scope

);

Parameters

owner Handl e - [i n] Administrative owner handle. The
Sal nmAdm nOaner Handl eT type is defined in Section 4.2.1 on page 33.

obj ect Nanes - [i n] Pointer to a NULL-terminated array of pointers to object names.
The SaNaneT type is defined in [2].

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.2 77

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

scope - [i n] Scope of the operation. The Sal mBcopeT type is defined in
Section 4.2.11 on page 38.

Description

This function sets the administrative owner identified by owner Handl e as the owner
of the set of objects identified by the scope and the obj ect Nanes parameters. This
function can be used to acquire the administrative ownership of either configuration
or runtime objects.

The targeted set of objects is determined as follows:
If scope is SA_| MM_ONE, the scope of the operation are the objects having
names specified by obj ect Nanes.

. Ifscopeis SA | MM SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by obj ect Nanmes and their direct children.

If scope is SA_| MM_SUBTREE, the scope of the operation are the objects having
names specified by obj ect Nanes and the entire subtrees rooted at these
objects.

The operation fails if one of the targeted objects has already an administrative owner
whose name is different from the name used to initialize owner Handl e. If the opera-
tion fails, the administrative owner of the targeted objects is not changed.

If the operation succeeds, the SA | MM ATTR_ADM N_OWNER NANME attribute of all
targeted objects is set to the administrative owner name that was specified when
owner Handl e was initialized.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

78

SAI-AIS-IMM-A.03.01 Section 4.7.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR NOT_EXI ST - At least one of the names specified by obj ect Nanes is
not the name of an existing object.

SA Al S ERR _EXI ST - At least one of the objects targeted by this operation already
has an administrative owner having a name different from the name used to initialize
owner Handl e.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:
. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

sal mOmAdm nOwnerlnitialize(),sal mOmMAdnm nOmer Rel ease(),
sal nmOmAdm nOaner Cl ear ()

4.7.3 salmmOmAdminOwnerRelease()

Prototype

SaAi sErrorT sal mmOmAdni nOwner Rel ease(
Sal mmAdm nOaner Handl eT owner Handl e,
const SaNaneT *const *object Nanes,
Sal mScopeT scope

),

Parameters

owner Handl e - [i n] Administrative owner handle. The
Sal nmAdm nOaner Handl eT type is defined in Section 4.2.1 on page 33.

obj ect Nanes - [i n] Pointer to a NULL-terminated array of pointers to object names.
The SaNaneT type is defined in [2].

scope - [i n] Scope of the operation. The Sal mBcopeT type is defined in
Section 4.2.11 on page 38.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.3 79

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

Description

This function releases the administrative owner of the set of objects identified by the
scope and obj ect Nanes parameters.

The targeted set of objects is determined as follows:

If scope is SA_| MM_ONE, the scope of the operation are the objects having
names specified by obj ect Nanes.

If scope is SA_| MM _SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by obj ect Nanmes and their direct children.

. Ifscopeis SA | MM _SUBTREE, the scope of the operation are the objects having
names specified by obj ect Nanes and the entire subtrees rooted at these
objects.

If the operation succeeds, the SA | MM ATTR_ADM N_OANER_NANME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects (see Section 4.2.16 on page 41) are all cleared.

The operation fails if an administrative operation is currently in progress on one of the
targeted objects. An administrative operation is considered to be in progress on an
object if the sal MmO Adm nQper at i onCal | back() object implementer's callback
has been invoked for that operation, and the registered runtime owner is still regis-
tered but has not yet called sal nmO Adm nQOper ati onResul t () to provide the
operation results. The operation also fails if a change request for one of the targeted
objects is included in a CCB that has not been finalized.

If the operation fails, the administrative owner of all objects in the given scope
remains unchanged.

Return Values
SA Al S X - The function completed successfully.

SA Al'S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

80

SAI-AIS-IMM-A.03.01 Section 4.7.3 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR NOT_EXI ST - At least one of the names specified by obj ect Nanes is
not the name of an existing object, or at least one of the objects targeted by this oper-
ation is not owned by the administrative owner whose name was used to initialize
owner Handl e.

SA Al S_ERR _BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;
the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

sal nmOmAdi nOmerlnitialize(), sal mmOmAdn nOaner Set ()

4.7.4 salmmOmAdminOwnerFinalize()

Prototype

SaAl sErrorT sal mOmAdni nOwner Fi nal i ze(
Sal mmAdm nOaner Handl eT owner Handl e

),
Parameters

owner Handl e - [i n] Administrative owner handle. The
Sal mmAdm nOaner Handl eT type is defined in Section 4.2.1 on page 33.

Description

This function releases owner Handl e. If owner Handl e has been initialized with the
r el easeOmnner shi pOnFi nal i ze option set to SA_FALSE, this function neither
affects registered continuation identifiers of any object nor releases the administrative
ownership set on objects by using this handle.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.4 81

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

If owner Handl e has been initialized with the r el easeOaner shi pOnFi nal i ze
option set to SA_TRUE, this operation also releases the administrative ownership that
has been set on objects by using this handle and clears all continuation identifiers
registered for these objects.

This function implicitly invokes sal mmOnCcbFi nal i ze() on all CCB handles initial-
ized with owner Handl e and not yet finalized.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al S _ERR BUSY - owner Handl e has been initialized with the

rel easeOnner shi pOnFi nal i ze option set to SA_TRUE, and an administrative
operation is currently in progress on one of the targeted objects, or a change request
for one of the targeted objects is included in a CCB that has not been applied or final-
ized.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;
the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

sal mmOmAdm nOmerlnitialize(),sal mOrCcblnitialize_3()

SAI-AIS-IMM-A.03.01 Section 4.7.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.7.5 salmmOmAdminOwnerClear()

Prototype

SaAi sErrorT sal mmOmAdni nOwner C ear (
Sal mHandl eT i mrHandl e,
const SaNaneT *const *obj ect Nanes,
Sal mtScopeT scope

),

Parameters

i mrHandl| e - [i n] The handle which was obtained by a previous invocation of the
sal mmOm ni ti ali ze_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal mrHandl| eT type is defined
in Section 4.2.1 on page 33.

obj ect Nanes - [i n] Pointer to a NULL-terminated array of pointers to object names.
The SaNaneT type is defined in [2].

scope - [i n] Scope of the operation. The Sal mBScopeT type is defined in
Section 4.2.11 on page 38.

Description

This function clears the administrative owner of the set of objects identified by the
scope and obj ect Nanes parameters.
The targeted set of objects is determined as follows:

If scope is SA_| MM_ONE, the scope of the operation are the objects having
names specified by obj ect Nanes.

. Ifscopeis SA | MM SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by obj ect Nanmes and their direct children.

If scope is SA_| MM_SUBTREE, the scope of the operation are the objects having
names specified by obj ect Nanes and the entire subtrees rooted at these
objects.

The operation succeeds even if some targeted objects do not have an administrative
owner, or if the set of targeted objects have different administrative owners.

If the operation succeeds, the SA | MM_ATTR_ADM N_OWNER_NAME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects are all cleared.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.5 83

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

The operation fails if an administrative operation is currently in progress on one of the
targeted objects (for the term “in progress”, see Section 4.7.3 on page 79), or if a
change request for one of the targeted objects is included in a CCB that has not been
applied or finalized.

If the operation fails, the administrative owner of all objects in the given scope
remains unchanged.

This function is intended to be used only when recovering from situations where
some management applications took ownership of some objects and did not release
them.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i rmHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S_ ERR _NOT_EXI ST - At least one of the names specified by obj ect Nanes is
not the name of an existing object.

SA Al S_ERR _BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i mHandl e was acquired before the cluster node left the cluster membership.

See Also

sal mmOmAdm nOmerlnitialize(),sal mOmAdnm nOwmner Set (),
sal nmOmAdn nOaner Rel ease()

84

SAI-AIS-IMM-A.03.01 Section 4.7.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.8 Configuration Changes

All changes of IMM Service configuration objects are performed in the context of con-
figuration change bundles (CCB). A CCB is associated with a single administrative
owner, and all objects changed by the CCB must have the same administrative owner
as the CCB. Once a CCB has been initialized, change requests can be added to the
CCB. A change request can be a creation, a deletion, or a modification. A CCB that
has been initialized, but not yet applied, is called a pending CCB, and it may contain
any number of pending change requests. Later on, when the CCB is applied, all
pending change requests included in the CCB are applied with all-or-nothing
semantics (either all change requests are applied or none are applied).

A CCB is associated with a single administrative owner, and all objects modified by
change requests included in one CCB must have the same administrative owner as
the CCB.

The IMM Service does not prevent applications from reading (by invoking

sal nmOrSear chNext _2() orsal mmOmAccessor Get _2()) the attribute values of
the objects modified by a CCB while a CCB is being applied. Therefore, it may hap-
pen, for example, that a search operation returns for some matching objects the val-
ues that their attributes had before the CCB was applied and for other objects the
values that their attributes had after the CCB was applied. However, the IMM Service
must guarantee that all CCB changes are applied atomically for each particular
object. The attribute values returned by sal nmOnSear chNext _2() or

sal nmOmAccessor Get _2() for a particular object must all be the values before the
CCB was applied or all be the values after the CCB was applied (in other words, mix-
ing old and new values is not allowed).

The IMM Service enforces the following limitation regarding concurrent management
tasks for a particular object: at a given time, an object can be the target of either a sin-
gle CCB or one or several administrative operations.

The application of a CCB can succeed only if all specified CCB validators and CCB
appliers are registered for all the objects that are changed by the CCB. The CCB fails
if any object changed by the CCB has a validator or an applier specified for which
there is no process currently registered with the IMM Service. This requirement can
be overruled if the object manager application sets the

SA | MM _CCB_ALLOW ABSENT_VALI DATORS or

SA | MM CCB_ALLOW ABSENT_APPLI ERS flags when it initializes the CCB. These
flags indicate that any registration may be missing among the CCB validators or CCB
appliers, respectively.

A CCB is aborted under the following conditions:
. The sal mOnCcbFi nal i ze() function is called before the CCB is applied.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8 85

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

A CCB validator does not respond in time or rejects the changes contained in the
CCB by returning an error to the sal O CcbVal i dat eCal | back() function.

A CCB validator process that is required to validate the CCB changes or a CCB
applier process that is required to apply the CCB changes explicitly unregisters
(or the process exits) before all CCB validators have approved the CCB
changes.

The CCB is not aborted if the process that called the sal nmOTMCcbAppl y_3() func-
tion exits before this function completes. Once the CCB has been successfully vali-
dated by the current validators, it will not be aborted, even if a new validator registers
while the CCB is being applied.

None of the handles used during the processing of the CCB should be finalized
before the CCB is finalized. Finalizing a handle in such a situation is considered a
usage error. However, it is guaranteed that either all changes contained in the CCB
have been applied persistently to the SA Forum Information Model, or none of them
have been applied.

4.8.1 salmmOmCcbilnitialize_3()

Prototype

SaAi sErrorT sal mmOrCcblnitialize_3(
Sal mmAdm nOaner Handl eT owner Handl e,
Sal mCcbFl agsT_3 ccbFl ags,
Sal mCcbHandl eT *ccbHandl e,
Sal mCcbl dT *ccbld

),

Parameters

owner Handl e - [i n] Administrative owner handle. The
Sal nmAdm nOaner Handl eT type is defined in Section 4.2.1 on page 33.

ccbFl ags - [i n] CCB flags. The Sal mCcbFI agsT_3 type is defined in
Section 4.2.14 on page 41.

ccbHandl e - [out] Pointer to the CCB handle. The Sal mmCcbHandl eT type is
defined in Section 4.2.1 on page 33.

cchl d - [out] Pointer to the CCB identifier. The Sal rCcbl dT type is defined in
Section 4.2.15 on page 41.

86

SAI-AIS-IMM-A.03.01 Section 4.8.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Description

This function initializes a new CCB and returns both a handle (ccbHandl e) and a
CCB identifier for it (ccbl d). The value of ccbl d is global and unique within the IMM
Service. The same value is supplied to CCB validators and CCB appliers in the corre-
sponding callbacks, and it can be used in the functions to initialize an object search
(see Section 4.5 on page 61) and to initialize an object access (see

Section 4.6 on page 69).

The lifetime of the returned CCB identifier, ccbl d, is tied to the lifetime of the
returned ccbHandl e, that is, this CCB identifier only ceases to exist when the
ccbHandl e is finalized.

The CCB is initialized as empty (it contains no change requests).

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA AI'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.1 87

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

See Also
sal mmOmAdm nOmerlnitialize()

4.8.2 salmmOmCcbObjectCreate_2()

Prototype

SaAi sErrorT sal mOmCcbCbj ect Creat e_2(
Sal mCcbHandl eT ccbHandl e,
const Sal mCl assNanmeT cl assNane,
const SaNaneT *parent Nane,
const SalmmAttrValuesT 2 *const *attrVal ues

),

Parameters

ccbHandl e - [i n] CCB handle. The Sal mtCcbHandl eT type is defined in
Section 4.2.1 on page 33.

cl assNane - [i n] Object name class. The Sal Tl assNaneT type is defined in
Section 4.2.2 on page 34.

par ent Name - [i n] Pointer to the name of the parent of the new object. The
SaNaneT type is defined in [2].

at t r Val ues - [i n] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The Sal mmAt t r Val uesT_2 type is defined in Section 4.2.8 on page 37.

Description

This function adds to the CCB identified by its handle ccbHandl e a request to create
a new configuration object. Once this new object is successfully created, it will be
automatically administratively owned by the administrative owner of the CCB. The
new object is created as a child of the object designated by the name to which

par ent Namre points. If par ent Nane is set to NULL, the new object is created as a
top level object.

The attributes specified by the array to which at t r Val ues refers must match the
object class definition. Only configuration and persistent runtime attributes can be
specified by this array.

88

SAI-AIS-IMM-A.03.01 Section 4.8.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Attributes named SA | MM _ATTR_CLASS NAME and
SA | MM ATTR_ADM N_OWNER_NAME must not be specified by the at t r Val ues
descriptors, as these attributes are automatically set by the IMM Service.

The creation will only be persistently performed when the CCB is applied.

The IMM Service adds an SA | MM ATTR_CLASS_NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
cl assNane parameter.

If the parent object is not administratively owned by the administrative owner of the
CCB, this function fails and returns SA_Al S ERR_BAD_COPERATI ON.

If this function returns an error, the creation request has not been added to the CCB.

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle ccbHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly. In particular:

the cl assNane parameter specifies a runtime object class,
there is no valid RDN attribute specified for the new object,

the parent object referred to by the par ent Nane parameter and some of its
ancestors are non-persistent objects.

all of the configuration attributes required at object creation are not provided by
the caller,

. orthe attrVal ues parameter includes:
. non-persistent runtime attributes,

. attributes with values that do not match the defined value type for the
attribute, and

. multiple values for a single-valued attribute.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.2 89

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _BAD_ OPERATI ON- The parent object is not administratively owned by
the administrative owner of the CCB.

SA AI'S ERR NOT_EXI ST - This value is returned due to one or more of the follow-
ing reasons:

The name to which the par ent Nanme parameter points is not the name of an
existing object.
. The cl assNane parameter is not the name of an existing object class.

. One or more of the attributes specified by at t r Val ues are not valid attribute
names for cl assNane.

The SA | MM_ATTR_VALI DATOR_NAME attribute of the parent object contains
the name of a CCB validator that is currently not registered, or the object class
referred to by the cl assName parameter requires at least one CCB validator for
which no CCB validator process is currently registered.

The SA | MM _ATTR_APPLI ER_NAME attribute of the parent object contains the
name of a CCB applier that is currently not registered, or the object class
referred to by the cl assNane parameter requires at least one CCB applier for
which no CCB applier process is currently registered.

SA Al S _ERR_EXI ST - An object with the same name already exists.

SA Al'S ERR FAI LED OPERATI ON - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA AlS ERR NAME TOO LONG- The size of the new object's DN is greater than
SA MAX_NAME_LENGTH.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
ccbHandl e was acquired before the cluster node left the cluster membership.

See Also
sal nmOTCcblnitialize _3(), sal nmOrCcbApply_3()

90

SAI-AIS-IMM-A.03.01 Section 4.8.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.8.3 salmmOmMCcbObjectDelete()

Prototype

SaAi sErrorT sal mOTCcbbj ect Del et e(
Sal mCcbHandl eT ccbHandl e,
const SaNaneT *obj ect Nane

)
Parameters

ccbHandl e - [i n] CCB handle. The Sal mtCcbHandl eT type is defined in
Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

Description

This function adds to the CCB identified by its handle ccbHandl| e a request to delete
the configuration object designated by the name to which the obj ect Nane parame-
ter points and the entire subtree of configuration objects rooted at that object.

This operation fails if one of the targeted objects is not a configuration object that is
administratively owned by the administrative owner of the CCB. It also fails if one of
the targeted objects has some registered continuation identifiers.

The deletion will only be persistently performed when the CCB is applied.

If this function returns an error, the deletion request has not been added to the CCB.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR _BAD HANDLE - The handle ccbHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.3 91

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD OPERATI ON- This value is returned due to one or more of the
following reasons:

. atleast one of the targeted objects is not a configuration object that is owned by
the administrative owner of the CCB;
. atleast one of the targeted objects has some registered continuation identifiers;

SA Al'S ERR _NOT_EXI ST - This value is returned due to one or both of the following
reasons:

The name to which the obj ect Nanme parameter points is not the name of an
existing object.

. The SA | MM ATTR_VALI DATOR _NANME attribute of the object contains the
name of a CCB validator that is currently not registered.

. The SA | MM ATTR_APPLI ER_NAME attribute of the object contains the name of
a CCB applier that is currently not registered.

SA Al S ERR BUSY - At least one of the targeted objects is already the target of an
administrative operation or of a change request in another CCB.

SA Al S ERR FAI LED OPERATI ON- The operation failed because the CCB has
been aborted. The CCB is now empty.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
ccbHandl e was acquired before the cluster node left the cluster membership.

See Also

sal mOrCcblnitialize_3(), sal nmmOrCcbApply_3()

SAI-AIS-IMM-A.03.01 Section 4.8.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.8.4 salmmOmCcbObjectModify_2()

Prototype

SaAi sError T sal mOrCchbCbj ect Modi fy_2(
Sal mCcbHandl eT ccbHandl e,
const SaNaneT *obj ect Nane,
const SalnmAttrModificationT 2 *const *attrMds

)
Parameters

ccbHandl e - [i n] CCB handle. The Sal mtCcbHandl eT type is defined in
Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the name of the object to be modified. The SaNaneT
type is defined in [2].

at t r Mods - [i n] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The Sal nmAt t r Modi fi cati onT_2 type is defined in
Section 4.2.10 on page 38.

Description

This function adds to the CCB identified by its handle ccbHandl e a request to modify
configuration attributes of a configuration object. Only writable configuration attributes
can be modified (SA_| MM_ATTR_WRI TABLE).

This operation fails if the targeted object is not administratively owned by the adminis-
trative owner of the CCB.

The modify request will only be persistently performed when the CCB is applied.

If this function returns an error, the modify request has not been added to the CCB.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.4 93

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ccbHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly. In particular, the
at t r Mods parameter includes:
. runtime attributes,
. attributes with values that do not match the defined value type for the attribute,
. anew value for the RDN attribute,
. attributes that cannot be modified,
. multiple values or additional values for a single-valued attribute.

SA Al'S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD OPERATI ON- The modified object is not a configuration object
owned by the administrative owner of the CCB.

SA Al'S ERR NOT_EXI ST - This value is returned due to one or more of the follow-
ing reasons:

The name to which the obj ect Name parameter points is not the name of an
existing object.

. One or more attribute names specified by the at t r Mods parameter are not valid
for the object class.

The SA | MM_ATTR _VALI DATOR_NAME attribute of the object contains the
name of a CCB validator that is currently not registered.

The SA | MM ATTR_APPLI ER_NANME attribute of the object contains the name of
a CCB applier that is currently not registered.

SA Al S _ERR BUSY - The object designated by the name to which obj ect Nane
points is already the target of an administrative operation or of a change request in
another CCB.

SA Al'S ERR FAI LED OPERATI ON - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

94

SAI-AIS-IMM-A.03.01 Section 4.8.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
ccbHandl e was acquired before the cluster node left the cluster membership.

See Also

sal MmOnCcblnitialize_3(), sal mOrCcbApply 3()
4.8.5 salmmOmMCcbApply_3()
Prototype

SaAi serrorT sal mOnCcbApply_3(
Sal mtCcbHandl eT ccbHandl e,
SaNt f Correl ationldsT *correl ati onl ds

),

Parameters

ccbHandl e - [i n] CCB handle. The Sal mtCcbHandl eT type is defined in
Section 4.2.1 on page 33.

correl ationl ds -[i n/fout] Pointer to the correlation identifiers associated with the
CCB being applied. The r oot Corr el ati onl d and par ent Corr el ati onl d fields
are i n parameters and hold the root and parent correlation identifiers, respectively.
These correlation identifiers are included by the IMM Service in its notifications trig-
gered by the invocation of this APIl. The noti fi cati onl d field is an out parameter
that holds the notification identifier of the notification that the IMM Service sends to
report that the CCB has been applied. The SaNt f Cor r el ati onl dsT type is defined
in [6].

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.5 95

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Description

This function initiates the persistent application of all requests included in the configu-
ration change bundle identified by its handle ccbHandl e. The requests are applied
with all-or-nothing semantics, that is, either all requests are applied or none are
applied.

In the first step to apply the changes contained in the CCB persistently, the IMM Ser-
vice invokes the sal O CcbVal i dat eCal | back() function of all CCB validators
involved in the change requests contained in the CCB (see

Section 5.5.1 on page 146) to validate the CCB (see Section 5.5 on page 144). If the
validation succeeds, the IMM Service applies all changes in the CCB persistently to
the SA Forum Information Model and then invokes the

sal O CcbAppl yCal | back() functions of all the CCB appliers of all objects
affected by the CCB (see Section 5.6.1 on page 151) to deploy the changes.

This operation fails if the administrative ownership of an object targeted by this CCB
has changed since the change was added to the CCB, and the new administrative
owner of the object is no longer the administrative owner of the CCB.

If this function returns with SA_Al S_OK, the CCB changes have been applied to the
SA Forum Information Model and deployed by the CCB appliers; if it returns with
SA Al S ERR DEPLOYMENT, the CCB has been successfully applied to the SA
Forum Information Model, it is, however, unspecified whether the CCB changes have
been completely or only partially deployed or not deployed at all. For all other return
values, the CCB has not been applied.

When this call returns with success or failure, all requests included in the CCB when
the call was issued have been removed. The CCB is empty and can be populated
again with change requests belonging to the same administrative owner.

Return Values

SA Al S_OK- The function completed successfully. The CCB changes have been
applied to the SA Forum Information Model and deployed by the CCB appliers.

SA Al S ERR DEPLOYMENT - The CCB has been successfully applied to the SA
Forum Information Model; however, it is unspecified whether the CCB changes have
been completely or only partially deployed or not deployed at all. This value is also
returned if ccbHandl e is invalidated after the CCB changes have been applied to the
SA Forum Information Model.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete.

96

SAI-AIS-IMM-A.03.01 Section 4.8.5 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ccbHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA AI'S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S _ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD OPERATI ON- The changes requested do not constitute a valid
set of changes.

SA Al S ERR FAI LED OPERATI ON- The operation failed because the CCB has
been aborted. The CCB is now empty.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:
the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
ccbHandl e was acquired before the cluster node left the cluster membership.

See Also

sal mOrCcblnitialize_3(),sal mOrCcbObj ectCreate_2(),
sal nmOMCcbObj ect Del et e(), sal nmOMCcbObj ect Modi fy_2(),
Sal O CcbVal i dat eCal | backT, Sal O CcbAppl yCal | backT_3

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.5 97

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.8.6 salmmOmMCcbFinalize()

Prototype

SaAi sError T sal mmOrCcbFi nal i ze(
Sal mCcbHandl eT ccbHandl e

),

Parameters

ccbHandl e - [i n] CCB handle. The Sal mtCcbHandl eT type is defined in
Section 4.2.1 on page 33.

Description

This function finalizes the CCB identified by ccbHandl e, which also implies that the
CCB identifier associated with it (that is, the one returned in the corresponding
sal mmOrCcblnitialize_3() call)is no longer valid.

If the sal nmOMCcbFi nal i ze() function is called after changes have been added to
the CCB and before the sal mmOrCcbAppl y_3() function is invoked, the CCB is
aborted, and all change requests contained in the CCB are removed. Invoking the
sal nmOTCcbFi nal i ze() function while the CCB is being applied is considered an
error. However, it is guaranteed that either all changes have been applied persistently
to the SA Forum Information Model, or none of them.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ccbHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SAI-AIS-IMM-A.03.01 Section 4.8.6 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
ccbHandl e was acquired before the cluster node left the cluster membership.

See Also

sal mmOrCcblnitialize_3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.6 99

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.9 Administrative Operations Invocation

Processes can invoke administrative operations on IMM objects by using the
sal mMOmAdm nQper ati onl nvoke _3() or
sal nmOmAdm nOper at i onl nvokeAsync_3() API functions.

The IMM Service transfers the administrative operation to the registered runtime
owner process by invoking its sal O Adm nQper ati onCal | back() registered
callback, passing along all parameters provided to the

sal mMOmAdm nQper at i onl nvoke _3() or

sal nmOmAdm nOper at i onl nvokeAsync_3() API functions.

If the invoking process exits (due to a failure, for example) before the administrative
operation completes, the IMM Service allows another process to carry over the invo-
cation and wait for its result by invoking the

sal mOmAdm nQper ati onCont i nue() or

sal nmOmAdm nOper ati onCont i nueAsync() API functions. These functions are
called continuation functions. Saying in this section that a process carries over an
administrative operation means that the process invokes the appropriate IMM Service
API functions to wait for the result of an administrative operation that has been cor-
rectly initiated. Note that carrying over an administrative operation does not affect the
outcome of the administrative operation.

The administrative operation may have completed when a continuation function is
called. In this case, the continuation function will just fetch the result of the adminis-
trative operation that has been buffered by the IMM Service.

A runtime owner is not aware of the continuation functions, the support of which is
entirely handled by the IMM Service.

In order for an administrative operation to be carried over, the original invoker of the
administrative operation must provide a nonzero continuation identifier. The contin-
uation identifier must be unique on a per-object basis. It is the responsibility of the
process that initiates the administrative operation to store the continuation identifier in
a location where a process that may need to carry over the operation can access it.
The location where a continuation identifier is stored is not specified by the IMM Ser-
vice and is application-specific; checkpoints or files may be used to store continuation
identifiers.

The IMM Service registers a particular continuation identifier with an object when an
administrative operation is invoked on the object by a call to

sal nmOmAdmi nOper at i onl nvoke_3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() . The continuation identifier will stay
registered with the object until explicitly cleared with

sal nmOmAdm nOper at i onCont i nuat i onCl ear (), or until the administrative
ownership on the object that was in effect at the time of the invocation of

100

SAI-AIS-IMM-A.03.01 Section 4.9 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

sal mmOmAdm nQper ati onl nvoke _3() or

sal mOmAdm nQper at i onl nvokeAsync_3() is released.

As long as a continuation identifier stays registered with the object, it is said to be a
registered continuation identifier, and the IMM Service shall keep any result of the
associated administrative operation available.

Continuation identifiers are not persistent, and they are all cleared when the IMM Ser-
vice is terminated.

The IMM Service does not allow concurrent continuation operations for the same
continuation identifier. As a consequence, sal mMOmMAdm nOper at i onCont i nue()
and sal mmMOmMAdm nQper at i onCont i nueAsync() will fail and return an

SA Al S ERR _EXI ST error if

the administrative owner handle that was used when the continuation identifier
for an object was first provided in an invocation of

sal nmOmAdmi nOper at i onl nvoke_3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() is still valid, or if

the administrative owner handle that was used when the continuation identifier
for an object was last provided in an invocation of any of the two continuation
functions is still valid.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9 101

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

4.9.1 saimmOmAdminOperationinvoke_3(),
salmmOmAdminOperationinvokeAsync_3()

Prototype

SaAi serror T sal mOrmAdm nOper ati onl nvoke_3(
Sal mmAdm nOwner Handl eT owner Handl e,
const SaNanmeT *obj ect Nane,
Sal rmCont i nuati onl dT conti nuati onl d,
SaNt f Correl ationldsT *correl ati onl ds,
Sal mmAdm nQper ati onl dT operati onl d,
const Sal mmAdm nQOper ati onParansT_2 *const *parans,
SaAi serrorT *oper ati onRet urnval ue,
SaTi meT ti nmeout

),

Parameters

owner Handl e - [i n] Administrative owner handle.
The Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

conti nuati onl d - [i n] Continuation identifier for this particular invocation of the
administrative operation. In case owner Handl e is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
sal nmOmAdm nOper ati onCont i nue() or

sal mmOmAdm nOper at i onCont i nueAsync() functions.

The cont i nuat i onl d parameter must be set to 0 if the invocation shall not be car-
ried over at a later point of time. The Sal nmCont i nuat i onl dT type is defined in
Section 4.2.16 on page 41.

correl ationl ds -[i n/out] Pointer to the correlation identifiers associated with the
administrative operation. The r oot Corr el ati onl d and parent Correl ati onld
fields are i n parameters and hold the root and parent correlation identifiers, respec-
tively. These correlation identifiers are included by the IMM Service in its notifications
triggered by the invocation of this API. The not i fi cati onl d field is an out param-
eter that holds the notification identifier of the notification that the IMM Service sends

102

SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

to report the invocation of the administrative operation. The
SaNt f Correl ati onl dsT type is defined in [6].

oper ati onl d - [i n] Identifier of the administrative operation.
The Sal nmAdm nOper at i onl dT type is defined in Section 4.2.17 on page 42.

par ans - [i n] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The Sal mmAdm nQper at i onPar ansT_2 type is defined in
Section 4.2.18 on page 42.

oper at i onRet ur nVal ue - [out] Pointer to the value returned by the registered
runtime owner for the invoked operation. This value is specific to the administrative
operation being performed, and it is valid only if the

sal mmOmAdm nQper at i onl nvoke_3() function returns SA Al S_COK. For more
details about this value, refer to the description of the administrative operation in
question in the documentation of the object implementer that is currently the regis-
tered runtime owner. The SaAi skError T type is defined in [2].

ti meout -[i n] The sal mMOmAdm nQOper at i onl nvoke_3() invocation is consid-
ered to have failed if it does not complete by the time specified.
The SaTi nmeT type is defined in [2].

Prototype

SaAi serror T sal mOmAdm nOper at i onl nvokeAsync_3(
Sal mmAdm nOwner Handl eT owner Handl e,
Sal nvocati onT i nvocati on,
const SaNanmeT *obj ect Nane,
Sal rmCont i nuati onl dT conti nuati onl d,
const SaNtfCorrel ationldsT *correl ati onl ds,
Sal mmAdm nQper ati onl dT operati onl d,
const Sal mmAdm nQOper ati onParansT_2 *const *parans

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.1 103

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

Parameters

owner Handl e - [i n] Administrative owner handle.
The Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

i nvocati on - [i n] Used to match this invocation of

sal mmOmMAdm nOper at i onl nvokeAsync_3() with the corresponding invocation
of the Sal mOmAdm nQper at i onl nvokeCal | backT_3 callback.

The Sal nvocat i onT type is defined in [2].

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

conti nuati onl d - [i n] Continuation identifier for this particular invocation of the
administrative operation. In case owner Handl e is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
sal nmOmAdm nOper ati onCont i nue() or

sal nmOmAdmi nOper at i onCont i nueAsync() functions.

The cont i nuat i onl d parameter must be set to 0 if the operation shall not be car-
ried over at a later point of time. The Sal nmCont i nuat i onl dT type is defined in
Section 4.2.16 on page 41.

correl ationl ds - [i n] Pointer to the correlation identifiers associated with the
administrative operation. The r oot Correl ati onl d and parent Correl ati onld
fields are i n parameters and hold the root and parent correlation identifiers, respec-
tively. These correlation identifiers are included by the IMM Service in its notifications
triggered by the invocation of this API. The not i fi cati onl d field is not used. The
SaNt f Correl ati onl dsT type is defined in [6].

oper at i onl d - [i n] Identifier of the administrative operation.
The Sal nmAdm nOper at i onl dT type is defined in Section 4.2.17 on page 42.

par ans - [i n] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The Sal mmAdm nQper at i onPar ansT_2 type is defined in
Section 4.2.18 on page 42.

SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

Description

Using the IMM Service as an intermediary, these two functions request the registered
runtime owner of the object designated by the name to which obj ect Nane points to
perform an administrative operation characterized by oper at i onl d on that object.
Administrative operations can be performed on configuration and runtime objects.

Each descriptor pointed to by an element of the array of pointers to which the
par ans parameter points represents an input parameter of the administrative opera-
tion to execute.

The function sal mOmAdm nQOper at i onl nvoke_3() is the synchronous variant
and returns only when the registered runtime owner has successfully completed the
execution of the administrative operation, or when an error has been detected by the
IMM Service or the registered runtime owner.

The function sal mOmAdm nQOper at i onl nvokeAsync_3() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request to be trans-
mitted to the registered runtime owner. If the IMM Service detects an error while reg-
istering the request, an error is immediately returned, and no further invocation of the
sal mmOmAdm nOper at i onl nvokeCal | back() callback function of the registered
runtime owner must be expected for this invocation of

sal nmOmAdm nOper at i onl nvokeAsync_3() . If no error is detected by the IMM
Service while registering the request, the invocation of

sal nmOmAdm nOper at i onl nvokeAsync_3() completes successfully, and a later
invocation of the sal nmmOmMAdm nQOper at i onl nvokeCal | back() callback function
will occur to indicate the success or failure of the administrative operation on the tar-
get object.

If the administrative owner handle owner Handl e becomes finalized before the pro-
cess could retrieve the result of the administrative operation (returned by

sal nmOmAdm nOper at i onl nvoke_3() or passed to the

sal mmOmMAdm nOper at i onl nvokeCal | back() callback function of the process),
the current process or another process may invoke one of the functions

sal nmOmAdmi nOper at i onCont i nue() or

sal mmOmMAdm nOper at i onCont i nueAsync() on a valid administrative owner
handle to carry over the operation to retrieve its results, if necessary.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.1 105

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred, or the
timeout, specified by the t i meout parameter, occurred before the call could com-
plete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S_ ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S ERR I NI T - The corresponding previous invocation of

salmOm nitialize_3() toinitialize the IMM Service and obtain the IMM Service
handle (with which the handle owner Handl e was obtained by invoking

sal nmOmAdm nOmer I nitialize())was incomplete, since the

Sal mOmAdm nQper at i onl nvokeCal | backT_3 callback function was missing.
This return value applies only to the sal mOmAdm nQper at i onl nvokeAsync_3()
function.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR NO MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA Al S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _BAD_ OPERATI ON - The object designated by the name to which
obj ect Name points is not owned by the administrative owner associated with
owner Handl e.

SA Al'S ERR NOT_EXI ST - The name to which the obj ect Narme parameter points
is not the name of an existing object, or there is no registered runtime owner for this
object.

SA Al S ERR EXI ST - The object designated by the name to which obj ect Nane
points has already a registered continuation identifier identical to cont i nuat i onl d.

SA Al S ERR BUSY - The object designated by the name to which obj ect Nane
points is already the target of a change request in a CCB.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

106

SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

SA Al S ERR _FAI LED OPERATI ON- The operation failed due to a problem with the
registered runtime owner.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

sal MmOmAdm nOwnerlnitialize(),

Sal nmOmAdm nOper at i onl nvokeCal | backT_3,
sal mmOmAdm nQOper ati onCont i nue(),

sal mOmAdnm nQper ati onCont i nueAsync(),
sal nmOmAdm nOper ati onCont i nueC ear ()

4.9.2 SalmmOmAdminOperationinvokeCallbackT_3

Prototype

typedef void (*Sal mmOmAdm nOper ati onl nvokeCal | backT_3) (
Sal nvocati onT invocati on,
SaNtfldentifierT notificationld,
SaAi sError T operati onReturnVal ue,
SaAi sErrorT error

),

Parameters

i nvocati on - [i n] Used to match this callback invocation to the corresponding pre-
vious invocation of either sal mOmAdm nQper at i onl nvokeAsync_3() or

sal nmOmAdm nOper at i onCont i nueAsync(), depending on which of these func-
tions was called last. The Sal nvocat i onT type is defined in [2].

noti ficationld -[i n] Holds the natification identifier of the notification that the
IMM Service sends to report the invocation of the administrative operation. The
SaNt fl dentifierT type is defined in [6].

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.2 107

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Management API Specification AVAILABILITY

FORUM

oper at i onRet ur nVal ue - [i n] Value returned by the registered runtime owner for
the administrative operation requested in the corresponding previous invocation of
either sal mOmAdm nQper at i onl nvokeAsync_3() or

sal mmOmAdm nOper at i onCont i nueAsync(), depending on which of these func-
tions was called last.

This value is specific to the administrative operation being performed, and it is valid
only if the er r or parameter is setto SA_Al S_OK. For more details about this value,
refer to the object implementer administrative operation description.

The SaAi sError T type is defined in [2].

error -[i n] Indicates whether the IMM Service succeeded or not to invoke the reg-
istered runtime owner.

The SaAi sError T type is defined in [2].

The returned values are:

. SA Al S K- The function completed successfully.

. SA Al'S ERR LI BRARY - An unexpected problem occurred in the library (such
as corruption). The library cannot be used anymore.
SA Al'S_ERR_TI MEQUT - An implementation-dependent timeout occurred
before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

. SA AIS ERR TRY_AGAI N- The service cannot be provided at this time. The
process may retry later.
SA Al'S_ERR BAD HANDLE - The handle owner Handl e in the corresponding
invocation of either sal mOmAdm nQper at i onl nvokeAsync_3() or
sal nmOmAdm nOper at i onCont i nueAsync() (depending on which of these
functions was called last) is invalid, since it is corrupted, uninitialized, or has
already been finalized.

. SA AIS ERR | NVALI D_PARAM- A parameter is not set correctly.

. SA AIS ERR NO MEMORY - Either the IMM Service library or the provider of the
service is out of memory and cannot provide the service.

. SA AIS ERR NO RESOURCES - The system is out of required resources (other
than memory).

SA Al S ERR BAD OPERATI ON- The object designated by the name to which
the obj ect Nane parameter points in the corresponding invocation of either
sal nmOmAdmi nOper at i onl nvokeAsync_3() or

sal mmOmAdm nOper at i onCont i nueAsync() (depending on which of these
functions was called last) is not owned by the administrative owner associated
with owner Handl e.

108

SAI-AIS-IMM-A.03.01 Section 4.9.2 AIS Specification

10

15

20

25

30

35

40

SERVICE

Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Management API Specification

FORUM

SA Al'S ERR _NOT_EXI ST - The name to which the obj ect Nane parameter
points in the corresponding invocation of either

sal nmOmAdm nOper at i onl nvokeAsync_3() or

sal mmOmMAdm nOper at i onCont i nueAsync() (depending on which of these
functions was called last) is not the name of an existing object, or there is no reg-
istered runtime owner for this object.

SA AI' S ERR_EXI ST - Two cases must be distinguished:

. This callback has been requested by the
sal mmOmMAdm nOper at i onl nvokeAsync_3() call: the object designated
by the name to which the obj ect Nane parameter points in the
sal nmOmAdm nOper at i onl nvokeAsync_3() call has already a registered
continuation identifier identical to cont i nuat i onl d.

. This callback has been requested by the
sal nmOmAdm nOper ati onCont i nueAsync() call: the object designated
by the name to which the obj ect Nane parameter points in the
sal mmOmMAdm nOper at i onCont i nueAsync() call has already a registered
continuation identifier identical to cont i nuat i onl d, and the administrative
owner handle specified for this object in a preceding call to one of the following
functions (depending on which of these four functions was called last) has not
yet been finalized:

either sal mOmAdm nQper ati onl nvoke_3() or
sal nmOmAdm nQOper at i onl nvokeAsync_3(), or

. either sal mmMOmMAdm nOper ati onConti nue() or
sal mmOmAdm nQOper ati onCont i nueAsync()

SA Al S_ERR BUSY - The object designated by the name to which the

obj ect Nane parameter points in the corresponding invocation of either

sal nmOmAdm nOper at i onl nvokeAsync_3() or

sal mmOmMAdm nOper at i onCont i nueAsync() (depending on which of these
functions was called last) is already the target of a change request in a CCB.

SA Al S ERR FAI LED OPERATI ON- The operation failed due to a problem
with the registered runtime owner.

SA Al S ERR VERSI ON - The invoked function is not supported in the version
specified in the call to initialize this instance of the IMM Service library. This
return code applies only if this call was triggered by a previous invocation of
either sal mOmAdm nQper at i onl nvokeAsync_23() or

sal mmOmAdm nOper at i onCont i nueAsync() .

SA Al S_ERR _UNAVAI LABLE - The operation requested by either the corre-
sponding sal nmOmAdm nOper at i onCont i nueAsync() call or the corre-
sponding sal mmOmAdni nOper at i onl nvokeAsync_3() callis unavailable on
this cluster node due to one of the two reasons:

AIS Specification

SAI-AIS-IMM-A.03.01 Section 4.9.2 109

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
owner Handl e specified in either the corresponding
sal mmOmAdm nOper at i onCont i nueAsync() call or the corresponding
sal mmOmMAdm nOper at i onl nvokeAsync_3() call was acquired before the
cluster node left the cluster membership.

Description

The IMM Service invokes this callback function when the operation requested by the
corresponding invocation of either sal mMOMAdm nQOper at i onl nvokeAsync_3()
or sal mMOmAdm nQOper at i onCont i nueAsync() (depending on which of these
functions was called last) completes successfully, or an error is detected.

This callback is invoked in the context of a thread calling sal nmOrDi spat ch() with
the handle i mHandl e that was used to initialize the owner Handl e specified in one
of the corresponding functions sal nmmOmMAdm nQOper at i onl nvokeAsync_3() or
sal nmOmAdm nOper at i onCont i nueAsync(), depending on which of these func-
tions was called last.

Return Values

None

See Also

sal mmOmAdm nOmerlnitialize(),sal mOrD spatch(),
sal mmOmAdm nOper at i onl nvokeAsync_3(),

sal nmOmAdmi nOper at i onConti nue(),

sal mmOmAdm nOper at i onCont i nueAsync(),

sal nmOmAdm nOper ati onCont i nueC ear ()

110

SAI-AIS-IMM-A.03.01 Section 4.9.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.9.3 salmmOmAdminOperationContinue(),
salmmOmAdminOperationContinueAsync()

Prototype

SaAi serror T sal mOnmAdm nOper ati onCont i nue(
Sal mmAdm nOwner Handl eT owner Handl e,
const SaNanmeT *obj ect Nane,

Sal rmCont i nuati onl dT conti nuati onl d,

SaAi serrorT *operati onRet urnval ue
);

Parameters

owner Handl e - [i n] Administrative owner handle.
The Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

conti nuati onl d - [i n] Identifies the corresponding previous invocation of
sal nmOmAdm nOper at i onl nvoke_3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() .

The Sal mCont i nuat i onl dT type is defined in Section 4.2.16 on page 41.

oper at i onRet ur nVal ue - [out] Pointer to the value returned by the registered
runtime owner for the operation requested by the corresponding previous call to

sal nmOmAdm nOper at i onl nvoke_3() orto

sal mmOmMAdm nOper at i onl nvokeAsync_3() . The value returned by the regis-
tered runtime owner is specific to the administrative operation being performed, and it
is valid only if the sal mmOmAdni nOper ati onCont i nue() function returns

SA Al S_OK. For more details about this value, refer to the object implementer
administrative operation description. The SaAi sEr r or T type is defined in [2].

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.3 111

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

Prototype

SaAi serrorT sal mOmAdm nOper ati onCont i nueAsync(
Sal mmAdm nOwner Handl eT owner Handl e,
Sal nvocati onT i nvocati on,
const SaNameT *obj ect Nane,
Sal mCont i nuati onl dT conti nuationld

),

Parameters

owner Handl e - [i n] Administrative owner handle.
The Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

i nvocati on -[i n] Used to match this invocation of

sal mmOmMAdm nOper at i onCont i nueAsync() with the corresponding invocation
of the Sal mOmAdm nQper at i onl nvokeCal | backT_3 callback.

The Sal nvocat i onT type is defined in [2].

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

conti nuati onl d - [i n] Identifies the corresponding previous invocation of
sal mmOmAdm nOper at i onl nvoke_3() or

sal nmOmAdm nOper at i onl nvokeAsync_3() .

The Sal mCont i nuat i onl dT type is defined in Section 4.2.16 on page 41.

Description

These two functions allow a process to carry over the invocation of an administrative
operation that had been initiated with a particular administrative handle but did not
complete before the handle was finalized (explicitly or as a side effect of the process
termination).

The process carrying over the operation may invoke a synchronous or asynchronous
continuation function regardless of whether the respective administrative operation
was initiated by invoking sal nmOmAdmi nOper at i onl nvoke_3() or

sal nmOmAdm nOper at i onl nvokeAsync_3() .

The function sal MmOmMAdm nQper at i onCont i nue() is the synchronous variant
and returns only when the registered runtime owner has successfully completed the
execution of the administrative operation, or when an error has been detected by the
IMM Service or the registered runtime owner.

112

SAI-AIS-IMM-A.03.01 Section 4.9.3 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Management API Specification

The function sal mOmMAdm nQOper at i onCont i nueAsync() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request. If the IMM
Service detects an error while registering the request, an error is immediately
returned, and no further invocation of the

Sal mmOmAdm nOper at i onl nvokeCal | backT_3 callback must be expected for
this invocation of sal MmOmAdm nQper at i onCont i nueAsync() . If no error is
detected by the IMM Service while registering the request, the invocation of

sal mmOmAdmi nOper at i onl nvokeAsync_3() completes successfully, and the
Sal nmOmAdm nOper at i onl nvokeCal | backT_3 callback will be invoked later to
indicate the success or failure of the administrative operation on the target object.

The object name pointed to by obj ect Nane and the continuation identifier

cont i nuat i onl d must be the same that were supplied in a corresponding previous
invocation of sal mmMOmMAdm nQOper ati onl nvoke _3(),

sal nmOmAdm nOper at i onl nvokeAsync_3() .

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S ERR I NI T - The corresponding previous invocation of

salmmOm nitialize_3() toinitialize the IMM Service and obtain the IMM Service
handle (with which the handle owner Handl e was obtained by invoking

sal mOmAdn nOwner I niti alize())was incomplete, since the

Sal mmOmAdni nOper at i onl nvokeCal | backT_3 callback function was missing.
This return value only applies to the sal mOmAdm nQper at i onCont i nueAsync()
function.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.3 113

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

SA Al S ERR BAD_ OPERATI ON- The object designated by the name to which the
obj ect Nane parameter points is not owned by the administrative owner associated
with owner Handl e.

SA Al'S ERR _NOT_EXI ST - This error is returned if one of the following conditions
apply:
The name to which the obj ect Name parameter points is not the name of an
existing object, or there is no registered runtime owner for this object.
The cont i nuat i onl d parameter is not a valid continuation identifier (that is, it

is not a registered continuation identifier) for the object whose name is pointed to
by the obj ect Nane parameter.

SA Al S _ ERR_EXI ST - The object designated by the name to which the

obj ect Nanme parameter points has already a registered continuation identifier identi-
cal to cont i nuat i onl d, and the administrative owner handle specified for this
object in the last call to one of the following functions (depending on which of these
four functions was called last) has not yet been finalized:

either sal mOmAdm nQper at i onl nvoke_3() or

sal nmOmAdm nOper at i onl nvokeAsync_3(), or
. either sal mmOMAdm nQper ati onCont i nue() or

sal mMOmAdm nQper at i onCont i nueAsync()

SA Al S ERR BUSY - The object designated by the name to which the obj ect Nane
parameter points is already the target of a change request in a CCB.

SA Al'S ERR FAI LED OPERATI ON- The operation failed due to a problem with the
registered runtime owner.

SA Al S ERR _VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

sal nmOmAdm nOmerlnitialize(),sal mmOmAdm nOper ati onl nvoke_3(),
sal nmOmAdmi nOper at i onl nvokeAsync_3(),

Sal mOmAdm nQper at i onl nvokeCal | backT_3,

sal nmOmAdm nOper ati onCont i nueC ear ()

114

SAI-AIS-IMM-A.03.01 Section 4.9.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Management API Specification

FORUM

4.9.4 salmmOmAdminOperationContinuationClear()

Prototype

SaAi sErrorT sal mmOmAdni nOper ati onCont i nuati onCl ear (
Sal mmAdm nOaner Handl eT owner Handl e,
const SaNaneT *obj ect Nane,
Sal mCont i nuati onl dT conti nuationld

)
Parameters

owner Handl e - [i n] Administrative owner handle.
The Sal nmAdm nOmner Handl eT type is defined in Section 4.2.1 on page 33.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

conti nuati onl d -[i n] The continuation identifier that was supplied in the corre-
sponding previous invocation of sal mMOmAdm nOper at i onl nvoke_3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() .

The Sal nCont i nuat i onl dT type is defined in Section 4.2.16 on page 41.

Parameters

Description

This function instructs the IMM Service to clear all information kept to allow the con-
tinuation of the administrative operation identified by cont i nuat i onl d for the
object whose name is pointed to by obj ect Nane and the administrative owner iden-
tified by owner Handl e. After successful completion of this function, the

cont i nuat i onl d identifier is cleared, that is, it is no longer a registered continua-
tion identifier.

The object name pointed to by obj ect Nane and the continuation identifier

cont i nuat i onl d must be the same that were supplied in the corresponding previ-
ous invocation of sal mMOmMAdm nOper at i onl nvoke_3(),

sal mmOmAdm nOper at i onl nvokeAsync_3() .

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.4 115

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Management API Specification AVAILABILITY

FORUM

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle owner Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD_ OPERATI ON- The object designated by the name to which the
obj ect Nane parameter points is not owned by the administrative owner associated
with owner Handl e.

SA Al'S ERR _NOT_EXI ST - This error is returned if one of the following conditions
apply:
The name to which the obj ect Nane parameter points is not the name of an
existing object, or there is no registered runtime owner for this object.

. The conti nuati onl d parameter is not a valid continuation identifier (that is, it
is not a registered continuation identifier) for the object whose name is pointed to
by the obj ect Nane parameter.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
owner Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

sal mmOmAdm nOper at i onl nvoke_3(),

sal mmOmAdmi nOper at i onl nvokeAsync_3(),
Sal mmOmAdni nOper at i onl nvokeCal | backT_3,
sal mmOmAdm nOper ati onConti nue(),

sal mmOmAdm nOper at i onCont i nueAsync()

116

SAI-AIS-IMM-A.03.01 Section 4.9.4 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

FORUM

5 IMM Service - Object Implementer APl Specification

5.1 Include File and Library Name

The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service object imple-
menter API:

#i ncl ude <sal MmO . h>

To use the IMM Service object implementer API, an application must be bound with
the following library:

i bSal MmO . so

5.2 Type Definitions

5.2.1 IMM Service Handles

The following handles are used by IMM Service object implementer API functions:

typedef SaU nt 64T Sal O Handl eT,;
t ypedef SaUi nt 64T Sal mmO Ccbl t er at or Handl eT;

5.2.2 SalmmOilmplementerNameT

The Sal nmO | npl enent er NanmeT type represents an object implementer name; it
points to an UTF-8 encoded character string, terminated by the NULL character.

t ypedef SaStringT Sal mO | mpl ement er NaneT,;

5.2.3 SalmmOiRoleFlagsT

The Sal mO Rol eFl agsT type is used to specify the role or roles of an object imple-
menter. A value of this type is one of the flags described further down or a logical or
of the SA | MM ROLE_CCB_VALI DATORand SA | MM ROLE_CCB_APPLI ER flags.

#define SA | MM ROLE_RUNTI ME_OANER 0x00000001
#define SA | MM ROLE_CCB_VAL| DATOR 0x00000002
#define SA | MM ROLE_CCB_APPLI ER 0x00000004

t ypedef SaU nt 32T Sal O Rol eFl agsT;

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 5 117

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

The meaning of the flags listed above is:

SA | MM ROLE_RUNTI ME_OWNER - if this flag is specified in a call to

sal nmO bj ect | npl enent er Set _3() or

sal MmO Cl assl npl enent er Set _3() , the implementer name associated
with the specified object implementer handle will become the name of the runt-
ime owner of the corresponding objects.

SA | MM ROLE_CCB_VALI DATOR - if this flag is specified in a call to

sal MmO Qbj ect | npl enent er Set _3() or

sal nmO Cl assl npl enent er Set _3() , the implementer name associated
with the specified object implementer handle will become the name of a CCB
validator of the corresponding objects.

SA | MM ROLE_CCB_APPLI ER - if this flag is specified in a call to

sal nmO Qbj ect | npl enent er Set _3() or

sal nmQO Cl assl npl emrent er Set _3() , the implementer name associated
with the specified object implementer handle will become the name of a CCB
applier of the corresponding objects.

5.2.4 SalmmOiCcblteratorOptionT

The Sal nmO Ccbl t er at or Opt i onT type is used to specify the information that
should be returned for the objects in the CCB.

#define SA | MM CCB_| TERATOR REG STERED OBJECTS 0x01
#define SA | MM CCB_| TERATOR OBJECT NAME_ONLY 0x02
#define SA | MM CCB_| TERATOR MODI FI ED_ATTRI BUTES 0x04

t ypedef SaUi nt 64T Sal mmO CcblteratorQptionT,;

The values of this type definition have the following meaning:

SA | MM CCB_| TERATOR_REG STERED OBJECTS - only return objects for which
the invoking process is a registered CCB validator or CCB applier. If

SA | MM CCB | TERATOR _REG STERED OBJECTS is not set, all objects in the CCB
are returned.

The two options SA | MM _CCB_| TERATOR_OBJECT _NAME_ONLY and

SA | MM CCB_| TERATOR_MODI FI ED_ATTRI BUTES are mutually exclusive (only
one of them can be specified). If none of these two options is specified, the object
name and all its attributes are returned for each object.

118

SAI-AIS-IMM-A.03.01 Section 5.2.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.2.5 SalmmOiObjectChangeT

The Sal nmO Obj ect ChangeT type is used to specify how a returned object has
been changed.

t ypedef enum {
SA | MM_OBJECT_CREATE
SA | MM _OBJECT_DELETE
SA | MM _OBJECT_MODI FY
} Sal mO Obj ect ChangeT,;

The values of this type definition have the following meaning:

SA | MM OBJECT_CREATE - indicates that the object has been created.
SA | MM OBJECT_DELETE - indicates that the object has been deleted.

SA | MM OBJECT_MODI FI ED - indicates that some attribute of the object has
been modified (add, delete, or replace).

5.2.6 SalmmOiObjectTraverseT

The Sal nmO Obj ect Tr aver seT is used to indicate how the SA Forum Information
Model should be searched for changes.

t ypedef enum {
SA | MM_OBJECT_ENTER 1,
SA | MM _OBJECT_CONTI NUE
} Sal mmO Obj ect Traver seT;

The values of this type definition have the following meaning:

SA | MM OBJECT_ENTER - this value is used to request the iterator to search
the subtree below the last returned object.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.2.5 119

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification ERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA | MM _OBJECT_CONTI NUE - this value is used to request the iterator not to
enter the subtree below the last returned object.

5.2.7 SalimmOiCallbacksT_3

The Sal mmO Cal | backsT_3 structure defines the set of callbacks a process imple-
menting IMM Service objects can provide to the IMM Service at initialization time.

t ypedef struct {

Sal mO Admi nOper ati onCal | backT_3
sal nmO Adm nQper ati onCal | back;

Sal mO CcbAbort Cal | backT_3
sal nmO CcbAbort Cal | back;

Sal MmO CcbAppl yCal | backT_3
sal MmO CcbAppl yCal | back;

Sal O CcbVal i dat eCal | backT
sal nmO CcbVal i dat eCal | back;

Sal O CcbFi nal i zeCal | backT
sal MmO CcbFi nal i zeCal | back;

Sal MmO Rt Att r Updat eCal | backT
sal MmO Rt At t r Updat eCal | back;

} Sal O Cal | backsT_3;

120 SAI-AIS-IMM-A.03.01 Section 5.2.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.3 Library Life Cycle

5.3.1 salmmOilnitialize_3()

Prototype

SaAi sErrorT salmmG I nitialize_3(
Sal O Handl eT *i mmO Handl e,
const Sal nmQ Cal | backsT_3 *i nmO Cal | backs,
SaVer si onT *versi on

),

Parameters

i mrO Handl e - [out] A pointer to the handle which identifies this particular initializa-
tion of the IMM Service and which is to be returned by the IMM Service. This handle
provides access to the object implementer APIs of the IMM Service. The

Sal mmO Handl eT type is defined in Section 5.2.1 on page 117.

i MmO Cal | backs -[i n] Ifi mO Cal | backs is set to NULL, no callback is regis-
tered; ifi MO Cal | backs is not set to NULL, it is pointer to an

Sal O Cal | backsT_3 structure which contains the callback functions of the pro-
cess that the IMM Service may invoke. Only non-NULL callback functions in this
structure will be registered. The Sal nmQO Cal | backsT_3 type is defined in

Section 5.2.7 on page 120.

ver si on - [i n/out] As an input parameter, ver si on is a pointer to a structure con-
taining the required Information Model Management Service version. In this case,

m nor Ver si on is ignored and should be set to 0x00.

As an output parameter, ver si on is a pointer to a structure containing the version
actually supported by the Information Model Management Service. The SaVer si onT
type is defined in [2].

Description

This function initializes the object implementer functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other IMM Ser-
vice object implementer functionality. The handle pointed to by i O Handl e is
returned by the IMM Service as the reference to this association between the process
and the IMM Service. The process uses this handle in subsequent communication
with the IMM Service.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3 121

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

The returned handle i MO Handl e is not associated with any implementer name.
The association of the handle with an implementer name is performed by the invoca-
tion of the sal nmO | npl enent er Set () function.

If the invoking process exits after successfully returning from the

salmmO I nitialize_3() function and before invoking sal mmO Fi nal i ze() to
finalize the handle i O Handl e (see Section 5.3.4 on page 126), the IMM Service
automatically finalizes this handle when the death of the process is detected.

If the implementation supports the version of the IMM Service object implementer API
specified by the r el easeCode and maj or Ver si on fields of the structure pointed to
by the ver si on parameter, SA Al S_(K is returned. In this case, the structure
pointed to by the ver si on parameter is set by this function to:

r el easeCode = required release code

maj or Ver si on = highest value of the major version that this implementation
can support for the required r el easeCode

. m nor Ver si on = highest value of the minor version that this implementation
can support for the required value of r el easeCode and the returned value of
maj or Ver si on

If the preceding condition cannot be met, SA_ Al S ERR _VERSI ONis returned, and
the structure pointed to by the ver si on parameter is set to:

if (implementation supports the required r el easeCode)
r el easeCode = required r el easeCode
else {

if (implementation supports r el easeCode higher than the required
r el easeCode)

r el easeCode = the lowest value of the supported release codes that
is higher than the required r el easeCode

else

r el easeCode = the highest value of the supported release codes that
is lower than the required r el easeCode

}

maj or Ver si on = highest value of the major versions that this implementation can
support for the returned r el easeCode

m nor Ver si on = highest value of the minor versions that this implementation can
support for the returned values of r el easeCode and nmaj or Ver si on

122

SAI-AIS-IMM-A.03.01 Section 5.3.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA AI' S ERR_| NVALI D_PARAM- A parameter is not set correctly.

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR VERSI ON- The version provided in the structure to which the
ver si on parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA Al S _ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

sal m0O Sel ecti onObj ect Get (), sal G Di spatch(),
sal QO Final i ze(), sal mQO | npl enent er Set ()

5.3.2 salmmOiSelectionObjectGet()

Prototype

SaAi sErrorT sal MmO Sel ecti onhj ect Get (
Sal mO Handl eT i O Handl e,
SaSel ecti onObj ect T *sel ecti onObj ect

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.2 123

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmGOi I nitialize 3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

sel ecti onObj ect - [out] A pointer to the operating system handle that the invok-
ing process can use to detect pending callbacks. The SaSel ect i onQbj ect T type is
defined in [2].

Description

This function returns the operating system handle associated with the handle

i MmO Handl e. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking sal mO Di spat ch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the pol | () orsel ect () system calls to detect pending callbacks.

The operating system handle returned by sal nmO Sel ecti onObj ect Get () is
valid until sal mO Fi nal i ze() is successfully invoked on the same handle
i MmO Handl e.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i T Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S _ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

124

SAI-AIS-IMM-A.03.01 Section 5.3.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;
. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

salmmO I nitialize_3(),sal MmO Di spatch(),salm@G Finalize()

5.3.3 salmmOiDispatch()

Prototype

SaAi sError T sal QO Di spat ch(
Sal MmO Handl eT i MmO Handl e,
SaDi spat chFl agsT di spat chFl ags

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

di spat chFl ags - [i n] Flags that specify the callback execution behavior of the
sal O Di spat ch() function, which have the values SA DI SPATCH_ONE,
SA DI SPATCH _ALL, or SA_ DI SPATCH_BLOCKI NG These flags are values of the
SaDi spat chFl agsT enumeration type, which is described in [2].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle i ™ Handl e in a way that is specified by the di spat chFl ags parameter.

Return Values

SA Al S_OK- The function completed successfully. This value is also returned if this
function is being invoked with di spat chFl ags set to SA DI SPATCH ALL or
SA DI SPATCH BLOCKI NG and the handle i O Handl e has been finalized.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.3 125

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Implementer API Specification AVAILABILITY"

FORUM

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmmO I nitialize 3(),sal mGO Sel ecti onObj ect Get (),
sal nmQO Fi nal i ze()

5.3.4 salmmOiFinalize()

Prototype

SaAi sErrorT sal O Fi nal i ze(
Sal MmO Handl eT i MO Handl e

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

126

SAI-AIS-IMM-A.03.01 Section 5.3.4 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Description

The sal nmO Fi nal i ze() function closes the association represented by the

i MmO Handl e parameter between the invoking process and the Information Model
Management Service. The process must have invoked sal MmO I nitialize_3()
before it invokes this function. A process must invoke this function once for each han-
dle it acquired by invokingsal MmO I nitialize_3().

This function does not release the associations established between object classes
or objects and the implementer name that may still be associated with the handle

i MmO Handl e.

The next time a process associates the same implementer name with an object
implementer handle, that process automatically becomes the implementer of all
objects having the same implementer name.

If the sal MmO Fi nal i ze() function completes successfully, it releases all
resources acquired whensalmMm@Oi I nitialize_3() was called.

Furthermore, sal GO Fi nal i ze() cancels all pending callbacks related to asyn-
chronous operations performed with the handle i O Handl e. Note that because
the callback invocation is asynchronous, it is still possible that some callback calls are
processed after this call returns successfully.

If a process terminates, the Information Model Management Service implicitly final-
izes all associations (handles) with the Information Model Management Service that
were initialized by the process, as described in the preceding paragraph.

After sal O Fi nal i ze() returns successfully, the handle i O Handl e and the
selection object associated with it are no longer valid.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i T Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also
salmmO I nitialize 3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.4 127

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.4 Object Implementer API

With each object in the SA Forum Information Model, the IMM Service associates a
set of processes that perform the different tasks required for the correct deployment,
administration, and status update of this object, that is, for implementing it. The asso-
ciations are created through names (termed implementer names) that are set for the
object. A process may then register for a name and become an implementer of the
objects for which this name is set. The different tasks of implementing an object are
grouped into roles:

(1) runtime owner: A process having this role can create, delete, and modify runt-
ime objects. Such a process is termed the runtime owner of the particular
object. As a runtime object is only created by its runtime owner, the IMM Service
can automatically set the implementer name for the object and for this role when
the object is created. The runtime owner of a configuration object is responsible
for maintaining the runtime attributes of the object and for carrying out the
administrative operations issued on the object. Such a process indicates this
role with respect to the object by registering with the IMM Service as a runtime
owner for the object. At any given time, only a single process in the entire clus-
ter can assume this role for an object regardless of whether the object is a con-
figuration or runtime object. The name of the runtime owner is contained in the
SA | MM _ATTR_RUNTI ME_OANER_NAME attribute of the object.

(2) CCB applier: A process which interprets a configuration object and deploys any
part of the configuration that the object reflects in the SAF system is termed a
CCB applier of that configuration object. Such a process indicates this role with
respect to the object by registering with the IMM Service as a CCB applier for
the object. As a result, it is informed of any configuration modifications applied
to this object. At any given time, one or more processes in the cluster can
assume this role for an object. CCB appliers must explicitly indicate to the IMM
Service which configuration objects they implement. This can be done for all
objects of a given class or by targeting a particular set of objects. The list of
CCB appliers is contained in the SA_ | MM _ATTR_APPLI ER_NAME attribute of
the object.

(3) CCB validator: A process which validates any proposed configuration change
for a configuration object is termed a CCB validator of the particular object. At
any given time, one or more processes in the entire cluster can assume this role
for an object. Whenever a CCB is to be applied that impacts this configuration
object, all CCB validator processes associated with the object are requested by
the IMM Service to validate the proposed changes. CCB validators must explic-
itly indicate to the IMM Service which configuration objects they implement. This
can be done for all objects of a given class or by targeting a particular set of
objects. The list of CCB validators is contained in the
SA | MM ATTR _VALI DATOR_NAME attribute of the object.

128

SAI-AIS-IMM-A.03.01 Section 5.4 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Implementer API Specification

Any process having these roles is termed an object implementer. In a few occur-
rences in this document, the term “object implementer” is also used to refer to any
process having successfully obtained an object implementer handle, even if the pro-
cess has not yet a role associated to it. The context clarifies the intended meaning.

The IMM Service keeps records of all object implementers and their associated roles
with respect to every object.

A runtime object has only a runtime owner, and it is always the object implementer
that created the object. For configuration objects, the implementer name for a certain
role is set, and it remains associated with the object until explicitly released. The
description refers to this association by saying that the object “has an implementer”
or, for the particular roles, “has a runtime owner”, “has a CCB validator”, or “has a
CCB applier”. This association and these terms apply even if the process that held
the corresponding role for this implementer name (called the registered object
implementer) clears the implementer name associated with its object implementer
handle.

This feature enables faster recovery of object implementers failures, as the new
object implementer does not have to explicitly re-register all objects it implements.
Simply registering itself with the same implementer name allows the IMM Service to
associate all objects with the same implementer name with that process.

The process of registration for an object implementer role, its release, and impact on
in-progress CCBs is specified in the related functions and in

Section 5.5 on page 144.

Similar to the term registered object implementer, the more specific terms registered
runtime owner, registered CCB validator, and registered CCB applier are also
used to refer to these processes.

An object implementer handle can be associated with only one implementer name.

Typical use cases consist of enforcing system-wide constraints. For an illustration,
see the example in Appendix A.

For sequence diagrams that illustrate the detailed sequence of API operations for
configuration changes using CCBs, refer to Appendix B.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4 129

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.4.1 salmmOilmplementerSet()

Prototype

SaAi sError T sal G | npl enment er Set (
Sal MmO Handl eT i MmO Handl e,
const Sal mO | npl ement er NaneT i npl enent er Nane

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

i mpl enent er Nane - [i n] Name of the object implementer. The
Sal QO | npl enment er NaneT type is defined in Section 5.2.2 on page 117.

Description

This function sets the implementer name specified in the i npl enent er Nane param-
eter for the handle i O Handl e. This function also registers the invoking process
as an object implementer having the name which is specified in the

i npl ement er Name parameter. At any given time, only a single process in the entire
cluster can be registered under a particular object implementer name. The invoking
process becomes the implementer of all existing IMM Service objects that have an
implementer name identical to i npl ement er Nane.

Also, at any given time one i O Handl e handle can be associated with at most
one object implementer name. If a process wants to register for multiple implementer
names, it must obtain a separate i O Handl e handle for each of them by repeated
initialization of the object implementer library.

In order to be a valid parameter to all object implementer APIs except for

sal m0O Sel ecti onObj ect Get (), sal G Di spatch(),

sal nmQO | npl enent er Set (), and sal MO Fi nal i ze(), an object implementer
handle must be successfully associated with an implementer name.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

130

SAI-AIS-IMM-A.03.01 Section 5.4.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA Al'S ERR I NI T - The corresponding previous invocation of

salnmO I nitialize 3() toinitialize the IMM Service object implementer library
and obtain the handle specified by the i O Handl e parameter was incomplete,
since one or more of the following callback functions, depending on the role currently
associated with the object implementer name i npl enent er Nane, were missing:

i npl ement er Nanme parameter contains a name which is currently associated
with the runtime owner role: Sal O Rt At t r Updat eCal | backT and
Sal O Adm nQper ati onCal | backT_3;

i npl ement er Nanme parameter contains a name which is currently associated
with the CCB applier role: Sal nmO CcbAppl yCal | backT_3;

i npl ement er Nanme parameter contains a name which is currently associated
with the CCB validator role: Sal O CcbVal i dat eCal | backT,
Sal O CcbFi nal i zeCal | backT, and Sal mO CcbAbort Cal | backT_3.

SA Al S _ERR_EXI ST - An object implementer with the same name is already regis-
tered with the IMM Service or an object implementer name is already set for the han-
dle i m®O Handl e.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mrO Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmO Initialize_3(),salmO I nplementerd ear(),

Sal O Rt At t r Updat eCal | backT, Sal nmQO Admi nOper ati onCal | backT_3,
Sal mmO CcbAppl yCal | backT_3, Sal mmO CcbVal i dat eCal | backT,

Sal mO CcbFi nal i zeCal | backT, Sal mO CcbAbort Cal | backT_3

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.1 131

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Implementer API Specification AVAILABILITY"

FORUM

5.4.2 salmmOilmplementerClear()

Prototype

SaAi sError T sal G | npl emrent er Cl ear (
Sal MmO Handl eT i O Handl e

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

Description

This function clears the implementer name associated with the i O Handl e handle
and unregisters the invoking process as an object implementer for the name previ-
ously associated with i nmO Handl e.

With no associated implementer name, i MO Handl e is only a valid parameter for
the following APls: sal O Sel ecti onObj ect Get (), sal O Di spat ch(),
sal MmO | npl enent er Set (), and sal O Final i ze().

IMM object classes and objects that have an implementer name equal to the name
previously associated with i O Handl e keep the same implementer name, but
stay without any registered object implementer until a process invokes

sal nmQ | npl enent er Set () again with the same implementer name.

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

132

SAI-AIS-IMM-A.03.01 Section 5.4.2 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Implementer API Specification

SA Al S_ERR_UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmmO I nitialize _3(),salmO | npl ementerSet(),

sal nmQO Sel ecti onObj ect Get (), sal MmO Di spat ch(),

sal MmO Finalize(), Sal O Rt Attr Updat eCal | backT,

Sal nmO Adm nOper ati onCal | backT_3, Sal mmO CcbAppl yCal | backT_3,
Sal O CcbVal i dat eCal | backT, Sal O CcbFi nal i zeCal | backT,

Sal O CcbAbort Cal | backT_3

5.4.3 salmmOiClassimplementerSet_3()

Prototype

SaAi serrorT sal MmO d assl npl enent er Set _3(
Sal O Handl eT i nmO Handl e,
Sal O Rol eFl agsT rol e,
const Sal Tl assNanmeT cl assNane

),

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmOi I nitialize _3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

r ol e - [i n] Role of this object implementer. The Sal MO Rol eFl agsT type is
defined in Section 5.2.3 on page 117.

cl assNane - [i n] Object class name. The Sal Tl assNaneT type is defined in
Section 4.2.2 on page 34.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.3 133

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

Description

An object implementer whose name is associated with the handle i nmO Handl e
invokes this function to inform the IMM Service that the object implementer assumes
the role or roles specified by the r ol e parameter for all the objects that are instances
of the object class whose name is specified by the cl assNane parameter (existing
objects as well as objects that will be created in the future).

If this operation succeeds and the r ol e parameter contains the

SA | MM RCLE_RUNTI ME_ ONNER flag, the current process becomes the runtime
owner of all objects of the object class whose name is specified by cl assNane; addi-
tionally, for each targeted object, the IMM Service adds to the object’s

SA | MM ATTR_RUNTI ME_ ONNER _NAME attribute the implementer name (if not
already present) associated with the handle i O Handl e.

This operation fails if the object class whose name is specified by the cl assNane
parameter or an object of this class has already a runtime owner whose name is dif-
ferent from the implementer name associated with the handle i O Handl e.

If this operation succeeds and the r ol e parameter contains the

SA | MM ROLE_CCB_APPLI ERflag, the current process becomes a CCB applier of
all objects of the object class whose name is specified by cl assNamne; additionally,
for each targeted object, the IMM Service adds to the object’s

SA | MM_ATTR_APPLI ER_NAME attribute the implementer name (if not yet present)
associated with the handle i O Handl e.

If this operation succeeds and the r ol e parameter contains the

SA | MM ROLE_CCB_VALI DATORflag, the current process becomes a CCB validator
of all objects of the object class whose name is specified by cl assNane; additionally,
for each targeted object, the IMM Service adds to the object’s

SA | MM _ATTR _VALI DATOR_NAME attribute the implementer name (if not yet
present) associated with the handle i O Handl e.

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

134

SAI-AIS-IMM-A.03.01 Section 5.4.3 AIS Specification

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

SA Al'S_ ERR BAD HANDLE - The handle i O Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S ERR | NI T - The corresponding previous invocation of

salmmO I nitialize_3() toinitialize the IMM Service object implementer library
and obtain the handle specified by the i O Handl e parameter was incomplete,
since one or more of the following callback functions, depending on the r ol e param-
eter, were missing:

r ol e parameter contains the SA | MM_ROLE_RUNTI VE_OWNER flag:
Sal O Rt At t r Updat eCal | backT and
Sal O Adm nOper ati onCal | backT_3;
. 1ol e parameter contains the SA | MM ROLE_CCB_APPLI ERfl ag:
Sal MmO CcbAppl yCal | backT_3;
r ol e parameter contains the SA | MM ROLE_CCB_VALI DATORfl ag:
Sal O CcbVal i dat eCal | back, Sal O CcbFi nal i zeCal | backT, and
Sal mO CcbAbort Cal | backT_3.

SA Al'S ERR BAD OPERATI ON- The cl assNane parameter specifies the name of
a runtime object class.

SA Al'S ERR _NOT_EXI ST - The cl assName parameter does not specify the name
of an existing class.

SA Al S ERR EXI ST - The object class whose name is specified by the cl assNane
parameter or an object of that class has already a runtime owner whose name is dif-
ferent from the implementer name associated with the handle i nmO Handl e.

SA Al S _ERR _VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmmO I nitialize _3(), Sal MmO Rt Attr Updat eCal | backT,

Sal mmO Admi nQper ati onCal | backT_3, Sal O CcbAppl yCal | backT_3,
Sal O CcbVal i dat eCal | backT, Sal O CcbFi nal i zeCal | backT,

Sal mO CcbAbort Cal | backT_3

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.3 135

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.4.4 salmmOiClassimplementerRelease_3()

Prototype

SaAi sErrorT sal O C assl npl enent er Rel ease_3(
Sal mO Handl eT i O Handl e,
Sal mO Rol eFl agsT rol e,
const Sal mCl assNanmeT cl assNane

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

r ol e - [i n] Role of this object implementer. The Sal mO Rol eFl agsT type is
defined in Section 5.2.3 on page 117.

cl assNane - [i n] Object class name. The Sal Tl assNaneT type is defined in
Section 4.2.2 on page 34.

Description

An object implementer whose name is associated with the handle i GO Handl e
invokes this function to inform the IMM Service that the object implementer no longer
holds the role or roles specified by the r ol e parameter for all the objects that are
instances of the object class whose name is specified by the cl assNane parameter
(existing objects as well as objects that will be created in the future).

An object implementer can release just some of the roles for which it has registered.
It may, for example, register as both a CCB validator and a CCB applier, and then, at
a later time, unregister as a CCB applier. It will then remain a CCB validator.

If this operation succeeds, and the CCB validator, CCB applier, or runtime owner role
is to be released, the IMM Service removes the implementer name from the attribute
SA | MM ATTR_VALI DATOR _NAME, SA | MM ATTR_APPLI ER_NAME, and

SA | MM ATTR_RUNTI ME_OANER_NAME, respectively. If no more implementer
names remain in any of these attribute, the attribute is removed.

If this operation succeeds, and the r ol e parameter contains the
SA | MM ROLE_RUNTI ME_OMNER flag, the IMM Service removes all non-persistent
cached runtime attributes from all objects of that class.

136

SAI-AIS-IMM-A.03.01 Section 5.4.4 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

In any of the following cases, this operation fails.
. for the class whose name is specified by cl assNane, the invoking process does
not hold at least one of the roles to be released;

. one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator;

one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

Return Values

SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR BAD OPERATI ON- The cl assNane parameter specifies the name of
a runtime object class.

SA Al'S ERR _NOT_EXI ST - The name specified by the cl assNanme parameter is not
the name of an existing object class, or the invoking process does not hold at least
one of the roles to be released for the class whose name is specified by cl assNane.

SA Al S ERR BUSY - This value is returned if

. one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator,
or

. one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.4 137

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA Al S _ERR _VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;
. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

salmmO I nitialize 3(),sal MmO d assl npl enment er Set _3()

5.4.5 salmmOiObjectimplementerSet_3()

Prototype

SaAi sError T sal MmO Qbj ect | npl enment er Set _3(
Sal O Handl eT i nmO Handl e,
Sal mO Rol eFl agsT rol e,
const SaNaneT *obj ect Nane,
Sal mScopeT scope

);

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmOi I nitialize _3() function and which identifies this particular initialization

of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

r ol e - [i n] Role of this object implementer. The Sal MO Rol eFl agsT type is
defined in Section 5.2.3 on page 117.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

scope - [i n] Scope of the operation. The Sal mBcopeT type is defined in
Section 4.2.11 on page 38.

138

SAI-AIS-IMM-A.03.01 Section 5.4.5 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Description

An object implementer whose name is associated with the handle i nmO Handl e
invokes this function to inform the IMM Service that the object implementer assumes
the role or roles specified by the r ol e parameter for the objects identified by the
scope and obj ect Nanme parameters.

The targeted set of objects is determined as follows:

. Ifscopeis SA | MM ONE, the scope of the operation is the object designated by
the name to which obj ect Nane points.

If scope is SA_| MM_SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which obj ect Nane points and its direct children.

If scope is SA_| MM_SUBTREE, the scope of the operation is the object desig-
nated by the name to which obj ect Name points and the entire subtree rooted at
that object.

If this operation succeeds, and the r ol e parameter contains the

SA | MM RCLE_RUNTI ME_ OMNER flag, the current process becomes the runtime
owner of the targeted objects; additionally, for each targeted object, the IMM Service
adds the implementer name associated with the handle i O Handl e (if not yet
present) to the SA | MM ATTR_RUNTI ME_OANER_NAME attribute of the object.

This operation fails if one of the targeted objects has already a runtime owner whose
name is different from the implementer name associated with the handle i mMO Han-
dl e.

If this operation succeeds and the r ol e parameter contains the flag

SA | MM ROLE_CCB_VALI DATORor SA | M ROLE_CCB_APPLI ER, the IMM Ser-
vice adds the implementer name associated with the handle i O Handl e (if not yet
present) to the SA | MM _ATTR _VALI DATOR_NAME or

SA | MM ATTR_APPLI ER_NAME attribute of the targeted objects, respectively. Addi-
tionally, the current process becomes for each of the targeted objects a CCB validator
or a CCB applier, respectively.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.5 139

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA Al'S_ ERR BAD HANDLE - The handle i O Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S ERR | NI T - The corresponding previous invocation of

salmmO I nitialize_3() toinitialize the IMM Service object implementer library
and obtain the handle specified by the i O Handl e parameter was incomplete,
since one or more of the following callback functions, depending on the r ol e param-
eter, were missing:

r ol e parameter contains the SA | MM_ROLE_RUNTI VE_OWNER flag:
Sal O Rt At t r Updat eCal | backT and
Sal O Adm nOper ati onCal | backT_3;

. 1ol e parameter contains the SA | MM ROLE_CCB_APPLI ERfl ag:
Sal MmO CcbAppl yCal | backT_3;

r ol e parameter contains the SA | MM ROLE_CCB_VALI DATORfl ag:
Sal O CcbVal i dat eCal | backT, Sal m®O CcbFi nal i zeCal | backT, and
Sal mO CcbAbort Cal | backT_3.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD_OPERATI ON- One or more targeted objects are runtime objects.

SA Al'S ERR NOT_EXI ST - The name to which the obj ect Narme parameter points
is not the name of an existing object.

SA Al S ERR _EXI ST - At least one of the objects targeted by this operation already
has a runtime owner having a name different from the name associated with the han-
dle i O Handl e.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i mrO Handl e was acquired before the cluster node left the cluster member-
ship.

140

SAI-AIS-IMM-A.03.01 Section 5.4.5 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

FORUM

See Also

salmmO I nitialize_3(),sal mO Objectl npl enent er Rel ease_3(),

Sal MmO Rt At t r Updat eCal | backT, Sal nmO Adm nQper ati onCal | backT_3,
Sal O CcbAppl yCal | backT_3, Sal O CcbVal i dat eCal | backT,

Sal mO CcbFi nal i zeCal | backT, Sal O CcbAbort Cal | backT_3

5.4.6 salmmOiObjectimplementerRelease_3()

Prototype

SaAi sErrorT sal mQ Qoj ect | npl enment er Rel ease_3(
Sal mOi Handl eT i O Handl e,
Sal mO Rol eFl agsT rol e,
const SaNaneT *obj ect Nane,
Sal mtScopeT scope

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

r ol e - [i n] Role of this object implementer. The Sal mmO Rol eFl agsT type is
defined in Section 5.2.3 on page 117.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

scope - [i n] Scope of the operation. The Sal mBScopeT type is defined in
Section 4.2.11 on page 38.

Description

An object implementer whose name is associated with the handle i nmO Handl e
invokes this function to inform the IMM Service that the object implementer no longer
holds the role or roles specified by the r ol e parameter for the set of objects identified
by scope and the name to which obj ect Nane points.

An object implementer can release just some of the roles for which it has registered.
It may, for example, register as both CCB validator and CCB applier, and then, at a
later time, unregister as CCB applier. It will then remain CCB validator.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.6 141

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

The targeted set of objects is determined as follows:

. Ifscopeis SA | MM ONE, the scope of the operation is the object designated by
the name to which obj ect Namne points.

. Ifscopeis SA | MM SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which obj ect Nane points and its direct children.

If scope is SA_| MM_SUBTREE, the scope of the operation is the object desig-

nated by the name to which obj ect Name points and the entire subtree rooted at
that object.

If this operation succeeds and the r ol e parameter contains the flag

SA | M _ROLE_CCB_VALI DATOR, SA | MM ROLE_CCB_APPLI ER, or

SA | MM ROLE_RUNTI ME_OWMNER, the IMM Service removes the implementer name
associated with the handle i O Handl e from the

SA | M _ATTR_VALI DATOR_NAME, SA | MM _ATTR_APPLI ER_NAME, or

SA | MM ATTR_RUNTI ME_OANVR_NAME attribute of all the targeted objects, respec-
tively. If no more implementer names remain in any of these attributes, the attribute is
removed.

If this operation succeeds and the r ol e parameter contains the
SA | MM ROLE_RUNTI ME_OMNER flag, the IMM Service removes all non-persistent
cached runtime attributes from all the targeted objects.

In any of the following cases, this operation fails.

. for one or more of the targeted objects, the invoking process does not hold at
least one of the roles to be released;

one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator;

. one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

142

SAI-AIS-IMM-A.03.01 Section 5.4.6 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

SA Al'S_ ERR BAD HANDLE - The handle i O Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR BAD_OPERATI ON- One or more targeted objects are runtime objects.

SA Al'S ERR NOT_EXI ST - The name to which the obj ect Narme parameter points
is not the name of an existing object, or the invoking process does not hold at least
one of the roles to be released for one or more of the targeted objects.

SA Al S ERR BUSY - This value is returned if

. one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator,
or

one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

SA Al S _ERR _VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i MmO Handl e was acquired before the cluster node left the cluster membership.

See Also

salmOiInitialize 3(),sal MmO C assl npl enent er Set _3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.6 143

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.5 CCB Validator Callbacks

When the user of the object management API requests the IMM Service to apply all
change requests contained in a CCB by invoking the sal nmOCcbAppl y_3() func-
tion, the CCB enters the critical region, and the IMM Service applies the CCB in two
steps:

1. In the first step, the IMM Service indicates to each CCB validator that validates at
least one object for which the CCB holds one or more changes that the CCB is
now complete and that the CCB validator must perform a local and global valida-
tion of the entire set of CCB changes (the meaning of these terms is explained
further down). This indication is done by invoking the
sal mmO CcbVal i dat eCal | back() callback function of each CCB validator. If
any of the CCB validators returns an error or does not respond within the
required time limit (specified by the sal nmO Ti meout attribute in the
Sal mmvngt object class, shown in Section 7.2 on page 177), the attempt to
apply the CCB fails, and the following actions are performed:

. The IMM Service informs all CCB validators affected by the CCB that the CCB
is aborted by invoking the sal nmO CcbAbort Cal | back() callback function
of each CCB validator. When this callback of a CCB validator is invoked, the
CCB validator shall dispose of the corresponding CCB identifier (as well as of
any associated state), as the IMM Service may re-use the same CCB identifier
to designate another set of changes later.

. The sal mOnTCcbAppl y_3() function returns an error, and the CCB leaves
the critical section.

2. If all CCB validators agree with the proposed changes, the IMM Service applies
the changes, and it then invokes the sal mmO CcbAppl yCal | back() callback
function of each CCB applier as described in Section 5.6 on page 150 to inform
them that the CCB has been applied.

Subsequently, the IMM Service invokes the

sal O CcbFi nal i zeCal | back() callback function of all CCB validators
before it returns to the caller of the sal mmOTCcbAppl y_3() function. When its
sal mmO CcbFi nal i zeCal | back() callback is invoked, the CCB validator
shall dispose of the corresponding CCB identifier (as well as of any associated
state) for the same reason given in 1.).

Each CCB-related callback is invoked with a CCB identifier as a parameter.

The same CCB initialized with sal nmOnCcbl ni ti al i ze_3() may hold changes
validated by different CCB validators. The IMM Service guarantees that the CCB
identifiers passed to the different CCB validators are identical, meaning that the
scope of the CCB identifier is global to the entire cluster.

144

SAI-AIS-IMM-A.03.01 Section 5.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

A CCB validator shall obtain the changes contained in a CCB by invoking the CCB
iterator functions described in Section 5.7 on page 153. Using an appropriate

i mrHandl e, it can also invoke the object search API functions described in
Section 4.5 on page 61 and the object access API functions of

Section 4.6 on page 69.

All changes are applied to the SA Forum Information Model by the IMM Service and
deployed by the CCB appliers as a single transaction. Thus, the validation only con-
siders the new state (resulting from all proposed changes) that needs to be validated
prior to the application of the CCB. As a consequence, CCB validators are requested
to perform two types of validation, local and global validation, when their

sal nmO CcbVal i dat eCal | back() is invoked:

Local validation consists of type and constraints checking of an attribute or an
object, and it excludes any dependency checking, such as validating the impact
or the consistency of the modification with respect to other attributes or objects.

. Global validation consists of making sure that the configuration of the SA
Forum Information Model, as it would appear if all the modifications in the CCB
were applied, is consistent and valid from the CCB validator's perspective.

Note: If the data model allows for a configuration that a CCB applier cannot accept,
perhaps due to memory constraints, there must be a CCB validator which has
validation code to guard against such configuration changes.

When a change request is added to the CCB, the IMM Service checks that the SA
Forum Information Model tree hierarchy is consistent:

it checks that a newly created object has a parent in the hierarchy, and
it checks that an object being deleted has no child.

The Information Model Management Service may also perform a local validation of
the object attributes against the specification of the object class to which the object
belongs.

If a CCB validator or a CCB applier either registers or unregisters itself while a CCB is
in progress, and the CCB holds changes for objects this CCB validator or CCB
applier implements, the IMM Service aborts the CCB, unless the CCB was initialized
with the appropriate SA | MM _CCB_ALLOW ABSENT_VALI DATORS and

SA | MM CCB_ALLOW ABSENT_APPLI ERS flags set. Note that if the IMM Service
has applied the changes contained in the successfully validated CCB to the SA
Forum Information Model (that is, the changes have been persisted by the IMM Ser-
vice), the CCB cannot be aborted under any circumstances.

Appendix B provides sequence diagrams that show the detailed sequence of API
operations for configuration changes using CCBs.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5 145

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.5.1 SalmmOiCcbValidateCallbackT

Prototype

t ypedef SaAi sErrorT (*Sal mmO CcbVal i dat eCal | backT) (
Sal mO Handl eT i O Handl e,
Sal mCcbl dT ccbl d

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

cchl d -[i n] CCB identifier. The Sal nmCcbl dT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbl d is now complete. The invoked process must perform a local and
a global validation (see Section 5.5 on page 144) of the configuration, as it would
appear if the CCB had been applied to the SA Forum Information Model and
deployed in the SA Forum system by CCB appliers, and it must additionally ensure
that no errors will be generated when these changes are effectively applied.

If all CCB validators that implement and validate objects changed by the CCB agree
with the changes (they return SA_Al S_(K), the IMM Service will apply the changes to
the SA Forum Information Model and then invoke the

sal MmO CcbAppl yCal | back() callback functions of the CCB appliers to notify
them that the CCB has been applied.

If any CCB validator fails to return from the sal O CcbVal i dat eCal | back()
function within the time interval specified by the sal MmO Ti nmeout attribute (defined
in the Sal mrivhgt object class, shown in Section 7.2 on page 177), the in-progress
CCB is failed by the IMM Service.

146

SAI-AIS-IMM-A.03.01 Section 5.5.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

The IMM Service invokes this callback in the context of a thread of a CCB validator
calling sal O Di spat ch() with the handle i O Handl e that was specified
when the process invoked sal O | npl enent er Set (),

sal O Qbj ect | npl enent er Set _3(), or

sal MmO C assl npl enent er Set _3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbl d parameter.

Return Values

SA Al S_OK- The function completed successfully. The global validation was suc-
cessful and the CCB validator agrees to apply the CCB.

SA Al'S ERR _NO MEMORY - The CCB validator is out of memory and cannot allocate
the memory required to later apply all requested changes.

SA Al S ERR _NO RESOURCES - The CCB validator is out of required resources
(other than memory) to later apply all requested changes.

SA Al S ERR BAD OPERATI ON- The validation by the CCB validator of all change
requests contained in the CCB failed.

See Also

sal nmOTCcbApply _3(),salmmO Initialize 3(),salm D spatch(),
sal MmO | npl enent er Set (), sal O C assl npl enent er Set _3(),
sal nmO Qbj ect | npl enent er Set _3()

5.5.2 SalmmOiCcbAbortCallbackT_3

Prototype

t ypedef void (*Sal MmO CcbAbort Cal | backT_3) (
Sal MmO Handl eT i O Handl e,
Sal mCcbl dT ccbl d

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5.2 147

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

cchl d -[i n] CCB identifier. The Sal mCcbl dT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbl d is aborted, so that they can dispose of the CCB identifier ccbl d
and of any associated state.

The IMM Service invokes this callback in the context of a thread of a CCB validator
calling sal nmQ Di spat ch() with the handle i O Handl e that was specified
when the process invoked sal O | npl enent er Set (),

sal nmO Qbj ect | npl enent er Set _3(), or

sal nmQO Cl assl npl ement er Set _3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbl d parameter.

Return Values

None

See Also

sal mmOTCcbApply_3(),salmmO Initialize_3(),salmG D spatch(),
sal nmQ | npl enent er Set (), sal MmO C assl npl enenter Set _3(),
sal MO Qoj ect | npl enent er Set _3()

148

SAI-AIS-IMM-A.03.01 Section 5.5.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.5.3 SalmmOiCcbFinalizeCallbackT

Prototype

typedef void (*Sal mO CcbFi nal i zeCal | backT) (
Sal MmO Handl eT i MmO Handl e,
Sal mCcbl dT ccbl d

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_23() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

cchl d -[i n] CCB identifier. The Sal nmCcbl dT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbl d has been applied, so that they can dispose of the CCB identifier
cchl d and of any associated state.

The IMM Service invokes this callback in the context of a thread of a CCB validator
calling sal nmQ Di spat ch() with the handle i O Handl e that was specified
when the process invoked sal O | npl enent er Set (),

sal MmO Qbj ect | npl ement er Set _3(), or

sal nmO Cl assl npl enent er Set _3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbl d parameter.

Return Values

None

See Also

sal mOnCcbApply_3(),salmOiInitialize_3(),sal O D spatch(),
sal nmQ | npl enent er Set (), sal MmO C assl npl enenter Set _3(),
sal M Qoj ect | npl enent er Set _3()

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5.3 149

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Implementer API Specification AVAILABILITY"

FORUM

5.6 CCB Applier Callback

The IMM Service invokes the sal mmO CcbAppl yCal | back() callback function of
a CCB applier to notify the CCB applier that the configuration of objects in which it is
interested has been modified.

The IMM Service invokes this callback after a modification has been approved, that
is, after all CCB validators have returned successfully from their

sal nmO CcbVal i dat eCal | back() function, and the CCB has been applied to the
SA Forum Information Model.

The IMM Service invokes the sal mmO CcbAppl yCal | back() function of all CCB
appliers according to their rank (sal mmCcbAppl i er Rank configuration attribute in
the Sal mTcbAppl i er object class, see Section 7.2 on page 177). The lower the
value of this attribute, the higher the rank. CCB appliers with a lower rank are invoked
after all CCB appliers with a higher rank have completed the operation. CCB appliers
with the same rank are invoked in an arbitrary order. A CCB applier with no config-
ured rank value is invoked after all CCB appliers with configured rank have com-
pleted the operation.

To ensure that the system is in a consistent state, no new CCB is allowed to enter the
critical region until all CCB appliers of the current CCB have completed their opera-
tion, and until all modifications of the current CCB have been deployed. However, to
avoid infinite blocking by a CCB applier, the IMM Service waits for the return of the
sal nmO CcbAppl yCal | back() callback function at most the time specified by the
sal O Ti meout attribute (defined in the Sal mmvhgt object class, shown in
Section 7.2 on page 177).

The CCB identifier provided in the Sal mmO CcbAppl yCal | backT_3 function has
the same value as the CCB identifier provided in the associated CCB validator call-
backs (see Section 5.5 on page 144).

A CCB applier can obtain the configuration changes by invoking functions of the CCB
iterator API (see Section 5.7). Using an appropriate i nmHandl e, it can also invoke
the object search API functions (see Section 4.5 on page 61), or the object access
API functions (see Section 4.6 on page 69).

If a process acting as a CCB applier exits or simply unregisters during the application
of the CCB, and another process (or the same process, if it simply unregistered) reg-
isters for the same CCB applier role while the application of the CCB is still in
progress, the IMM Service invokes the sal O CcbAppl yCal | back() on the
newly registered process.

If no process registers for the particular CCB applier role within this time interval, the
new CCB applier (whenever it registers subsequently) will need to obtain the configu-
ration as it would do at initial startup via the object management API.

As by default CCB appliers must be registered for all the objects changed in a CCB

150

SAI-AIS-IMM-A.03.01 Section 5.6 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

FORUM

for the CCB change to succeed, no subsequent CCB involving objects of the unregis-
tered appliers will succeed unless the SA | M CCB_ALLOW ABSENT_APPLI ERS
flag is set for the CCB.

As the IMM Service may re-use the same CCB identifier to designate another set of
changes later, a CCB applier shall dispose of the corresponding CCB identifier (as
well as of any associated state) after it responds to the

sal MmO CcbAppl yCal | back() callback call.

Appendix B provides sequence diagrams that explain the detailed sequence of API
operations for configuration changes using CCBs.

5.6.1 SalmmOiCcbApplyCallbackT_3

Prototype

t ypedef void (*Sal MmO CcbAppl yCal | backT_3) (
Sal O Handl eT i nmO Handl e,
const SaNtfCorrel ationldsT *correl ati onl ds,
Sal mCchbl dT cchbl d

),

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmGOi I nitialize_ 3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

correl ationl ds —[i n] Pointer to the correlation identifiers associated with the
CCB being applied. The r oot Corr el ati onl d and par ent Corr el ati onl d fields
are i n parameters. The r oot Cor r el at i onl d field holds the root correlation identi-
fier that has been provided by the invoker of the sal mmOrCcbAppl y_3() function.
The par ent Corr el ati onl d field holds the notification identifier of the notification
that the IMM Service sends to report that the CCB is being applied. The

noti ficationld field is not used. The SaNt f Corr el ati onl dsT type is defined
in [6].

cchl d -[i n] CCB identifier. The Sal mmCcbl dT type is defined in
Section 4.2.15 on page 41.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.6.1 151

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

Description

The IMM Service invokes this callback function to inform a CCB applier that the CCB
identified by ccbl d has been applied by the IMM Service.

All configuration changes have already been validated by the CCB validators in previ-
ous calls to their sal mmO CcbVal i dat eCal | back() callback functions.

Each CCB applier is responsible for determining the effect of the configuration
changes.

If any CCB applier fails to return from the sal G CcbAppl yCal | back() function
within the time interval specified by the sal nmO Ti nmeout attribute (defined in the
Sal mrivhgt object class, shown in Section 7.2 on page 177), the IMM Service
returns SA_Al S_ERR DEPLOYMENT to the sal mOntCcbAppl y_3() call, but this
does not invalidate the CCB. The changes are persisted in the SA Forum Information
Model maintained by the IMM Service (see paragraph in Section 5.6 on page 150).

The IMM Service invokes this callback in the context of a thread of a CCB applier pro-
cess calling sal O Di spat ch() with the handle i O Handl e that was specified
when the process invoked sal O | npl enent er Set (),

sal MmO Qbj ect | npl ement er Set _3(), or

sal O Cl assl npl enrent er Set _3() to become a registered CCB applier for one
or more objects or classes of objects changed by the CCB identified by the ccbl d
parameter.

Return Values

None

See Also

sal mOrCcbAppl y_3(), Sal mmO CcbVal i dat eCal | backT,
sal QO | npl enent er Set (), sal MO d assl npl enenter Set _3(),
sal MmO Qbj ect | npl enent er Set _3(), sal nmO Di spat ch()

SAI-AIS-IMM-A.03.01 Section 5.6.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.7 CCB lterator API

The API functions in this section are used to iterate through configuration changes
associated with a given CCB identifier. In order to facilitate the management of the
memory allocated by the IMM Service library to return the results of the search, the
search is performed using a search iterator.

What objects and values should be returned can be specified when the iterator is ini-
tialized. An object implementer may select to receive only objects in the CCB for
which it is a registered object implementer. For each found object the returned values
can be either the name of the modified object alone, or the object name together with
its attributes. If the latter option is requested, one can specify whether all the
attributes or only the modified ones are returned.

Each invocation of the sal mmO Ccbl t er at or Next () function returns the next
modified object in the SA Forum Information Model that matches the iterator options.

The t r aver se parameter specifies the direction of the search for this next modified
object, namely whether the subtree of the last found object is searched or if the itera-
tion continues at the same level or above.

When these iterator API functions are used during the validation or commit phase of a
CCB, it is guaranteed that no changes of other pending CCBs can affect the object
search, because no two CCBs are allowed to be in the critical region, that is, in the
validate or commit phases (see Section 3.1 on page 26) at the same time.

The iteration is terminated by invoking the finalize function.

The CCB iterator API should only be used by a CCB validator during the validation
phase, or by a CCB applier during the commit phase. For this API, the CCB identifier
becomes valid when the sal mmOTCcbAppl y_3() function is invoked by an object
management process and becomes invalid when this function returns, that is, as
soon as the CCB has been applied. In other words, the API is available while the
CCB is in the critical region and for the CCB in the critical region.

When the IMM Service returns from the sal mOnCcbAppl y_3() invocation, it final-
izes any CCB iterator handle that is still initialized for the CCB.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7 153

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Implementer API Specification AVAILABILITY"

FORUM

5.7.1 salmmOiCcblteratorinitialize()

Prototype

SaAi sErrorT sal MG Ccblteratorlnitialize(
Sal MmO Handl eT i MmO Handl e,
Sal mCcbl dT ccbl d,
Sal MmO Ccbl teratorOptionT iteratorOptions,
Sal MmO Ccbl t er at or Handl eT *iterat or Handl e

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal MmO Handl eT type is
defined in Section 5.2.1 on page 117.

cchl d -[i n] CCB identifier. The Sal nmCcbl dT type is defined in
Section 4.2.15 on page 41.

i teratorQptions -[i n] Specifies what objects are searched and which attribute
values must be returned for each found object. The
Sal O Ccbl t er at or Opt i onT type is defined in Section 5.2.4 on page 118.

i t er at or Handl e - [out] Pointer to the iterator handle used later to iterate through
the SA Forum Information Model to search for configuration changes. The
Sal mmO Ccbl t er at or Handl eT type is defined in Section 5.2.1 on page 117.

Description

This function initializes an iterator for changes induced by the CCB specified by the
ccbl d parameter.

The i t er at or Opt i ons parameter specifies which information is returned for each
modified object.

If this function completes successfully, the i t er at or Handl e parameter points to the
iterator handle to be used in the other functions of the iterator API.

154

SAI-AIS-IMM-A.03.01 Section 5.7.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
error is returned if the specified ccbl d parameter is unknown to the IMM Service or
invalid to be used for iteration, as the CCB is not yet complete.

SA Al S_ERR_NO _MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:
the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i mmO Handl e was acquired before the cluster node left the cluster member-
ship.

See Also

salmOiInitialize 3(),sal MmO CcblteratorNext(),
sal O CcblteratorFinalize()

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.1 155

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.7.2 salmmOiCcblteratorNext()

Prototype

SaAi sError T sal MmO Ccbl t er at or Next (
Sal MmO Ccbl t erat or Handl eT it er at or Handl e,
Sal MmO Cbj ect TraverseT traverse,
Sal mO Cbj ect ChangeT *obj ect Change,
SaNanmeT *obj ect Nane,
Sal mmAttrVal uesT 2 ***attributes

),

Parameters

i t erat or Handl e - [i n] lterator handle returned by the
sal O Ccblteratorinitialize() function. The
Sal mmO Ccbl t er at or Handl eT type is defined in Section 5.2.1 on page 117.

traver se - [i n] Specifies whether the subtree of the previously found object should
be entered or not when iterating for modified objects. This parameter is ignored in the
first invocation of this function subsequent to the invocation of the corresponding

sal O Ccblteratorlnitialize() function. The Sal mO Obj ect Traver seT
type is defined in Section 5.2.6 on page 119.

obj ect Change - [out] Pointer to the change status of the found object. The
Sal mmO Obj ect ChangeT is defined in Section 5.2.5 on page 119.

obj ect Nane - [out] In the first invocation of this function after the initialization of the
iterator, this parameter points to the name of the first object modified by the CCB. In
subsequent invocations of this function, this parameter points to the name of the
object found next with respect to the last found object in the direction indicated by the
t raver se parameter. The SaNaneT type is defined in [2].

attri but es - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures holding the names and values of attributes of the object whose name
is pointed to by obj ect Nane. The attributes were selected when the search was ini-
tialized. The Sal nmAt t r Val uesT_2 type is defined in Section 4.2.8 on page 37.

SAI-AIS-IMM-A.03.01 Section 5.7.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Description

This function is used to obtain the next object (or the first object if this is the first invo-
cation of this function subsequent to the invocation of the corresponding

sal MmO Ccblteratorlinitialize() function)that has been modified and
matches the i t er at or Opt i ons specified in the

sal MmO Ccblteratorlnitialize() function when performing a depth-first
search of the configuration tree for modified objects.

Each object is reported once. The status of the object is reported with respect to its
last committed status, regardless of the number of changes the object went through
to reach this status. For example, if the object was newly created, and then some of
its attributes were modified, the object is reported as newly created, but the attributes
referred to by the at t r i but es parameter will contain the latest values cumulating all
the subsequent modifications.

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of

sal nmQO Ccbl t er at or Next () orsal mmO Ccbl t erat or Fi nal i ze() for the
same iterator handle.

If the handle i t er at or Handl e was obtained by specifying

SA | MM CCB | TERATOR OBJECT _NAME ONLYinthei t erat or Opti ons parame-
ter of the corresponding sal O Ccblteratorlnitialize() call, no attribute
names and values will be returned by this call, and the pointer to which the

at tri but es parameter refers is set to NULL.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA AlS ERR BAD HANDLE - The handle i t er at or Handl e is invalid, since it is
corrupted, uninitialized, has already been finalized, or it is not associated with an
implementer name.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.2 157

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _NOT_EXI ST - All objects matching the iteration criteria either have
already been returned to the calling process, or they have been explicitly skipped by
specifying SA | MM_OBJECT_CONTI NUE in the t r aver se parameter. The caller can
now invoke the sal mO Ccbl t er at or Fi nal i ze() function.

SA Al S ERR VERSI ON- The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S _ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;

the cluster node has rejoined the cluster membership, but the handle
i t er at or Handl e was acquired before the cluster node left the cluster mem-
bership.

See Also

salmmO I nitialize 3(),salmO Ccblteratorlinitialize(),
sal MmO CcblteratorFinalize()

5.7.3 salimmOiCcblteratorFinalize()

Prototype

SaAi serrorT sal MmO CcblteratorFinalize(
Sal MmO Ccbl t erat orHandl eT i teratorHandl e

),

Parameters

i t erat or Handl e - [i n] Iterator handle returned by the
sal nmQO Ccblteratorinitialize() function. The
Sal O Ccbl t er at or Handl eT type is defined in Section 5.2.1 on page 117.

Description

This function finalizes the CCB iteration initialized by a previous call to the

sal O Ccblteratorlnitialize() function. It frees all memory previously allo-
cated by that iteration and, in particular, the memory used to return attribute names
and values in the previous sal nmO Ccbl t er at or Next () invocation.

158

SAI-AIS-IMM-A.03.01 Section 5.7.3 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i t er at or Handl e is invalid, since it is
corrupted, uninitialized, has already been finalized, or it is not associated with an
implementer name.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i t er at or Handl e was acquired before the cluster node left the cluster mem-
bership.

See Also

salmmOi I nitialize 3(),salm® Ccblteratorlnitialize(),
sal nmO Ccbl t er at or Next ()

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.3 159

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

5.8 Runtime Owner APIs

As has been explained in Section 5.4 on page 128, a runtime owner is responsible
for managing runtime objects and runtime attributes of either configuration or runtime
objects and for carrying out administrative operations issued on these objects. The
next two sections describe the corresponding APIs.

5.8.1 Runtime Objects Management API

The set of functions contained in this section are used by a registered runtime owner
to create or delete runtime objects and update the runtime attributes of either configu-
ration or runtime objects. They are similar to the functions provided in the IMM Ser-
vice object management interface, the difference being that they are not part of a
configuration change bundle (CCB).

The values of non-cached runtime attributes are not accessible when a runtime
owner is not registered for the objects to which these attributes belong.

A runtime attribute whose value is cached by the IMM Service must be updated by its
runtime owner whenever the attribute’s value changes. The value of non-cached
attributes must be updated by the runtime owner only when the IMM Service requests
such an update by invoking the runtime owner’s

sal nmO Rt Att r Updat eCal | back() callback function.

Updating cached runtime attribute values in the IMM Service generates some load on
the system each time the values change. Attributes whose values change frequently,
but are rarely read by using the object management API should typically not be
cached.

5.8.1.1 salmmOiRtObjectCreate_2()

Prototype

SaAi sError T sal O Rt Qbj ect Creat e_2(
Sal O Handl eT i nmO Handl e,
const Sal Tl assNaneT cl assNane,
const SaNanmeT *parent Nane,
const SalmmAttrValuesT 2 *const *attrVal ues

SAI-AIS-IMM-A.03.01 Section 5.8 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityTM Application Interface Specification
AVAILABILITY Object Implementer API Specification

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmGOi I nitialize 3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

cl assNane - [i n] Object class name. The Sal Tl assNaneT type is defined in
Section 4.2.2 on page 34.

par ent Name - [i n] Pointer to the name of the parent of the new object. The
SaNaneT type is defined in [2].

at t r Val ues- [i n] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The Sal mmAt t r Val uesT_2 type is defined in Section 4.2.8 on page 37.

Description
This function creates a new IMM Service runtime object.

The new object is created as a child of the object designated by the name to which
par ent Name points. If par ent Nane is set to NULL, the new object is created as a
top level object.

The attributes referred to by the pointers in the array of pointers to which the

at t r Val ues parameter points must match the object class definition. These
attributes can only be cached runtime attributes. One and only one of these attributes
must have the SA | MM _ATTR_RDN flag set; this attribute is used as the Relative Dis-
tinguished Name of the new object.

Attributes named SA | MM ATTR_CLASS NAME,

SA | MM_ATTR_ADM N_OWNER_NAME, and SA_| MM_ATTR_RUNTI ME_OMNNER _NAME
must not be specified by the at t r Val ues descriptors, as these attributes are auto-
matically set by the IMM Service.

The IMM Service adds an SA | MM ATTR_CLASS NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
cl assNane parameter.

The invoking process becomes the registered runtime owner of the new object.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.1 161

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Object Implementer API Specification AVAILABILITY"

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular:

the cl assNane parameter specifies the name of a configuration object class,
there is no valid RDN attribute specified for the new object,
some cached attributes do not have values,

the class referred by the cl assNane parameter includes a persistent attribute
but the parent object indicated by the par ent Nane parameter and some of its
ancestors are non-persistent objects,

the at t r Val ues parameter includes:

. attributes with values that do not match the defined value type for the attribute,
. multiple values for a single-valued attribute, and

. non-cached runtime attributes.

SA Al S ERR _NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _NOT_EXI ST - This value is returned due to one or more of the follow-
ing reasons:

The name to which the par ent Name parameter points is not the name of an
existing object.

The cl assNane parameter is not the name of an existing object class.

One or more of the attributes specified by at t r Val ues are not valid attribute
names for the object class designated by the name cl assNane.

SA Al S ERR _EXI ST - An object with the same name already exists.

162

SAI-AIS-IMM-A.03.01 Section 5.8.1.1 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY Object Implementer API Specification

SA Al S ERR_NAME_TOO LONG- The size of the new object's DN is greater than
SA MAX_ NAME LENGTH.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;

. the cluster node has rejoined the cluster membership, but the handle
i MO Handl e was acquired before the cluster node left the cluster membership.

See Also
salmmO I nitialize 3()

5.8.1.2 salmmOIiRtObjectDelete()

Prototype

SaAi sErrorT sal MmO Rt Obj ect Del et e(
Sal MmO Handl eT i MmO Handl e,
const SaNaneT *obj ect Nane

);

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmmO I nitialize_3() function and which identifies this particular initialization

of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

Description

This function deletes the object designated by the name to which the obj ect Nane
parameter points and the entire subtree of objects rooted at that object.

This operation fails if one of the targeted objects is not a runtime object implemented
by the invoking process.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.2 163

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle i mmO Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al S ERR_NO MEMCORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR BAD OPERATI ON- This value is returned due to one or more of the
following reasons:
. atleast one of the targeted objects is a configuration object;
. atleast one of the targeted object is a runtime object not implemented by the
invoking process.

SA Al'S ERR _NOT_EXI ST - The name to which the obj ect Nane parameter points
is not the name of an existing object.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;
the cluster node has rejoined the cluster membership, but the handle
i mrO Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

salmmO I nitialize_3()

164

SAI-AIS-IMM-A.03.01 Section 5.8.1.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.8.1.3 salmmOIiRtObjectUpdate_2()

Prototype

SaAi sError T sal O Rt Qbj ect Updat e_2(

Sal O Handl eT i nmO Handl e,

const SaNaneT *obj ect Nane,

const SalnmAttrModificationT 2 *const *attrMds
);

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

obj ect Nane - [i n] Pointer to the name of the updated object. The SaNaneT type is
defined in [2].

at t r Mods - [i n] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The Sal nmAt t r Modi fi cati onT_2 type is defined in
Section 4.2.10 on page 38.

Description

This function updates runtime attributes of a configuration or runtime object.

Attributes named SA | MM _ATTR_CLASS NAME,
SA | MM ATTR_ADM N_OANER_NAME, and SA | MM ATTR_RUNTI ME_ OANER _NAME
must not be modified.

This operation fails and returns the SA_Al S_ERR BAD_OPERATI ON error code if the
targeted object is not implemented by the invoking process.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.3 165

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i O Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, the
at t r Mods parameter includes:
. configuration attributes,
. anew value for the RDN attribute,
. attributes with values that do not match the defined value type for the attribute,
. multiple values or additional values for a single-valued attribute.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

SA Al'S ERR BAD_ OPERATI ON- The targeted object is not implemented by the
invoking process.

SA Al'S ERR NOT_EXI ST - The name to which the obj ect Narme parameter points
is not the name of an existing object, or one or more attribute names specified by the
at t r Mods parameter are not valid for the object class.

SA Al'S ERR FAI LED OPERATI ON - The targeted object is not implemented by the
invoking process.

SA Al S ERR VERSI ON - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

. the cluster node has left the cluster membership;
. the cluster node has rejoined the cluster membership, but the handle
i mO Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

salmO I nitialize_3()

166

SAI-AIS-IMM-A.03.01 Section 5.8.1.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.8.1.4 SalmmOiRtAttrUpdateCallbackT

Prototype

t ypedef SaAi sErrorT (*Sal mmO Rt Attr Updat eCal | backT) (
Sal O Handl eT i nmO Handl e,
const SaNaneT *obj ect Nane,
const Sal mmAttr NaneT *attri but eNanmes

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

obj ect Nane - [i n] Pointer to the name of the object for which the update is
requested. The SaNaneT type is defined in [2].

attri but eNanes - [i n] Pointer to a NULL-terminated array of attribute names for
which values must be updated. The Sal nmAt t r NanmeT type is defined in
Section 4.2.2 on page 34.

Description

The IMM Service invokes this callback function to request a runtime owner to update
the values of some attributes of an IMM Service object. These attributes are
attributes whose values are not cached by the IMM Service. The target object is iden-
tified by the name to which obj ect Nane points. The process must use the

sal O Rt Qbj ect Updat e_2() function to update the values of the attributes
whose names are specified by the at t ri but eNanmes parameter.

If a requested attribute has no value, the SA | MM ATTR_VALUES REPLACE flag of
the Sal mmAt t r Mbdi fi cat i onTypeT structure can be used in the
sal MmO Rt Cbj ect Updat e_2() call to set the attribute value to the empty set.

On successful return of this callback, all requested attributes have been updated.

The IMM Service invokes this callback in the context of a thread of a runtime owner
calling sal nmQ Di spat ch() with the handle i O Handl e that was specified
when the process invoked sal O Rt Gbj ect Create_2() or

sal MmO | npl enent er Set () and became the registered runtime owner for the
object to which the obj ect Nane parameter points.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.4 167

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification ERVICE
Object Implementer API Specification AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR_NO MEMORY - The runtime owner is out of memory and cannot provide
the service.

SA Al S ERR_NO RESOURCES - The runtime owner is out of required resources
(other than memory) to provide the service.

SA Al'S ERR FAI LED OPERATI ON - The runtime owner failed to update the
requested attributes due to an error occurring in the
sal O Rt Qbj ect Updat e_2() invocation.

See Also

salmmO I nitialize_3(),sal MmO Di spatch(),
sal nmO Rt Obj ect Create_2(), sal mO | npl enent er Set ()

168

SAI-AIS-IMM-A.03.01 Section 5.8.1.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.8.2 Administrative Operations

5.8.2.1 SalmmOiAdminOperationCallbackT_3

Prototype

typedef void (*Sal MmO Adm nOperati onCal | backT_3) (
Sal O Handl eT i nmO Handl e,
Sal nvocati onT i nvocati on,
const SaNtfCorrel ationldsT *correl ati onl ds,
const SaNanmeT *obj ect Nane,
Sal mmAdm nQper ati onl dT operati onl d,
const Sal mmAdm nQOper ati onParansT_2 *const *parans

),

Parameters

i mrO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmGOi I nitialize _3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

i nvocati on - [i n] Used to match this invocation of
Sal O Admi nOper at i onCal | backT_3 with the corresponding invocation of
sal O Adm nOper ati onResul t (). The Sal nvocat i onT type is defined in [2].

correl ationl ds — [i n] Pointer to the correlation identifiers associated with the
administrative operation. The r oot Corr el ati onl d and parent Correl ati onld
fields are i n parameters. The r oot Cor r el at i onl d field holds the root correlation
identifier that has been provided by the invoker of the administrative operation. The
par ent Corr el ati onl d field holds the notification identifier of the notification that
the IMM Service sends to report the invocation of the administrative operation. The
noti ficati onl d field is not used. The SaNt f Corr el ati onl dsT type is defined
in [6].

obj ect Nane - [i n] Pointer to the object name. The SaNaneT type is defined in [2].

oper ati onl d - [i n] Identifier of the administrative operation. The
Sal mmAdnm nQper at i onl dT type is defined in Section 4.2.17 on page 42.

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.2 169

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

par ans - [i n] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The Sal mmAdm nQper at i onPar ansT_2 type is defined in
Section 4.2.18 on page 42.

Description

The IMM Service invokes this callback function to request a runtime owner to execute
an administrative operation on the object designated by the name to which

obj ect Nane points. The administrative operation identified by the oper ati onl d
parameter has been initiated by an invocation of the

sal mMOmAdm nQper ati onl nvoke _3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() functions.

Each element referred to by a pointer of the array of pointers to which the par ans
parameter points represents an input parameter of the administrative operation to
execute.

The IMM Service invokes this callback in the context of a thread of a runtime owner
process calling sal O Di spat ch() with the handle i O Handl e that was spec-
ified when the process invoked sal nmQ | npl enent er Set (),

sal MmO Qbj ect | npl enent er Set (), orsal O d assl npl enent er Set () for
configuration objects or sal MmO Rt Obj ect Creat e_2() for runtime objects to
become the registered runtime owner for the object to which the obj ect Nane
parameter points.

The runtime owner indicates the success or failure of the administrative operation by
invoking the sal nmO Admi nOper ati onResul t () function. The

sal MmO Adm nQper ati onResul t () function can be invoked from the callback
itself or outside the callback by any thread of the process that initialized the

i O Handl e.

Return Values

None

See Also

salmmO I nitialize 3(),sal mOrAdm nQOper at i onl nvoke _3(),

sal mmOmAdm nOper at i onl nvokeAsync_3(),

sal nmO Admi nOper ati onResul t (), sal mmQ | npl enent er Set (),

sal nmO Qbj ect | npl enent er Set (), sal mQ C assl npl enent er Set (),
sal MmO Rt Qbj ect Create_2()

170

SAI-AIS-IMM-A.03.01 Section 5.8.2.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Object Implementer API Specification

FORUM

5.8.2.2 salmmOiAdminOperationResult()

Prototype

SaAi sError T sal O Admi nQper at i onResul t (
Sal O Handl eT i nmO Handl e,
Sal nvocati onT i nvocati on,
SaAi sErrorT result

),

Parameters

i MmO Handl e - [i n] The handle which was obtained by a previous invocation of the
salmO I nitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The Sal O Handl eT type is
defined in Section 5.2.1 on page 117.

i nvocati on -[i n] Used to match this invocation of

sal mmO Adm nOper ati onResul t () with the previous corresponding invocation of
the Sal MmO Admi nQper ati onCal | backT_3 callback. The Sal nvocati onT type
is defined in [2].

resul t - [i n] Result of the execution of the administrative operation. The
SaAi sError T type is defined in [2].

Description

An object implementer invokes this function to inform the IMM Service about the
result of the execution of an administrative operation requested by the IMM Service
by an invocation of the object implementer’s

sal nmO Adm nOper ati onCal | back() callback.

This function can be called only by the process for which its
sal nmO Adm nOper ati onCal | back() callback has been invoked.

If the runtime owner exits or simply unregisters during the execution of the adminis-
trative operation and another process (or the same process, if it simply unregistered)
registers for the same runtime owner role within the time interval specified by the
sal O Ti meout attribute (defined in the Sal mmvhgt object class, shown in
Section 7.2 on page 177), the IMM Service invokes the

sal nmO Admi nOper ati onCal | back() callback on the newly registered process.
If no process registers within this time interval, the IMM Service— depending on how
the administrative operation was initiated— either returns the

AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.2.2 171

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Object Implementer API Specification AVAILABILITY

FORUM

SA Al'S_ERR_TI MEQUT error to the corresponding invocation of the

sal mOmAdni nQper at i onl nvoke_3() function or invokes the

sal nmOmAdm nOper at i onl nvokeCal | back() function with the error parameter
setto SA Al S ERR Tl MEQUT.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle i O Handl e is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA Al'S _ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA Al S ERR NO RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _UNAVAI LABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

the cluster node has left the cluster membership;
the cluster node has rejoined the cluster membership, but the handle
i mmO Handl e was acquired before the cluster node left the cluster member-
ship.
See Also

salmmO I nitialize 3(), Sal mO Adm nQperationCal | backT_3

SAI-AIS-IMM-A.03.01 Section 5.8.2.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration AP

FORUM

6 IMM Service Administration API

This section describes the administrative API functions that the IMM Service exposes
on behalf of itself to a system administrator. These API functions are described using
a ‘C’ APl syntax. The main clients of this administrative API are system management
applications.

6.1 Administrative Operations on the IMM Service

Administrative operations on the IMM Service can be carried out using the IMM Ser-
vice API functions sal mmOmAdni nOper at i onl nvoke 3() or

sal mmOmMAdm nOper at i onl nvokeAsync_3() (refer to Section 4.9 on page 100)
on an object that represents the IMM Service and for which the IMM Service is the
object implementer.

Return values are passed in the oper at i onRet ur nVal ue parameter (see
Section 4.9.1 on page 102).

6.2 Include File and Library Name

The following IMM Service header file containing declarations of data types and func-
tion prototypes must be included in the source of an application using the IMM Ser-
vice Administration API:

#i ncl ude <sal nm h>

To use the IMM Service Administration API, an application must be bound with the
following IMM Service library:

i bSal mm so

6.3 Type Definitions

The specification of IMM Service Administration API requires the following type.
6.3.1 SalmmMngtAdminOperationT

t ypedef enum {
SA_| MM_ADM N_EXPORT = 1
} Sal mmivhgt Admi nOper ati onT,;

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 6 173

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

6.4 IMM Service Administration API

6.4.1 SA_IMM_ADMIN_EXPORT

Parameters

operationld-[in]=SA | MM ADM N_EXPORT

obj ect Nane - [i n] = The LDAP name of the object of class Sal mer vi ce that
represents the IMM Service. The DN of this object is

"saf Rdn=i mrvanagenent ,saf App=saf | mer vi ce".

For SA Forum naming conventions and rules, see [2].

par ans - [i n] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor has the following format:

par ans[0] . paramNane = SA | MM ADM N_EXPORT;
SA_| MM ATTR_SASTRI NGT;
parans 0] . paranBuffer = fil ePat hnane;

par ans[0] . par anlype

fi | ePat hnane is the standard relative POSIX pathname of the file to which the IMM
contents must be exported. This pathname is relative to an implementation defined
root directory. The type of this parameter is SaSt r i ngT, defined in [2].

Description

This administrative operation requests the IMM Service to export all its persistent
contents (class definitions as well as persistent objects and attributes) into a file
whose relative pathname is specified by the f i | ePat hnane parameter.

The persistent contents will be stored into the file according to the IMM XML Schema
Definition (see [4]).

The sal mrExport Fi | eUri attribute of the Sal mmvngt IMM configuration class
(see Section 7.2 on page 177) shall be used to retrieve the file after the export opera-
tion completed.

operationReturnValue
SA Al S K- The operation completely successfully.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

174

SAI-AIS-IMM-A.03.01 Section 6.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration AP

FORUM

SA Al S_ERR _TRY_AGAI N - The operation cannot be provided at this time. The
caller may retry later. This error generally should be returned in cases where the
requested administrative operation is valid but not currently possible.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al S ERR_NO MEMORY - The IMM Service or a library is out of memory and can-
not provide the service.

SA Al'S ERR _NO RESOURCES - There are insufficient resources to carry out the
operation.

SA Al S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

See Also

AIS Specification SAI-AIS-IMM-A.03.01 Section 6.4.1 175

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityTM Application Interface Specification

AVAILABILITY’ UML Information Model

FORUM

7 IMM Service UML Information Model

The IMM Service Information Model is described in UML and has been organized in a
UML class diagram.

The IMM Service UML model is implemented by the IMM Service. For further details
on this implementation, refer to the SA Forum Overview document ([1]).

The IMM Service UML class diagram has two object classes, which show the con-
tained attributes and the administrative operations applicable on these classes
(if any).

7.1 DN Formats for the IMM Service UML Class Diagram

Table 3 DN Formats for Objects of the IMM Service Class Diagram

Object Class DN Formats for Objects of the Class
Sal mivhgt ‘saf Rdn=i mmvanagenent , saf App=saf | rmer vi ce”
Sal nmCcbAppl i er “saf CcbAppl i er =...,saf Rdn=i mrivanagenent ,
saf App=saf | mer vi ce

7.2 IMM Service UML Classes

The Sal nmvhgt configuration object class exports all IMM global attributes and
administrative operations.

The Sal nmCcbAppl i er configuration object class specifies a list of CCB appliers,
each with a rank. The rank indicates the order that the IMM Service uses to invoke
the apply CCB callbacks of these CCB appliers. For details, see

Section 5.6 on page 150.

FIGURE 3 shows these two classes. A description of each attribute of these classes
is found in the XMl file (see [3]). For additional details, refer to the SA Forum Over-
view document ([1]).

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 7 177

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model

FORUM

SERVICE
AVAILABILITY’

FIGURE 3 IMM Service UML Classes

<<CONFIG>>
SalmmMngt

safRdn : SaStringT [11{RDN,CONFIG,SASTRINGT}

salmmRepositoryInit : SalnmRepositoryInitModeT [0..1] = SA_IMM_INIT_FROM FILECONFIG, WRITABLE, SAUNT32T}
salmmlLastUpdate : SaTimeT [1{RUNTIVE}

salmmBxportFileUri : SaStringT [11{RUNTIVE}

salnmNunOis : SaUint32T [1{RUNTIVE}

salmMNuMmAdminOw nedObjects : SaUint32T [1KRUNTIVE}

salnmNuminitializedCcbs : SaUnt32T [1{RUNTIVE}

salnmOiTimeout : SaTimeT [0..1] = Brpty{CONFIG, WRITABLE

SA_IMM ADMIN_EXFORT()

0"*

<<CONFIG>>
SalmmCcbApplier

safCcbApplier : SaStringT [1TKRDN, CONFIG}
salmmCcbApplierRank : SaUnt32T [1K CONFIG, WRITABLE}

178 SAI-AIS-IMM-A.03.01 Section 7.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

8 IMM Service Alarms and Notifications

The Information Model Management Service produces alarms and notifications to
convey important information regarding the operational and functional state of the
objects under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention, and notifications which signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service Availability™ Forum (abbreviated as NTF, see [6]), and hence the
various notifications are partitioned into categories, as described in this service.

In some cases, this specification uses the word “Unspecified” for values of attributes
that the vendor is at liberty to set to whatever makes sense in the vendor’s context,
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see

[71).

8.1 Setting Common Attributes

The following attributes of the notifications presented in Section 8.2 on page 181 are
not shown in their description, as the generic description presented here applies to all
of them:

Notification Id - Depending on the Notification Service function used to send the
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and must contain at least the
saf App RDN value portion of the DN set to the specified standard RDN value of
the SA Forum AIS Service generating the notification, that is, saf | nSer vi ce.
For details on the AIS naming convention, refer to the Overview document ([1]).

The following notes apply to all IMM Service notifications presented in
Section 8.2 on page 181:

. Correlated Notifications - Correlation ids are supplied to correlate notifications
that have been generated because of a related cause. The correlated notifica-
tions attribute should include

AIS Specification SAI-AIS-IMM-A.03.01 Chapter 8 179

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Alarms and Notifications AVAILABILITY

FORUM

in the first position the root notification identifier of the related tree of notifica-
tions as described in the Notification Service specification (see [6]);

in the second position the parent notification identifier of the same tree;

in the third position the notification identifier of the sibling notification, if any.
This sibling notification is the opening pair of the current notification such as
the alarm that is being cleared or the start of an administrative operation or a
configuration change that has ended.

If any of these notifications is unknown, the SA_NTF_| DENTI FI ER_UNUSED
value must be used. This value may be omitted in trailing positions.

Notification Class Identifier - The vendor | d field of the SaNt f Cl assl dT data
structure must be set to SA_NTF_VENDOR | D_SAF, and the maj or | d field must
be set to SA_SVC | MM (as defined in the SaSer vi cesT enumeration in [2]) for
all notifications that follow the standard formats described in this specification.
The m nor | d field will vary based on the specific notification.

180

SAI-AIS-IMM-A.03.01 Section 8.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

8.2 Information Model Management Service Notifications

The following subsections describe the notifications that an Information Model Man-
agement Service implementation shall produce.

8.2.1 Information Model Management Service Alarms

The Information Model Management Service does not issue any alarms at the time of
publication of this specification.

8.2.2 Information Model Management Service Notifications of Miscellaneous Type
8.2.2.1 Administrative Operation Start

Description

The IMM Service sends the following notification when the
sal nmOmAdmni nOper at i onl nvoke_3() or
sal mmOmMAdm nOper at i onl nvokeAsync_3() functions are called.

The additional information field contains the administrative operation identifier
(oper at i onl d parameter) and the administrative operation parameters (values
referred to by the par ans parameter), if any.

AIS Specification SAI-AIS-IMM-A.03.01 Section 8.2 181

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 4 Administrative Operation Start

addi ti onal I nf ofi]

NTF Attribute Name | Mandatory/ | o o ified Value
Optional

Event Type Mandatory SA NTF_ADM N _OPERATI ON_START

Notification Object Mandatory LDAP DN of the object on which the administrative
operation is invoked

Notification Class NTF-Internal | mi norld=SA | MM NTFI D_OP_START, see

Identifier Section 4.2.19 on page 42

Event Time Mandatory Time when either the
sal mmOmAdm nQper at i onl nvoke_3() or the
sal mmOmAdm nQOper at i onl nvokeAsync_3()
functions was invoked

Number of Correlated | Mandatory 0,1,0r2

Notifications

Correlated Notifica- Mandatory root Correl ati onl dand

tions par ent Correl ati onl d passed to either
sal mmOmAdm nQper at i onl nvoke_3() orto
sal mmOmAdm nQOper ati onl nvokeAsync_3()

Number of Elements Mandatory At least 1

in Additional Informa-

tion Array

Additional Information | Mandatory {SA_| MV_Al _ADM N_OPERATI ON_I D,

addi ti onal I nf o[0] SA NTF_VALUE Ul NT64, oper ati onl d parame-
ter passed to
sal mmOmAdm nQper at i onl nvoke_3() orto
sal mmOmAdm nQper at i onl nvokeAsync_3() }

Additional Information | Optional {SA_| MM_Al _ADM N_OPERATI ON_I D,

SA NTF_VALUE xxx, value referred to by the
par ans parameter passed to

sal mOmAdm nQper at i onl nvoke_3() orto
sal mmOmAdm nQper at i onl nvokeAsync_3() }

182

SAI-AIS-IMM-A.03.01 Section 8.2.2.1

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

8.2.2.2 Administrative Operation End

Description

The IMM Service sends the following notification after the runtime owner provided a
result for the operation previously invoked by the

sal nmOmAdm nOper at i onl nvoke_3() or

sal mMOmAdm nQper at i onl nvokeAsync_3() functions. The IMM Service also
sends this notification to inform about any kind of error that may be returned by the
aforementioned functions and by the

sal mmOmMAdm nOper at i onl nvokeCal | back() function.

The first additional information field contains the administrative operation identifier.
The second one contains the result of the administrative operation, which can be:

the return value of the sal mmOMAdm nOper at i onl nvoke_3() function, if this
function was invoked,

. the return value of the sal mmOMAdm nOper at i onl nvokeAsync_3() func-
tion, if this function was invoked, and the corresponding callback is not invoked;

the value returned in the er r or parameter of the
sal mmOmAdm nOper at i onl nvokeCal | back() function, if this function was
invoked.

AIS Specification SAI-AIS-IMM-A.03.01 Section 8.2.2.2 183

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 5 Administrative Operation End

tion
addi ti onal I nf o[1]

NTF Attribute Name | Mandatory/ 1 o iied Value
Optional

Event Type Mandatory SA NTF_ADM N_OPERATI ON_END

Notification Object Mandatory LDAP DN of the object on which the administrative
operation is invoked

Notification Class NTF-Internal m norld=SA | MM NTFI D OP_END, see

|dentifier Section 4.2.19 on page 42

Event Time Mandatory Time when the runtime owner provided a
response, or when the IMM Service detected an
error

Number of Corre- Mandatory 3

lated Notifications

Correlated Notifica- Mandatory root Correl ati onldand

tions par ent Corr el ati onl d passed to either
sal mmOmAdm nOper ati onl nvoke_3() orto
sal nmOmAdm nOper at i onl nvokeAsync_3()
and additionally the notification identifier of the cor-
responding SA_NTF_ADM N_OPERATI ON_START
notification

Number of Elements | Mandatory 2

in Additional Informa-

tion Array

Additional Informa- Mandatory {SA | MM Al _ADM N_OPERATI ON_I D,

tion SA NTF_VALUE Ul NT64, oper ati onl d param-

addi ti onal | nf 0[0] eter passed to
sal nmOmAdmi nOper at i onl nvoke_3() orto
sal mmOmAdm nQOper at i onl nvokeAsync_3() }

Additional Informa- Mandatory {SA | MM Al _ADM N_OPERATI ON_RESULT,

SA NTF_VALUE Ul NT64(SaAi sErrorT), as
explained above in the description section of this
notification}

184

SAI-AIS-IMM-A.03.01 Section 8.2.2.2

AIS Specification

10

15

20

25

30

35

40

SERVICE

AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

8.2.2.3 Configuration Update Start

Description

The IMM Service sends the following notification when the sal O CcbAppl y_3()

function is invoked.

Table 6 Configuration Update Start

NTF Attribute Name Mar)datory/ Specified Value
Optional
Event Type Mandatory SA NTF_CONFI G_UPDATE_START
Notification Object Mandatory Empty
Notification Class Identifier | NTF-Internal mnorld=
SA | MM _NTFI D_CCB_APPLY_START, see
Section 4.2.19 on page 42
Event Time Mandatory Time when the sal mOnCcbAppl y_3()
function was invoked
Number of Correlated Noti- | Mandatory 0,1,0r2
fications
Correlated Notifications Mandatory root Correl ati onldand
par ent Corr el at i onl d passed to
sal mmOnCcbAppl y_3()
Number of Elements in Mandatory 1
Additional Information Array
Additional Information Mandatory {SA | MM Al _CCB_ I D,

addi ti onal I nf o[0]

SA NTF_VALUE_Ul NT64, value of the
CCB identifier returned by the
sal mmOnCcblnitialize_3() function}

AIS Specification

SAI-AIS-IMM-A.03.01 Section 8.2.2.3

185

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

8.2.2.4 Configuration Update End

Description

The IMM Service sends the following notification when the sal O CcbAppl y_3()
function returns.

Table 7 Configuration Update End

NTF Attribute Name Maqdatory/ Specified Value
Optional
Event Type Mandatory SA NTF_CONFI G_UPDATE_END
Notification Object Mandatory Empty
Notification Class NTF-Internal m norld=SA | MM NTFI D_CCB_APPLY_END,
Identifier see Section 4.2.19 on page 42
Event Time Mandatory Time when the sal mOnCcbAppl y_3() func-
tion returned
Number of Correlated | Mandatory 3
Notifications
Correlated Notifica- Mandatory root Correl ati onld and
tions par ent Correl ati onl d passed to
sal mmOTCcbAppl y_3() and additionally the
notification identifier of the corresponding
SA NTF_CONFI G_UPDATE_START notification
Number of Elements Mandatory 2
in Additional Informa-
tion Array
Additional Information | Mandatory {SA I MM Al _CCB I D,
addi ti onal I nf o[0] SA NTF_VALUE_Ul NT64, value of the CCB
identifier returned by the
sal mmOnCcblnitialize_3() function}
Additional Information | Mandatory {SA | MM Al CCB_ RETURN VALUE,

addi ti onal I nf o[1]

SA NTF_VALUE Ul NT64(SaAi sErrorT),
return value of the sal mmOCcbAppl y_3()
function}

186

SAI-AIS-IMM-A.03.01 Section 8.2.2.4

AIS Specification

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

SERVICE
AVAILABILITY Example Use Case

FORUM

Appendix A Example Use Case

This example shows how the IMM Service APIs can be used by an application.

FIGURE 4 Example of Using the IMM Service to Change the Configuration of a Real Application

- &

f—4>{ IMM
Billing system " J
//"'

@

¢
Traffic interface }

(a) System Setup

The example consists of four Object Implementers (Ols), an SSL VPN stack, an
IPSec VPN stack, a traffic interface, and a billing engine.

(b) Global Constraints

A global constraint is that a billing account must always be configured for all VPNs,
and that the billing account must also be configured in the billing engine.

(c) Shared Configuration Data

The IP address of the traffic interface is a shared configuration data.
The traffic interface needs the IP address to properly configure the interface, the two
VPN stacks need the IP address to bind the listening socket to the proper address.

AIS Specification SAI-AIS-IMM-A.03.01 Appendix A 187

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Example Use Case AVAILABILITY

FORUM

(d) Registrations

The four Ols will register as CCB validators and CCB appliers for their corresponding
objects in the IMM. The traffic interface Ol must be configured with a higher rank as a
CCB applier than the two VPN stacks, so that it can apply the changes ahead of
them.

The billing engine will register as CCB Validator for the billing account settings in the
SSL and IPSec VPN stacks. It will be invoked whenever any of those settings are cre-
ated, deleted, or modified.

The SSL and IPSec VPN stacks register as CCB appliers for the IP address configu-
ration of the traffic interface.

(e) Configuration Change: Change IP Address

Suppose that a manager decides to change the IP address of the management inter-
face, then the following will happen:

1. The manager creates a CCB with the new IP address of the traffic interface.

2. The manager calls the apply function to indicate that no more modifications will
be included in the CCB.

3. The IMM Service invokes the sal nmO CcbVal i dat eCal | back() callback of
the traffic interface, so that the traffic interface can validate that the new IP
address does not conflict with the rest of its configuration.

4. The IMM Service calls the apply function to take the new configuration into active
duty. The new IP address is communicated to all CCB appliers in an order given
by the rank of the CCB applier in a configured list, that is, the traffic interface,
which has been configured to be notified before the VPN stacks, will be notified
first, and the two VPN stacks after that. The notification ordering is important as
the traffic interface needs to be updated first, because the VPN stacks cannot
bind to the new address unless the interface has already been changed.

5. When called back, all CCB appliers invoke the iterator functions to obtain their
new configuration. The new IP address is communicated to all CCB appliers in
an order given by the rank of this CCB applier in a configured list, that is, the traf-
fic interface, which has been configured to be notified before the VPN stacks, will
be notified first, and the two VPN stacks after that.

The CCB appliers now modify their internal states to use the new IP address.
The notification ordering is important as the traffic interface needs to be updated
first, because the VPN stacks cannot bind to the new address unless the inter-
face has already been changed.

188

SAI-AIS-IMM-A.03.01 Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE

Service Avai/abilityTM Application Interface Specification

AVAILABILITY Example Use Case

FORUM

(f) Configuration Change: Create New VPN

Suppose the manager creates a new IPSec VPN. The following will happen:

1.
2,

The manager creates a new CCB with the new IPSec VPN.

The manager calls the apply function to indicate that no more modifications will
be added to the CCB.

The IMM Service invokes callbacks, so that the IPSec stack can validate the
whole IPSec configuration. The IMM Service also invokes the callbacks of the
billing engine, so that the billing engine can validate its settings.

The IMM Service calls the apply function to make the new configuration the new
running configuration.

The IPsec stack invokes the iterator functions to obtain the new configuration; the
IPsec stack finally updates its internal state.

AIS Specification

SAI-AIS-IMM-A.03.01 Appendix A 189

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Sequence Diagrams

Appendix B Sequence Diagrams

The following sequence diagrams show some important scenarios. For simplicity, the

suffix “Callback” and any version suffix like “_3" are not shown in the diagrams.

AIS Specification

SAI-AIS-IMM-A.03.01 Appendix B

191

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification

Sequence Diagrams

SERVICE
AVAILABILITY’

FORUM

FIGURE 5

oM

Successful CCB, Independent CCB Appliers and Validators

=
=

CCB Validator CCB Applier

salmmOmCcblnitialize ()

salmmOmCcbObjectCreate()

salmmOmMCcbObjectModify ()

salmmOmCcbObjectDelete ()

salmmOmMCcbApply()

/
/

{no other CCB
must be in the
critical area}

_——e e, Y Y __YY_

~

salmmOiCcbValidate (ccbld)

salmmOiCcblteratorInitialize (ccbld)

&

salmmOiCcblteratorNext()

|
|
l¢

—_— e Y —————————

_—— - —
]
=
3
3
Q
9]
Q
=2
=
[]
=
V]
=3
o
3
Ly
=}
Q
&
[0
—~
=

S

-——— e

1
salmmOiCcbApply(ccbld)

|
salmmOichIteraforInitialize(ccbld)

|
saImmOichI'teratorNext()

-—1r—-1r——"———-/r

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»
|
|
|
|
|
]
|
|
lIm— e - = H—— -

: | Apply
|
|
1
|
|

192

SAI-AIS-IMM-A.03.01 Appendix B AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAILABILITY’

FORUM

Sequence Diagrams

FIGURE 6 Failed CCB, Independent CCB Appliers and Validators

oM IMM CCB Validator CCB Applier
| salmmOmCcbinitialize () | | i
ol	
I	
:	
: salmmOmCcbObjectCreate() : :	
I " I I	
I	
I	
: salmmOmMCcbObjectModify () : : :	
g	
I	
I	
salmmOchbObjectDeIete()J	I
[p	
I	
I	
I	
salmmOmMCcbApply() [I
: =-: salmmOiCcbValidate (ccbld) : :	
/: " !	
[[/ I salmmOiCcblteratorlnitialize (ccbld)	
/ -	
s T	
I /7 1	I [
I // P	salmmOiCcblteratorNext() I I
I	e 1
	{noother CCB) L____ Gaa N I
	mustbein the 0
	critical area}
I [salmmOiCcblteratorFinalize() I	
l r [
: \\ I Error : :	
Ilé _____________ 1	
: Error	salmmOQOiCcbAbort(ccbld) : :
K== 1 g [
I	
I	
I	
AIS Specification SAI-AIS-IMM-A.03.01 Appendix B 193

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Sequence Diagrams AVAlFl.ui\uBM".IT\’
FIGURE 7 Successful CCB, Ol is both CCB Validator and CCB Applier
oM IM CCB Validator+Applier

| salmmOmCcblinitialize () | |

| » |

| | |

| : |

: salmmOmMCcbObjectCreate() | :

| » |

| | |

| : |

: salmmOmCcbObjectModify () | :

[" [

| I |

| I |

: salmmOmCcbObjectDelete () : :

>

| I |

| I |

| | |

| salmmOmMCcbApply() | |

[1

i ': salmmOiCcbValidate (ccbld) :

I /ﬁ; g

| y |

I 7 | OK I

I /) Ke——————————— I

' S0 |

| / I : salmmOICcbApply(ccbld) |

: {no other CCB I] I

| | mustbe in the { I Apply

| critical area} | OK |

[N e [

| : |

: OK | salmmOICCbFinalize (ccbld) :

e i g

| | |

| | |

| | |
194 SAI-AIS-IMM-A.03.01 Appendix B AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

FIGURE 8 Failed CCB, Ol is both CCB Validator and CCB Applier

oM

=
=

CCB Validator+Applier

salmmOmCcbilnitialize ()

salmmOmCcbObjectCreate()

salmmOmCcbObjectModify ()

salmmOmCcbObjectDelete()

salmmOmMCcbApply()

salmmOiCcbValidate (ccbld)

-
21
) ,/ L : Error
B
{no other CCB lé- |
must be in the | |
critical area} : :
| |
Error | salmmOiCcbAbort(ccbld) |
Kmmmm e e e e i »l

AIS Specification

SAI-AIS-IMM-A.03.01 Appendix B

195

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Compatibility Issues

FORUM

Appendix C Compatibility Issues

An IMM Service implementation that is capable of supporting multiple versions of the
IMM Service API specifications concurrently must handle the case that a CCB will
affect object implementers that were written against different versions of the APIs.
This section describes the considerations that an object manager needs to take into
account in such a case and also presents an example to illustrate the collaboration
between these entities of different versions.

Up to the A.02.01 version of the IMM Service specification, each change request
issued by an object manager was immediately propagated by the IMM Service to the
single object implementer of the targeted object. Thus, change requests could be ver-
ified at this early stage and rejected by an object implementer due to any reason,
including the ordering of the change requests. The current specification removes the
requirement of propagating each change requests to the object implementers;
instead, it asks for validation only when the object manager has completed the CCB
and invokes the sal mOmAppl y_3() function. As a consequence, the object imple-
menters receive for verification only the proposed final state of the SA Forum Infor-
mation Model, and they are unaware how this state was reached; however, an IMM
Service implementation supporting earlier versions and the current versions of the
API, will act appropriately toward each object implementer.

C.1 Object Manager Considerations

Object manager applications implemented against an earlier version of the IMM Ser-
vice API face no problem in collaborating with implementations written against the
current specification. Any CCB that would succeed according to earlier versions shall
succeed according to the new version.

The setting of the SA_ | MM CCB_REG STERED _Q flag is interpreted by the IMM Ser-
vice in the following way:

If this flag is set by the object implementer initializing the CCB, it is interpreted as
if none of the SA_| MM_CCB_ALLOW ABSENT_VALI| DATORS and
SA | MM _CCB_ALLOW ABSENT_APPLI ERS flags were set.

. Ifthe SA | MM CCB_REGQ STERED O flag is not set, it is mapped as if both the
SA | MM _CCB_ALLOW ABSENT_VALI DATORS and
SA | MM CCB_ALLOW ABSENT_APPLI ERS flags were set.

Object manager applications implemented against the current specification need to
consider object implementers that were written against an earlier version of the spec-
ification, as these object implementers will receive and therefore verify the change

AIS Specification SAI-AIS-IMM-A.03.01 Appendix C 197

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Compatibility Issues AVAILABILITY

FORUM

requests in the order the object manager issues them. This may have the undesirable
effect that these object implementers refuse change requests even before the
sal mmOmAppl y_3() function is invoked.

Thus, to successfully apply the CCB in this case, the object manager needs to issue
the change requests pertaining to the CCB in a way that is compliant to earlier ver-
sions of the specification.

The setting of the SA_| MM_CCB_ALLOW ABSENT_VALI| DATORS and
SA | MM _CCB_ALLOW ABSENT_APPLI ERS flags are propagated by the IMM Service
to the object implementers of earlier versions as follows:

. If one or both of these flags are set, this setting is propagated as if
SA | MM CCB_REGQ STERED O flag were not set;

If neither of these flags are set then, this setting is propagated as if the
SA | MM CCB_REG STERED O flag were set.

C.2 Example Using Object Implementers of Different Versions

Assume a setup similar to the one described in Appendix A and with the following
additional versioning information:
. the object manager (OM) uses the A.03.01 version of the IMM API;

. the object implementer implementing the traffic interface uses the A.02.01 ver-
sion of the IMM API;

an object implementer using the A.03.01 version of the IMM API acts as both

. runtime owner and CCB applier of the VPN stack (not used in this example)
and

. CCB validator for the traffic interface and the VPN stack.

This CCB validator needs to validate that the DNS name in the certificate used by the
VPN stack must match the IP address of the traffic interface. When performing a con-
figuration change of the traffic interface, the sequence of invocations presented in
FIGURE 9 shall occur.

SAI-AIS-IMM-A.03.01 Appendix C.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAlFlu?uBM"-lw Compatibility Issues
FIGURE 9 IMM Service Mediating Between Object Implementers of Different Versions

OM A.03 IMM A03 Traffic Interface VPN Stack
: salmmOmCcblnitialize_3() | : I
»l
[oK I ' |
L e] | I
= | ! |
| | | I
: salmmCcbObjectModify _2() | : |
N] |
: I salmmOiCcbObjectModifyCallback (ccbld) : |
| »
! I oK 1 :
T 1 :
e T J : |
salmmCcbApply_3() | |
| ol | |
: I salmmOiCcbCompletedCallback (ccbld) : |
l "Ny
! I oK 1 :
| koo 1 |
| | ! |
: | salmmOichVaIidateCe:Ilback(ccbld) |
| N
| I N
| L salmmOilteratorinitialize (ccbld) :
| N I I
| e e e e e e O _K_ _____
! | T SV =
| L salmmoOilteratorNext() |
| N |
| b DA
! | T =
| L salmmoOilteratorNext() |
| N |
| L —_ DONE |
i . ot ---—
| L salmmOilteratorFinalize() |
| N oK | |
| [T LA | ____ N
: | OK T |
| R e .
| | ! I
: I salmmOiCcbApplyCallback (ccbld) : |
l I
I I oK i :
! K e e J [
: OK | salmmOiCcbFinalizeCallback (ccbld) |
__________ 4 ' N|
:é_salmmOchbFinalize() | : |
N
: oK | : |
4 I |
|
| ! [

AIS Specification

SAI-AIS-IMM-A.03.01 Appendix C.2

199

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Index of Definitions

Index of Definitions

A
abort transaction state 26
administrative

operations 100

owner 75

owner name 75

ownership 75
administrative operations 100
administrative owner 75
administrative owner name 75
administrative ownership 75

(o8
carries over 100
CCB 85
in-progress 28
CCB applier 128
registered 129
CCB states
abort transaction state 26
commit transaction state 27
populate state 26
transaction start state 26
transaction validate state 26
CCB validator 128
registered 129
change request 85
commit transaction state 27
configuration
attributes 24
change bundles 85
objects 24
configuration attributes 24
configuration change bundles 85
configuration objects 24
continuation
functions 100
identifier 100
registered continuation identifier 101
continuation functions 100
continuation identifier 100

G
global validation 145

|

IMM XML Schema Definition 30
implementer name 128

in progress 80

in-progress CCB 28

internal persistent repository 30

L
local validation 145

0}
object access 69
object accessor 69

object implementer 24, 129
API 25
implementer name 128
registered 129
object implementer APl 25
object management API 25
object search 61
objects
configuration 24
runtime 24
operation in progress 80

P

pending CCB 85

pending change requests 85
populate state 26

R
registered CCB applier 129
registered CCB validator 129
registered continuation identifier 101
registered object implementer 129
registered runtime owner 129
repository see internal persistent repository
runtime

attributes 24

objects 24
runtime attributes 24
runtime objects 24
runtime owner 128

registered 129

S
search
criteria 61
iterator 61
search criteria 61
search iterator 61

T
transaction start state 26
transaction validate state 26

AIS Specification

SAI-AIS-IMM-A.03.01 201

10

15

20

25

30

35

40

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Information Model Management Service

	3 Information Model Management Service API
	3.1 IMM Service State Transitions During CCB Processing
	3.2 Object Naming
	3.3 Internal Persistent Repository
	3.4 Unavailability of the IMM Service API on a Non-Member Node
	3.4.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.4.2 Guidelines for IMM Service Implementers

	4 IMM Service - Object Management API Specification
	4.1 Include File and Library Name
	4.2 Type Definitions
	4.2.1 Handles Used by the IMM Service
	4.2.2 Various IMM Service Names
	4.2.3 SaImmValueTypeT
	4.2.4 SaImmClassCategoryT
	4.2.5 SaImmAttrFlagsT
	4.2.6 SaImmAttrValueT
	4.2.7 SaImmAttrDefinitionT_2
	4.2.8 SaImmAttrValuesT_2
	4.2.9 SaImmAttrModificationTypeT
	4.2.10 SaImmAttrModificationT_2
	4.2.11 SaImmScopeT
	4.2.12 SaImmSearchOptionsT
	4.2.13 SaImmSearchParametersT_2
	4.2.14 SaImmCcbFlagsT_3
	4.2.15 SaImmCcbIdT
	4.2.16 SaImmContinuationIdT
	4.2.17 SaImmAdminOperationIdT
	4.2.18 SaImmAdminOperationParamsT_2
	4.2.19 SaImmNotificationMinorIdT
	4.2.20 SaImmAdditionalInfoIdT
	4.2.21 SaImmCallbacksT_3
	4.2.22 IMM Service Object Attributes
	4.2.23 SaImmRepositoryInitModeT

	4.3 Library Life Cycle
	4.3.1 saImmOmInitialize_3()
	4.3.2 saImmOmSelectionObjectGet()
	4.3.3 saImmOmDispatch()
	4.3.4 saImmOmFinalize()

	4.4 Object Class Management
	4.4.1 saImmOmClassCreate_2()
	4.4.2 saImmOmClassDescriptionGet_2()
	4.4.3 saImmOmClassDescriptionMemoryFree_2()
	4.4.4 saImmOmClassDelete()

	4.5 Object Search
	4.5.1 saImmOmSearchInitialize_3()
	4.5.2 saImmOmSearchNext_2()
	4.5.3 saImmOmSearchFinalize()

	4.6 Object Access
	4.6.1 saImmOmAccessorInitialize_3()
	4.6.2 saImmOmAccessorGet_2()
	4.6.3 saImmOmAccessorFinalize()

	4.7 Object Administration Ownership
	4.7.1 saImmOmAdminOwnerInitialize()
	4.7.2 saImmOmAdminOwnerSet()
	4.7.3 saImmOmAdminOwnerRelease()
	4.7.4 saImmOmAdminOwnerFinalize()
	4.7.5 saImmOmAdminOwnerClear()

	4.8 Configuration Changes
	4.8.1 saImmOmCcbInitialize_3()
	4.8.2 saImmOmCcbObjectCreate_2()
	4.8.3 saImmOmCcbObjectDelete()
	4.8.4 saImmOmCcbObjectModify_2()
	4.8.5 saImmOmCcbApply_3()
	4.8.6 saImmOmCcbFinalize()

	4.9 Administrative Operations Invocation
	4.9.1 saImmOmAdminOperationInvoke_3(), saImmOmAdminOperationInvokeAsync_3()
	4.9.2 SaImmOmAdminOperationInvokeCallbackT_3
	4.9.3 saImmOmAdminOperationContinue(), saImmOmAdminOperationContinueAsync()
	4.9.4 saImmOmAdminOperationContinuationClear()

	5 IMM Service - Object Implementer API Specification
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 IMM Service Handles
	5.2.2 SaImmOiImplementerNameT
	5.2.3 SaImmOiRoleFlagsT
	5.2.4 SaImmOiCcbIteratorOptionT
	5.2.5 SaImmOiObjectChangeT
	5.2.6 SaImmOiObjectTraverseT
	5.2.7 SaImmOiCallbacksT_3

	5.3 Library Life Cycle
	5.3.1 saImmOiInitialize_3()
	5.3.2 saImmOiSelectionObjectGet()
	5.3.3 saImmOiDispatch()
	5.3.4 saImmOiFinalize()

	5.4 Object Implementer API
	5.4.1 saImmOiImplementerSet()
	5.4.2 saImmOiImplementerClear()
	5.4.3 saImmOiClassImplementerSet_3()
	5.4.4 saImmOiClassImplementerRelease_3()
	5.4.5 saImmOiObjectImplementerSet_3()
	5.4.6 saImmOiObjectImplementerRelease_3()

	5.5 CCB Validator Callbacks
	5.5.1 SaImmOiCcbValidateCallbackT
	5.5.2 SaImmOiCcbAbortCallbackT_3
	5.5.3 SaImmOiCcbFinalizeCallbackT

	5.6 CCB Applier Callback
	5.6.1 SaImmOiCcbApplyCallbackT_3

	5.7 CCB Iterator API
	5.7.1 saImmOiCcbIteratorInitialize()
	5.7.2 saImmOiCcbIteratorNext()
	5.7.3 saImmOiCcbIteratorFinalize()

	5.8 Runtime Owner APIs
	5.8.1 Runtime Objects Management API
	5.8.1.1 saImmOiRtObjectCreate_2()
	5.8.1.2 saImmOiRtObjectDelete()
	5.8.1.3 saImmOiRtObjectUpdate_2()
	5.8.1.4 SaImmOiRtAttrUpdateCallbackT

	5.8.2 Administrative Operations
	5.8.2.1 SaImmOiAdminOperationCallbackT_3
	5.8.2.2 saImmOiAdminOperationResult()

	6 IMM Service Administration API
	6.1 Administrative Operations on the IMM Service
	6.2 Include File and Library Name
	6.3 Type Definitions
	6.3.1 SaImmMngtAdminOperationT

	6.4 IMM Service Administration API
	6.4.1 SA_IMM_ADMIN_EXPORT

	7 IMM Service UML Information Model
	7.1 DN Formats for the IMM Service UML Class Diagram
	7.2 IMM Service UML Classes

	8 IMM Service Alarms and Notifications
	8.1 Setting Common Attributes
	8.2 Information Model Management Service Notifications
	8.2.1 Information Model Management Service Alarms
	8.2.2 Information Model Management Service Notifications of Miscellaneous Type
	8.2.2.1 Administrative Operation Start
	8.2.2.2 Administrative Operation End
	8.2.2.3 Configuration Update Start
	8.2.2.4 Configuration Update End

	Appendix A Example Use Case
	Appendix B Sequence Diagrams
	Appendix C Compatibility Issues
	C.1 Object Manager Considerations
	C.2 Example Using Object Implementers of Different Versions

	Index of Definitions

