
Service AvailabilityTM Forum
Application Interface Specification

Information Model Management Service SAI-AIS-IMM-A.03.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-IMM-A.03.01 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-IMM-A.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
Table of Contents Information Model Management Service

1 Document Introduction . 11

 1.1 Document Purpose . 11
 1.2 AIS Documents Organization . 11
 1.3 History . 11
 1.3.1 New Topics .12
 1.3.2 Clarifications .15
 1.3.3 Deleted Topics .15
 1.3.4 Other Changes .15
 1.3.5 Superseded and Superseding Functions .16
 1.3.6 Changes in Return Values of API and Administrative Functions .18
 1.4 References . 19
 1.5 How to Provide Feedback on the Specification . 19
 1.6 How to Join the Service Availability™ Forum . 19
 1.7 Additional Information . 20
 1.7.1 Member Companies .20
 1.7.2 Press Materials .20

2 Overview . 21

 2.1 Information Model Management Service . 21

3 Information Model Management Service API . 23
 3.1 IMM Service State Transitions During CCB Processing . 26
 3.2 Object Naming . 29
 3.3 Internal Persistent Repository . 30
 3.4 Unavailability of the IMM Service API on a Non-Member Node . 31
 3.4.1 A Member Node Leaves or Rejoins the Cluster Membership .31
 3.4.2 Guidelines for IMM Service Implementers .32

4 IMM Service - Object Management API Specification . 33

 4.1 Include File and Library Name . 33
 4.2 Type Definitions . 33
 4.2.1 Handles Used by the IMM Service .33
 4.2.2 Various IMM Service Names .34
 4.2.3 SaImmValueTypeT .34
 4.2.4 SaImmClassCategoryT .34
 4.2.5 SaImmAttrFlagsT .35
 4.2.6 SaImmAttrValueT .36
 4.2.7 SaImmAttrDefinitionT_2 .36
 4.2.8 SaImmAttrValuesT_2 .37
 4.2.9 SaImmAttrModificationTypeT .37
AIS Specification SAI-AIS-IMM-A.03.01 5

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
 4.2.10 SaImmAttrModificationT_2 .38
 4.2.11 SaImmScopeT .38
 4.2.12 SaImmSearchOptionsT .39
 4.2.13 SaImmSearchParametersT_2 .40
 4.2.14 SaImmCcbFlagsT_3 .41
 4.2.15 SaImmCcbIdT .41
 4.2.16 SaImmContinuationIdT .41
 4.2.17 SaImmAdminOperationIdT .42
 4.2.18 SaImmAdminOperationParamsT_2 .42
 4.2.19 SaImmNotificationMinorIdT .42
 4.2.20 SaImmAdditionalInfoIdT .43
 4.2.21 SaImmCallbacksT_3 .43
 4.2.22 IMM Service Object Attributes .43
 4.2.23 SaImmRepositoryInitModeT .44
 4.3 Library Life Cycle . 46
 4.3.1 saImmOmInitialize_3() .46
 4.3.2 saImmOmSelectionObjectGet() .49
 4.3.3 saImmOmDispatch() .50
 4.3.4 saImmOmFinalize() .52
 4.4 Object Class Management . 54
 4.4.1 saImmOmClassCreate_2() .54
 4.4.2 saImmOmClassDescriptionGet_2() .56
 4.4.3 saImmOmClassDescriptionMemoryFree_2() .58
 4.4.4 saImmOmClassDelete() .59
 4.5 Object Search . 61
 4.5.1 saImmOmSearchInitialize_3() .62
 4.5.2 saImmOmSearchNext_2() .65
 4.5.3 saImmOmSearchFinalize() .67
 4.6 Object Access . 69
 4.6.1 saImmOmAccessorInitialize_3() .69
 4.6.2 saImmOmAccessorGet_2() .71
 4.6.3 saImmOmAccessorFinalize() .73
 4.7 Object Administration Ownership . 75
 4.7.1 saImmOmAdminOwnerInitialize() .75
 4.7.2 saImmOmAdminOwnerSet() .77
 4.7.3 saImmOmAdminOwnerRelease() .79
 4.7.4 saImmOmAdminOwnerFinalize() .81
 4.7.5 saImmOmAdminOwnerClear() .83
 4.8 Configuration Changes . 85
 4.8.1 saImmOmCcbInitialize_3() .86
 4.8.2 saImmOmCcbObjectCreate_2() .88
 4.8.3 saImmOmCcbObjectDelete() .91
 4.8.4 saImmOmCcbObjectModify_2() .93
 4.8.5 saImmOmCcbApply_3() .95
 4.8.6 saImmOmCcbFinalize() .98
6 SAI-AIS-IMM-A.03.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
 4.9 Administrative Operations Invocation . 100
 4.9.1 saImmOmAdminOperationInvoke_3(), saImmOmAdminOperationInvokeAsync_3()102
 4.9.2 SaImmOmAdminOperationInvokeCallbackT_3 .107
 4.9.3 saImmOmAdminOperationContinue(), saImmOmAdminOperationContinueAsync() 111
 4.9.4 saImmOmAdminOperationContinuationClear() .115

5 IMM Service - Object Implementer API Specification . 117
 5.1 Include File and Library Name . 117
 5.2 Type Definitions . 117
 5.2.1 IMM Service Handles .117
 5.2.2 SaImmOiImplementerNameT .117
 5.2.3 SaImmOiRoleFlagsT .117
 5.2.4 SaImmOiCcbIteratorOptionT .118
 5.2.5 SaImmOiObjectChangeT .119
 5.2.6 SaImmOiObjectTraverseT .119
 5.2.7 SaImmOiCallbacksT_3 .120
 5.3 Library Life Cycle . 121
 5.3.1 saImmOiInitialize_3() .121
 5.3.2 saImmOiSelectionObjectGet() .123
 5.3.3 saImmOiDispatch() .125
 5.3.4 saImmOiFinalize() .126
 5.4 Object Implementer API . 128
 5.4.1 saImmOiImplementerSet() .130
 5.4.2 saImmOiImplementerClear() .132
 5.4.3 saImmOiClassImplementerSet_3() .133
 5.4.4 saImmOiClassImplementerRelease_3() .136
 5.4.5 saImmOiObjectImplementerSet_3() .138
 5.4.6 saImmOiObjectImplementerRelease_3() .141
 5.5 CCB Validator Callbacks . 144
 5.5.1 SaImmOiCcbValidateCallbackT .146
 5.5.2 SaImmOiCcbAbortCallbackT_3 .147
 5.5.3 SaImmOiCcbFinalizeCallbackT .149
 5.6 CCB Applier Callback . 150
 5.6.1 SaImmOiCcbApplyCallbackT_3 .151
 5.7 CCB Iterator API . 153
 5.7.1 saImmOiCcbIteratorInitialize() .154
 5.7.2 saImmOiCcbIteratorNext() .156
 5.7.3 saImmOiCcbIteratorFinalize() .158
 5.8 Runtime Owner APIs . 160
 5.8.1 Runtime Objects Management API .160
 5.8.1.1 saImmOiRtObjectCreate_2() .160
 5.8.1.2 saImmOiRtObjectDelete() .163
 5.8.1.3 saImmOiRtObjectUpdate_2() .165
 5.8.1.4 SaImmOiRtAttrUpdateCallbackT .167
 5.8.2 Administrative Operations .169
AIS Specification SAI-AIS-IMM-A.03.01 7

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
 5.8.2.1 SaImmOiAdminOperationCallbackT_3 .169
 5.8.2.2 saImmOiAdminOperationResult() .171

6 IMM Service Administration API . 173
 6.1 Administrative Operations on the IMM Service . 173
 6.2 Include File and Library Name . 173
 6.3 Type Definitions . 173
 6.3.1 SaImmMngtAdminOperationT .173
 6.4 IMM Service Administration API . 174
 6.4.1 SA_IMM_ADMIN_EXPORT .174

7 IMM Service UML Information Model . 177
 7.1 DN Formats for the IMM Service UML Class Diagram . 177
 7.2 IMM Service UML Classes . 177

8 IMM Service Alarms and Notifications . 179
 8.1 Setting Common Attributes . 179
 8.2 Information Model Management Service Notifications . 181
 8.2.1 Information Model Management Service Alarms .181
 8.2.2 Information Model Management Service Notifications of Miscellaneous Type 181
 8.2.2.1 Administrative Operation Start .181
 8.2.2.2 Administrative Operation End .183
 8.2.2.3 Configuration Update Start .185
 8.2.2.4 Configuration Update End .186

Appendix A Example Use Case . 187

Appendix B Sequence Diagrams . 191

Appendix C Compatibility Issues . 197
 C.1 Object Manager Considerations . 197
 C.2 Example Using Object Implementers of Different Versions . 198

Index of Definitions . 201
8 SAI-AIS-IMM-A.03.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
List of Figures
Figure 1: IMM Service Interfaces . 23
Figure 2: CCB State Machine . 28
Figure 3: IMM Service UML Classes . 178
Figure 4: Example of Using the IMM Service to Change the Configuration of a Real Application . . . 187
Figure 5: Successful CCB, Independent CCB Appliers and Validators . 192
Figure 6: Failed CCB, Independent CCB Appliers and Validators . 193
Figure 7: Successful CCB, OI is both CCB Validator and CCB Applier . 194
Figure 8: Failed CCB, OI is both CCB Validator and CCB Applier . 195
Figure 9: IMM Service Mediating Between Object Implementers of Different Versions 199

List of Tables
Table 1: Superseded Functions and Type Definitions in Version A.03.01 . 16
Table 2: Changes in Return Values of API and Administrative Functions . 18
Table 3: DN Formats for Objects of the IMM Service Class Diagram . 177
Table 4: Administrative Operation Start. 182
Table 5: Administrative Operation End . 184
Table 6: Configuration Update Start. 185
Table 7: Configuration Update End . 186
AIS Specification SAI-AIS-IMM-A.03.01 9

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Information Model Management Service of the Application
Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is
intended for use by implementers of the Application Interface Specification and by
application developers who would use the Application Interface Specification to
develop applications that must be highly available. The AIS is defined in the C pro-
gramming language, and requires substantial knowledge of the C programming lan-
guage.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Platform Interface
Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
The previous releases of the IMM Service specification are:

SAI-AIS-IMM-A.01.01

SAI-AIS-IMM-A.02.01

This section presents the changes of the current release, SAI-AIS-IMM-A.03.01, with
respect to the SAI-AIS-IMM-A.02.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 1 11

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.1 New Topics
⇒ To deal with configuration changes that affect objects of different object imple-

menters, the tasks performed by an object implementer have been split in three
parts, and the following roles have been introduced for each of these tasks: CCB
validator, CCB applier, and runtime owner.

The CCB validator verifies the changes proposed to an object in a CCB from a
particular aspect, and different aspects can be verified by different CCB valida-
tors. Therefore, an IMM object may have multiple CCB validators. For a CCB to
be applied, in a first step, all CCB validators of all affected objects need to accept
the proposed changes. If so, the IMM Service applies the changes to the SA
Forum Information Model.

CCB appliers deploy the changes contained in the SA Forum Information Model.
As changes proposed to a configuration object may affect multiple entities in the
system, an object may have multiple CCB appliers.

The runtime owner is responsible for updating the state information reflected in
the SA Forum Information Model and for carrying out administrative operations.
Each object in the SA Forum Information Model can have only one runtime
owner.

The introduction of this functional split implied a fair amount of changes in the
IMM Service specification. The changes are listed next:

• The SA_IMM_CCB_REGISTERED_OI flag was replaced with the
SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS and
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags and the SaImmCcbFlagsT
type was superseded by SaImmCcbFlagsT_3 (see
Section 4.2.14 on page 41). Note that these flags indicate that the registration
of the given category of object implementers is not required for the success of
the CCB.

• The SA_IMM_ATTR_IMPLEMENTER_NAME attribute is no longer supported.
Instead, three separate attributes of an object are defined (see
Section 4.2.22 on page 43), one for each object implementer role:
SA_IMM_ATTR_VALIDATOR_NAME, SA_IMM_ATTR_APPLIER_NAME, and
SA_IMM_ATTR_RUNTIME_OWNER_NAME. These attributes of a configuration
object are persistent runtime attributes, and as such, they can be configured.

• The ccbId used in callbacks of the OI interface was made global, and its life
time is now tied to the life time of the CCB handle of a created CCB. The
ccbId is returned in the saImmOmCcbInitialize_3() function (see
Section 4.8.1 on page 86). A nonzero valid ccbId can be specified in the
12 SAI-AIS-IMM-A.03.01 Section 1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
saImmOmSearchInitialize_3() and
saImmOmAccessorInitialize_3() functions (see
Section 4.5.1 on page 62 and Section 4.6.1 on page 69, respectively), so that
an object implementer can perform object search and use the accessor func-
tions using this CCB identifier.
The SaImmOiCcbIdT was replaced with the SaImmCcbIdT type (see
Section 4.2.15 on page 41).

• The saImmOmCcbObjectCreate_2(), saImmOmCcbObjectDelete(),
and saImmOmCcbObjectModify_2() functions (see
Section 4.8.2 on page 88, Section 4.8.3 on page 91, and
Section 4.8.4 on page 93, respectively) no longer trigger the invocation of the
corresponding callback functions of object implementers
SaImmOiCcbObjectCreateCallbackT_2,
SaImmOiCcbObjectDeleteCallbackT, and
SaImmOiCcbObjectModifyCallbackT_2. Instead, as explained in the
next item, the validation of the CCB changes is now performed in the
SaImmOiCcbValidateCallbackT function (which supersedes the
SaImmOiCcbCompletedCallbackT function), and the deployment of the
CCB changes is performed in the SaImmOiCcbApplyCallbackT_3 function.

• The saImmOmCcbApply_3() function (see Section 4.8.5 on page 95) trig-
gers the invocation of the saImmOiCcbValidateCallback() function of
validators (see Section 5.5.1 on page 146), which perform local and global val-
idation (for the meaning of these terms, see Section 5.5 on page 144). If all
CCB validators accept the CCB changes, the IMM Service applies these
changes to the SA Forum Information Model and invokes the
saImmOiCcbApplyCallback() (see Section 5.6.1 on page 151) of all CCB
appliers to deploy these changes.

• The saImmOmCcbFinalize() (see Section 4.8.6 on page 98) function also
invalidates the CCB identifier associated with the CCB handle to be finalized.
Additionally, the description of this function was extended to state when it is
allowed to invoke it.

• The object implementer roles CCB validator, CCB applier, and runtime owner
are defined in the SaImmOiRoleFlagsT type in Section 5.2.3 on page 117. In
several places in this document, these more specific terms are used instead of
the generic term “object implementer”.

• A new role parameter has been added to the following functions to specify
the role of an object implementer: saImmOiClassImplementerSet_3(),
saImmOiClassImplementerRelease_3(),
saImmOiObjectImplementerSet_3(), and
saImmOiObjectImplementerRelease_3() (see
Section 5.4.3 on page 133 up to Section 5.4.6 on page 141).
AIS Specification SAI-AIS-IMM-A.03.01 Section 1.3.1 13

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The superseding functions SaImmOiCcbValidateCallbackT (see
Section 5.5.1 on page 146), SaImmOiCcbAbortCallbackT_3 (see
Section 5.5.2 on page 147, and SaImmOiCcbApplyCallbackT_3 (see
Section 5.6.1 on page 151) use SaImmCcbIdT for the ccbId type and have
extended semantics.
To enable a CCB validator to dispose of the CCB identifier and of any associ-
ated state in case the CCB has been successfully validated by all CCB valida-
tors, the SaImmOiCcbFinalizeCallbackT function has been defined (see
Section 5.5.3 on page 149).
Due to the aforementioned changes in object implementer callback functions,
the SaImmOiCallbacksT_2 type was replaced with
SaImmOiCallbacksT_3 (see Section 5.2.7 on page 120). This modification,
in turn, has led to the replacement of the saImmOiInitialize_2() function
with the saImmOiInitialize_3() function (see
Section 5.3.1 on page 121).

• The description of the saImmOiAdminOperationResult() (see
Section 5.8.2.2 on page 171) has been extended to explain the IMM Service
actions if the runtime owner unregisters during the execution of an administra-
tive operation.

• A CCB iterator API has been introduced (see Section 5.7 on page 153) to
allow CCB validators and appliers to iterate through configuration changes
associated with a given CCB identifier. The following types have been intro-
duced for this API:
• SaImmOiCcbIteratorHandleT (see Section 5.2.1 on page 117);
• SaImmOiRoleFlagsT, SaImmOiCcbIteratorOptionT,
SaImmOiObjectChangeT, and SaImmOiObjectTraverseT (see
Section 5.2.3 on page 117 up to Section 5.2.6 on page 119).

• The IMM Service UML model was extended by a new object class,
SaImmCcbApplier (see Section 7.2 on page 177). This class contains the
saImmCcbApplierRank configuration attribute, which represents the rank
that the IMM Service uses to determine in which order it invokes the
saImmOiCcbApplyCallback() function of CCB appliers.

• Appendix A on page 187 shows a use case for the usage of CCB validators
and appliers.

• Appendix B on page 191 provides a series of sequence diagrams showing the
API functions needed to update a configuration using CCBs.

• Appendix C on page 197 discusses compatibility issues that occur when
object managers and object implementers use different versions of the IMM
Service API.
14 SAI-AIS-IMM-A.03.01 Section 1.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ To support notifications and correlation Ids, the following changes have been
made to the IMM document:
• Section 4.2.19 on page 42 and Section 4.2.20 on page 43 have been intro-

duced.
• The correlationIds parameter has been added to the functions
saImmOmAdminOperationInvoke_2(),
saImmOmAdminOperationInvokeAsync_2(), and
saImmOmCcbApply(). As a consequence, these function have been super-
seded, see Section 4.9.1 on page 102 and Section 4.8.5 on page 95.

• The notificationId parameter has been added to the
SaImmOmAdminOperationInvokeCallbackT function, which was super-
seded, see Section 4.9.2 on page 107. Due to this replacement, the
SaImmCallbacksT type was replaced with the SaImmCallbacksT_3 type
(see Section 4.2.21 on page 43). This latter modification has led, in turn, to the
replacement of the saImmOmInitialize() function with the
saImmOmInitialize_3() function (see Section 4.3.1 on page 46).

• The correlationIds parameter has been added to the
SaImmOiAdminOperationCallbackT_2 function (which was superseded,
see Section 5.8.2.1 on page 169) and to the
SaImmOiCcbApplyCallbackT_3 function (see Section 5.6.1 on page 151).

• Chapter 8 now contains notifications produced by the IMM Service.

1.3.2 Clarifications

Chapter 3 clarifies in a paragraph when runtime objects are persistent.

1.3.3 Deleted Topics

Chapter 9 of the IMM Service specification A.02.01 on the IMM Service management
interface, which was intended to indicate that the SNMP MIBs were not yet available,
has been removed, as no MIBs are provided in the IMM Service specification
A.03.01.

1.3.4 Other Changes
• The description of all attributes of Section 4.2.22 on page 43 has been corrected

to state that, even for configuration objects, these attributes are runtime
attributes and not configuration attributes. The names of the two attributes
saImmAttrClassName and saImmAttrAdminOwnerName were corrected to start
with lower case.
AIS Specification SAI-AIS-IMM-A.03.01 Section 1.3.2 15

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The value for the SA_IMM_ADMIN_EXPORT operationId of the
SA_IMM_ADMIN_EXPORT administrative operation (see
Section 6.4.1 on page 174) was missing in the previous version of this specifica-
tion; it is now defined in Section 6.3.1 on page 173.

• In Section 7.2 on page 177, a correction has been made to state that the
SaImmMngt is a configuration object class and not a runtime object class.

• In function signatures having an in parameter that is a pointer to another pointer
y (or to an array of pointers z), the const qualifier has been added to the perti-
nent parameter to indicate that y (or z) must not be modified in the called func-
tion. The following non-superseded functions have been affected:
saImmOmClassCreate_2(), saImmOmAdminOwnerSet(),
saImmOmAdminOwnerRelease(), saImmOmAdminOwnerClear(),
saImmOmCcbObjectCreate_2(), saImmOmCcbObjectModify_2(),
saImmOiRtObjectCreate_2(), saImmOiRtObjectUpdate_2().

1.3.5 Superseded and Superseding Functions

The IMM Service defines for the version A.03.01 new functions and new type defini-
tions to replace functions and type definitions of the version A.02.01. The superseded
functions and type definitions are no longer supported in version A.03.01, and no
description is provided for them in this document. Regarding the support of backward
compatibility in SA Forum AIS, refer to [2].

The list of replaced functions and type definitions is presented in alphabetic order in
Table 1.

The names of the superseding functions and type definitions are obtained by adding
“_3” to the respective names of the previous version or by replacing “_2” by “_3” if the
superseded functions or type definitions had already “_2” at the end of their names.
Exceptions to these rules are indicated by footnotes in Table 1.

Table 1 Superseded Functions and Type Definitions in Version A.03.01

Functions and Type Definitions of Version A.02.01 no Longer Supported in A.03.01

SaImmCallbacksT

SaImmOiAdminOperationCallbackT_2

SaImmCcbFlagsT

SaImmOiCallbacksT_2

SaImmOiCcbAbortCallbackT
16 SAI-AIS-IMM-A.03.01 Section 1.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
SaImmOiCcbApplyCallbackT

SaImmOiCcbCompletedCallbackT1

SaImmOiCcbIdT2

SaImmOiCcbObjectCreateCallbackT_23

SaImmOiCcbObjectDeleteCallbackT3

SaImmOiCcbObjectModifyCallbackT_23

saImmOiClassImplementerRelease()

saImmOiClassImplementerSet()

saImmOiInitialize_2()

saImmOiObjectImplementerRelease()

saImmOiObjectImplementerSet()

saImmOmAccessorInitialize()

saImmOmAdminOperationInvoke_2()

saImmOmAdminOperationInvokeAsync_2()

saImmOmCcbApply()

saImmOmCcbInitialize()

saImmOmInitialize()

saImmOmSearchInitialize_2()

1. The name of the superseding function is
SaImmOiCcbValidateCallbackT
2. This type definition was replaced with the SaImmCcbIdT type.
3. This function has been removed. To a great extent, its functionality is now provided by the
SaImmOiCcbValidateCallbackT function together with the object iterator API functions.

Table 1 Superseded Functions and Type Definitions in Version A.03.01 (Continued)

Functions and Type Definitions of Version A.02.01 no Longer Supported in A.03.01
AIS Specification SAI-AIS-IMM-A.03.01 Section 1.3.5 17

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.6 Changes in Return Values of API and Administrative Functions

The following table applies only to functions that have not been superseded.

Table 2 Changes in Return Values of API and Administrative Functions

Function Return Value Change
Type

SA_IMM_ADMIN_EXPORT administrative operation SA_AIS_ERR_INVALID_PARAM

SA_AIS_ERR_TIMEOUT

SA_AIS_ERR_NO_MEMORY

new

saImmOiImplementerSet() SA_AIS_ERR_INIT new

saImmOiRtObjectCreate_2(),
saImmOiRtObjectUpdate_2()

SA_AIS_ERR_INVALID_PARAM changed

saImmOiRtObjectCreate_2(),
saImmOiRtObjectUpdate_2(),
saImmOmAccessorGet_2(),
saImmOmAdminOperationContinuationClear(),
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync(),
saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectModify_2(),
saImmOmClassCreate_2(),
saImmOmClassDescriptionGet_2(),
saImmOmClassDescriptionMemoryFree_2(),
saImmOmSearchNext_2()

SA_AIS_ERR_VERSION1

1. This return value should have been added in the IMM Service B.02.01 specification to all functions in this row.

new

saImmOmAdminOwnerFinalize() SA_AIS_ERR_BUSY new

saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectDelete(),
saImmOmCcbObjectModify_2()

SA_AIS_ERR_FAILED_OPERATION extended

saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectDelete(),
saImmOmCcbObjectModify_2()

SA_AIS_ERR_TIMEOUT

SA_AIS_ERR_BAD_OPERATION

SA_AIS_ERR_NOT_EXIST

changed

saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectModify_2()

SA_AIS_ERR_INVALID_PARAM changed
18 SAI-AIS-IMM-A.03.01 Section 1.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.4 References
The following document contains information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview, SAI-Over-
view-B.05.01

[2] Service AvailabilityTM Forum, Service Availability Interface, C Programming
Model, SAI-AIS-CPROG-B.05.01

[3] Service AvailabilityTM Forum, Information Model in XML Metadata Interchange
(XMI) v2.1 format, SAI-IM-XMI-A.04.01.xml.zip

[4] Service AvailabilityTM Forum, IMM XML Schema Definition,
SAI-AIS-IMM-XSD.A.01.01.xsd

[5] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.04.01

[6] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.03.01

[7] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[8] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum Web site (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.
AIS Specification SAI-AIS-IMM-A.03.01 Section 1.4 19

http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the SA Forum Web site (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the SA Forum
Web site (http://www.saforum.org).
20 SAI-AIS-IMM-A.03.01 Section 1.7 AIS Specification

http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Information Model Management Service within the
Application Interface Specification (AIS).

The IMM Service is a cluster-wide service that must be highly-available in the sense
that no single failure should take the entire service down.

2.1 Information Model Management Service
The different entities of an SA Forum cluster, such as components provided by the
Availability Management Framework, checkpoints provided by the Checkpoint Ser-
vice, or message queues provided by the Message Service are represented by vari-
ous objects of the SA Forum Information Model.

The SA Forum Information Model (IM) is specified in UML and managed by the Infor-
mation Model Management (IMM) Service.

The objects in the SA Forum Information Model are provided with their attributes and
administrative operations (that is, operations that can be performed on the repre-
sented entities through system management interfaces). For management applica-
tions or object managers, the IMM Service provides the APIs to create, access, and
manage these objects.

The IMM Service delivers the requested operations to the appropriate AIS Services
or applications (referred to as object implementers) that implement these objects for
execution.

Information Model objects and attributes can be classified into two categories:

• Configuration objects and attributes
• Runtime objects and attributes

The IMM Service defines two sets of APIs:

(1) An object management API (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An object implementer API (OI-API) restricted to object implementers.
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 2 21

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3 Information Model Management Service API
The Service AvailabilityTM Forum (SA Forum) Information Model (IM) is specified in
UML, and it is the collection of various managed objects that represent the logical
entities of an SA Forum system. The SA Forum IM also specifies the attributes of
these managed objects and administrative operations that can be performed on the
entities they represent by using system management interfaces.

The Information Model Management (IMM) Service is the SA Forum Service that
manages all objects of the SA Forum Information Model and provides the APIs to
access and manage these objects.

FIGURE 1 presents an overview of the interfaces provided by the IMM Service.

FIGURE 1 IMM Service Interfaces

System
Management
Application 1

System
Management
Application 2 IMM Object

Management
API

IMM Object
Implementer

API

IMM
SERVICE

Object
Implementer 1 Object Implementer 2

IM Object

Object
Implementation
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 3 23

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
The implementation of the logical entities represented by the different managed
objects in the SA Forum Information Model is not part of the IMM Service; instead, it
is provided by user applications or other AIS Services such as the Checkpoint Ser-
vice or the Availability Management Framework.

AIS Services and applications that implement the logical entities represented by IMM
objects are called object implementers in the remainder of this document.

IMM objects are organized in a tree hierarchy. The hierarchy follows the structure of
the LDAP distinguished name of each object. For more information about LDAP
object names, refer to [2].

IMM objects and attributes can be classified into two categories:

• Configuration Objects and Attributes
• Configuration objects and configuration attributes are the means by which

system management applications provide input to an object implementer on
the desired sets of objects and on their handling. The set of configuration
objects and attributes constitute the prescriptive part of the SA Forum Informa-
tion Model.

• Configuration objects and attributes are typically under the control of system
management applications. They are of a persistent nature and must survive a
full cluster power-off.

• Configuration attributes are read-write attributes from an object management
perspective but read-only from an object implementer perspective.

• Runtime Objects and Attributes
• Runtime objects and runtime attributes are the means by which object

implementers reflect in the SA Forum Information Model the current state of
the entities they implement. The set of runtime objects and attributes consti-
tute the descriptive part of the SA Forum Information Model. Runtime objects
and attributes are typically under the control of object implementers.

• Runtime objects that contain persistent runtime attributes or have persistent
children (configuration or runtime objects) are persistent and must survive a
full cluster power-off. Non-persistent runtime attributes do not survive a full
cluster power-off.

• Runtime attributes are read-only attributes from an object management per-
spective but read-write from an object implementer perspective.
24 SAI-AIS-IMM-A.03.01 Chapter 3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
As attributes cannot exist outside of an encapsulating object, configuration attributes
can only belong to configuration objects, as opposed to runtime attributes that may
belong to objects of either category. Runtime objects can only have runtime
attributes.

Object implementers cannot on their own initiative create and delete configuration
objects or modify configuration attributes by using the object implementer interface.
On the other hand, system management applications cannot directly create and
delete runtime objects or modify runtime attributes. However, as a consequence of
some administrative operations requested by these system management applica-
tions, object implementers may create or delete runtime objects or modify runtime
attributes to reflect the new system state after the completion of the administrative
operation.

The IMM Service exposes two sets of APIs:

(1) An object management API (OM-API), which is typically exposed to system
management applications (for example, SNMP agents).

(2) An object implementer API (OI-API), which is intended to be used by object
implementers.

The OM-API is described in Chapter 4. The OI-API is found in Chapter 5.

The IMM Service acts as a mediator between object managers and object implement-
ers. In particular, an object manager uses the object management API to carry out
configuration changes and administrative operations on entities of the system imple-
mented by different object implementers. In order to do this, an object manager
manipulates the managed object of the SA Forum Information Model maintained by
the IMM Service. In turn, the IMM Service propagates these manipulations to the
appropriate object implementers for deployment using the object implementer API.
All configuration changes of IMM Service configuration objects are performed in the
context of configuration change bundles (CCB). To carry out these configuration
changes, object implementers are invoked by the IMM Service in different roles.
Object implementers that verify the correctness and consistency of CCBs act in the
role of CCB validators.
Object implementers that deploy the validated CCB in the system act in the role of
CCB appliers. An object implementer registers with the IMM Service in which role or
roles it is going to act for the different configuration objects.
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 3 25

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.1 IMM Service State Transitions During CCB Processing
In this section, the term “manager” is used to represent an object management appli-
cation.

When the IMM Service processes a CCB, the IMM Service associates a state
machine with that CCB. This state machine goes through a number of state transi-
tions (see FIGURE 2 on page 28).

Some of the state transitions are triggered by function calls, whereas other state tran-
sitions are triggered by the return values of the object implementer callback functions.

A manager initiates a set of configuration changes by calling the
saImmOmCcbInitialize_3() function, which initializes the state machine of the
IMM Service for the corresponding CCB and sets it to the populate state. The man-
ager then calls the saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectDelete(), and saImmOmCcbObjectModify() functions to
describe the modifications.

With the invocation of the saImmOmCcbApply_3() function, the manager indicates
that the set of configuration changes is now complete and needs to be applied to the
SA Forum Information Model. This call will initiate a procedure in which the IMM Ser-
vice attempts to apply the modifications to the running configuration:

(1) The IMM Service serializes simultaneous CCB application requests, so that only
one of them may enter the critical region at a time. The CCB that enters the crit-
ical region moves to the transaction start state.

(2) In the transaction start state, the IMM Service will call the
saImmOiCcbValidateCallback() function on all involved CCB validators,
which moves the CCB into the transaction validate state.

(3) If any of the CCB validators returns an error for the CCB, the IMM Service enters
the abort transaction state to abort the current CCB. In this state,

• the IMM Service invokes the saImmOiCcbAbortCallback() functions of
all involved CCB validators,

• the saImmOmCcbApply_3() function call returns with an error,
• the current CCB exits the critical region, and the IMM Service proceeds with

the next CCB application request, if there is one pending.

After the IMM Service exits the abort transaction state, all change requests
associated with the CCB are removed, and the CCB is returned to the popu-
late state, where it will remain until used for a new set of changes or finalized.
26 SAI-AIS-IMM-A.03.01 Section 3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
(4) If all callbacks from (2) return successfully, the CCB enters the commit transac-
tion state, and the IMM Service starts notifying all relevant CCB appliers by
invoking their saImmOiCcbApplyCallback() functions in the order specified
by their rank in the IMM Service configuration (see Section 5.6 on page 150).

(5) After all the CCB applier callbacks have returned,
• the IMM Service invokes the saImmOiCcbFinalizeCallback() function

of all involved CCB validators to release the CCB identifier and any associ-
ated state,

• the saImmOmCcbApply_3() function call returns successfully, which noti-
fies the manager that the CCB has been successfully applied, and

• the current CCB exits the critical region, all changes associated with it are
removed, and it is returned to the populate state, where it will remain until
used to make a new set of changes or finalized.
AIS Specification SAI-AIS-IMM-A.03.01 Section 3.1 27

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
FIGURE 2 CCB State Machine

A CCB validator process may also be a CCB applier for the same object. However, a
CCB validator process may also validate other parts of the configuration of which it is
not the CCB applier.

A CCB that is in the critical region is termed an in-progress CCB.
28 SAI-AIS-IMM-A.03.01 Section 3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.2 Object Naming
The Distinguished Name (DN) of an object (also simply called the object name) is
constructed by prefixing the DN of the object's parent in the IMM tree hierarchy with
the Relative Distinguished Name (RDN) of the object. The ',' character is used as a
separator between the RDN of the object and the DN of its parent as follows:

Object_DN = "Object_RDN,Parent_Object_DN"

Objects that are immediately under the root of the IMM hierarchy have a DN that is
equal to their RDN.

Each object must have one and only one attribute which is used to build the object
RDN as follows:

Object_RDN = "RDN_attribute_name=RDN_attribute_value"
AIS Specification SAI-AIS-IMM-A.03.01 Section 3.2 29

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.3 Internal Persistent Repository
The IMM Service maintains a copy of all its persistent entities (class definitions and
persistent objects with their persistent attributes) within an internal persistent
repository kept on stable storage. The storage holding the IMM Service persistent
repository must be highly available, which implies storage replication. The nature of
this internal repository is implementation-specific.

During startup of the IMM Service, the contents of its internal repository may be over-
written (or initialized if the internal repository was empty) from the contents of an XML
file. It is implementation-specific how the XML file is provided to the IMM Service at
startup. The XML file must conform to the IMM XML Schema Definition (see [4]).
Such an XML file may be the result of the SA_IMM_ADMIN_EXPORT administrative
operation (see Section 6.4.1 on page 174). If the XML file contains the description of
non-persistent objects or attributes, these objects and attributes are ignored. The
configuration parameter saImmRepositoryInit of the SaImmMngt object class
(see Section 7.2 on page 177) specifies whether to overwrite or not the contents of
the IMM Service internal repository at startup of the IMM Service.

When the IMM Service starts (for example, at the initial cluster startup or after a full
cluster power-off), it contains only the class definitions and persistent objects with
their persistent attributes that are present in its internal repository. Non-persistent
runtime objects must be re-created by object implementers. The values of non-per-
sistent runtime attributes (cached or not) will be obtained from the object implement-
ers.
30 SAI-AIS-IMM-A.03.01 Section 3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.4 Unavailability of the IMM Service API on a Non-Member Node
This section describes the behavior of the IMM Service API from the point of view of a
regular application process (as opposed to a middleware process implementing an
AIS Service).

The behavior of the IMM Service API used by middleware processes that implement
AIS Services is not specified and is left implementation-dependent. Processes imple-
menting other AIS Services may need to access the IMM Service when a node that is
not in the cluster membership is started up or shutdown.

The IMM Service does not provide service to regular application processes on cluster
nodes that are not in the cluster membership (see [5]).

The following subsection describes the behavior of the IMM Service under various
conditions that cause the IMM Service to be unavailable on a cluster node.
Section 3.4.2 on page 32 contains guidelines for IMM Service implementers for deal-
ing with a temporary unavailability of the service.

3.4.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [5]) or is being administra-
tively evicted from the cluster membership, the IMM Service behaves as follows
towards processes residing on that cluster node and using or attempting to use the
service:

• Calls to saImmOmInitialize_3() and saImmOiInitialize_3() will fail
with SA_AIS_ERR_UNAVAILABLE.

• All IMM Service APIs that are invoked by the process and that operate on han-
dles already acquired by the process will fail with SA_AIS_ERR_UNAVAILABLE
with the following exceptions, assuming that the handle immHandle or the han-
dle immOiHandle has already been acquired:
⇒ The saImmOmAdminOperationInvokeAsync_3() function may return
SA_AIS_OK or SA_AIS_ERR_UNAVAILABLE, depending on the service
implementation. If it returns SA_AIS_OK, the
saImmOmAdminOperationInvokeCallback() callback function of the
process will be called and will also return SA_AIS_ERR_UNAVAILABLE in the
error parameter; otherwise, the callback will not be called.

⇒ The saImmOmFinalize() and saImmOiFinalize() functions, which are
used to free the object management or object implementer library handles and
all resources associated with these handles.

• An outstanding callback saImmOmAdminOperationInvokeCallback() will
return SA_AIS_ERR_UNAVAILABLE in the error parameter.
AIS Specification SAI-AIS-IMM-A.03.01 Section 3.4 31

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
If the cluster node rejoins the cluster membership, processes executing on the cluster
node will be able to reinitialize new library handles and use the entire set of IMM Ser-
vice APIs that operate on these new handles. However, invocation of APIs that oper-
ate on handles acquired by any process before the cluster node left the membership
will continue to fail with SA_AIS_ERR_UNAVAILABLE (or with the special treatment
described above for asynchronous calls) with the exception of saImmOmFinalize()
and saImmOiFinalize(), which are used to free the library handles and all
resources associated with these handles. Hence, it is recommended for the pro-
cesses to finalize the library handles as soon as the processes detect that the cluster
node left the membership.

When the cluster node leaves the membership, the IMM Service executing on the
remaining nodes of the cluster behaves as if all processes that were using the IMM
Service on the leaving cluster node had been terminated. In particular, if a process on
the leaving cluster node was registered as an object implementer, the IMM Service
will unregister it automatically (see Section 5.4.2 on page 132).

3.4.2 Guidelines for IMM Service Implementers

The implementation of the IMM Service must leverage the SA Forum Cluster Mem-
bership Service (see [5]) to determine the membership status of a cluster node for the
case explained in Section 3.4.1 on page 31 before returning
SA_AIS_ERR_UNAVAILABLE. If the Cluster Membership Service considers a cluster
node as a member of the cluster but the IMM Service experiences difficulty in provid-
ing service to its clients because of transport, communication, or other issues, it must
respond with SA_AIS_ERR_TRY_AGAIN.
32 SAI-AIS-IMM-A.03.01 Section 3.4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4 IMM Service - Object Management API Specification

4.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service object man-
agement API:

#include <saImmOm.h>

To use the IMM Service object management API, an application must be bound with
the following library:

libSaImmOm.so

4.2 Type Definitions
The Information Model Management Service uses the types described in the follow-
ing sections.

4.2.1 Handles Used by the IMM Service

typedef SaUint64T SaImmHandleT;

typedef SaUint64T SaImmAdminOwnerHandleT;

typedef SaUint64T SaImmCcbHandleT;

typedef SaUint64T SaImmSearchHandleT;

typedef SaUint64T SaImmAccessorHandleT;

The acronym CCB stands for Configuration Changes Bundle. For its usage, refer
to Section 4.8 on page 85.
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 4 33

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.2 Various IMM Service Names

The following types represent object class names, administrative owner names, and
object class attribute names. All these names are UTF-8 encoded character strings
terminated by the NULL character.

typedef SaStringT SaImmClassNameT;

typedef SaStringT SaImmAttrNameT;

typedef SaStringT SaImmAdminOwnerNameT;

4.2.3 SaImmValueTypeT

The SaImmValueTypeT contains various data types used by the IMM Service for
class attributes and administrative operation parameters.

typedef enum {

SA_IMM_ATTR_SAINT32T = 1, /* SaInt32T */

SA_IMM_ATTR_SAUINT32T = 2, /* SaUint32T */

SA_IMM_ATTR_SAINT64T = 3, /* SaInt64T */

SA_IMM_ATTR_SAUINT64T = 4, /* SaUint64T */

SA_IMM_ATTR_SATIMET = 5, /* SaTimeT */

SA_IMM_ATTR_SANAMET = 6, /* SaNameT */

SA_IMM_ATTR_SAFLOATT = 7, /* SaFloatT */

SA_IMM_ATTR_SADOUBLET = 8, /* SaDoubleT */

SA_IMM_ATTR_SASTRINGT = 9, /* SaStringT */

SA_IMM_ATTR_SAANYT = 10 /* SaAnyT */

} SaImmValueTypeT;

4.2.4 SaImmClassCategoryT

The SaImmClassCategoryT type is used to distinguish among different categories
of object classes.

typedef enum {

SA_IMM_CLASS_CONFIG = 1,

SA_IMM_CLASS_RUNTIME = 2

} SaImmClassCategoryT;

The values of SaImmClassCategoryT indicate whether the object class is a config-
uration object class or a runtime object class.
34 SAI-AIS-IMM-A.03.01 Section 4.2.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.5 SaImmAttrFlagsT

The SaImmAttrFlagsT type is used to specify the various characteristics of an
attribute of an object class.

#define SA_IMM_ATTR_MULTI_VALUE 0x00000001

#define SA_IMM_ATTR_RDN 0x00000002

#define SA_IMM_ATTR_CONFIG 0x00000100

#define SA_IMM_ATTR_WRITABLE 0x00000200

#define SA_IMM_ATTR_INITIALIZED 0x00000400

#define SA_IMM_ATTR_RUNTIME 0x00010000

#define SA_IMM_ATTR_PERSISTENT 0x00020000

#define SA_IMM_ATTR_CACHED 0x00040000

typedef SaUint64T SaImmAttrFlagsT;

The meaning of the flags listed above is:

• SA_IMM_ATTR_MULTI_VALUE: if this flag is specified, the attribute is a multi-
value attribute; otherwise, the attribute is a single-value attribute.

• SA_IMM_ATTR_RDN: the attribute is used as the Relative Distinguished Name
(RDN) for the containing object. Each object class must have one and only one
RDN attribute. This attribute must be a single-value attribute of type
SA_IMM_ATTR_SASTRINGT or SA_IMM_ATTR_SANAMET and may not be modi-
fied after the object is created. The RDN attribute of a configuration object must
be a configuration attribute.

The following two attributes are mutually exclusive, as an attribute is either a configu-
ration or a runtime attribute.

• SA_IMM_ATTR_CONFIG: the attribute is a configuration attribute. Configuration
attributes are only allowed within object classes of the SA_IMM_CLASS_CONFIG
category.

• SA_IMM_ATTR_RUNTIME: the attribute is a runtime attribute. Runtime attributes
can belong to all object class categories.

The following two attributes are only meaningful for configuration attributes. Setting
them for runtime attributes is not allowed and generates an error.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.5 35

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• SA_IMM_ATTR_WRITABLE: setting this flag for a configuration attribute indicates
that the attribute can be modified. If the flag is not present, the configuration
attribute can only be set when the object is created and cannot be modified or
deleted later on.

• SA_IMM_ATTR_INITIALIZED: setting this flag for a configuration attribute indi-
cates that a value must be specified for this attribute when the object is created.
This flag may not be set in the definition of a configuration attribute that has a
default value.

The following attributes are only meaningful for runtime attributes. Setting them for
configuration attributes is not allowed and generates an error.

• SA_IMM_ATTR_PERSISTENT: setting this flag for runtime attributes indicates
that the attribute must be stored in a persistent manner by the IMM Service. If a
runtime object has persistent attributes, or if one of its children has persistent
attributes, its RDN attribute must be persistent.

• SA_IMM_ATTR_CACHED: setting this flag for a runtime attribute indicates that the
value of the attribute must be cached by the IMM Service. This flag is automati-
cally set by the IMM Service when the SA_IMM_ATTR_PERSISTENT flag is set.

4.2.6 SaImmAttrValueT

The SaImmAttrValueT type is used to represent the values of object attributes.

typedef void *SaImmAttrValueT;

4.2.7 SaImmAttrDefinitionT_2

The SaImmAttrDefinitionT_2 type is used to specify the characteristics of an
attribute belonging to a particular object class.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaImmAttrFlagsT attrFlags;

SaImmAttrValueT attrDefaultValue;

} SaImmAttrDefinitionT_2;

The various fields of the structure above have the following usage:

• attrName: contains the attribute name.
• attrValueType: indicates what type of values can be assigned to this

attribute.
36 SAI-AIS-IMM-A.03.01 Section 4.2.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• attrFlags: contains additional characteristics of this attribute.
• attrDefaultValue: contains a value that will automatically be assigned by

the IMM Service to this attribute if no value is specified when an object contain-
ing this attribute is created. A default value shall only be provided for configura-
tion and persistent runtime attributes. Must be set to NULL if there is no default
value for this attribute.

4.2.8 SaImmAttrValuesT_2

The SaImmAttrValuesT_2 type is used to specify the values of one attribute of an
object.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaUint32T attrValuesNumber;

SaImmAttrValueT *attrValues;

} SaImmAttrValuesT_2;

The attrName field indicates the attribute name, the attrValueType field the type
of the attribute, and the attrValuesNumber field the number of attribute values
contained in the array of value descriptors to which attrValues points.

In order to be present within an object, an attribute must have at least one value.
Optional attributes that have no value are not present in objects.

4.2.9 SaImmAttrModificationTypeT

The SaImmAttrModificationTypeT type specifies the type of modification to
apply on the values of an attribute.

typedef enum {

SA_IMM_ATTR_VALUES_ADD = 1,

SA_IMM_ATTR_VALUES_DELETE = 2,

SA_IMM_ATTR_VALUES_REPLACE = 3

} SaImmAttrModificationTypeT;

• SA_IMM_ATTR_VALUES_ADD is used to add one or several values to an
attribute in an object. If the attribute did not already have a value, the attribute is
added.

• SA_IMM_ATTR_DELETE is used to remove one or several specified values from
an attribute of an object. If all values of the attribute are removed, the attribute is
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.8 37

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
also removed from the object. If the intention is to remove an attribute without
specifying all its values, the SA_IMM_ATTR_REPLACE enum can be used.

• SA_IMM_ATTR_REPLACE is used to replace all current values of an attribute
with a new set of values. If the new set of values is empty, the attribute is
removed. If one or several values are specified and the attribute does not exist in
the object, the attribute is added to the object with the new set of values.

The SaImmAttrModificationTypeT type is used to specify the modification to
apply on an object attribute.

4.2.10 SaImmAttrModificationT_2

typedef struct {

SaImmAttrModificationTypeT modType;

SaImmAttrValuesT_2 modAttr;

} SaImmAttrModificationT_2;

The modType field indicates the type of modification to perform. The modAttr field
specifies the attribute name and the values to be added to the attribute, or to be
removed from the attribute, or that will replace the existing values. An empty set of
values can be specified by setting attrValuesNumber to 0 and attrValues to
NULL in the modAttr field. It is an error to use such an empty set of values with the
SA_IMM_ATTR_VALUES_ADD or SA_IMM_ATTR_VALUES_DELETE modification
types.

4.2.11 SaImmScopeT

The SaImmScopeT type is used to specify the scope of some IMM Service opera-
tions.

typedef enum {

SA_IMM_ONE = 1,

SA_IMM_SUBLEVEL = 2,

SA_IMM_SUBTREE = 3

} SaImmScopeT;

• SA_IMM_ONE indicates that the scope of the operation is targeted to a single
object.

• SA_IMM_SUBLEVEL indicates that the scope of the operation is targeted to one
object and its direct children.

• SA_IMM_SUBTREE indicates that the scope of the operation is targeted to one
object and the entire subtree rooted at that object.
38 SAI-AIS-IMM-A.03.01 Section 4.2.10 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.12 SaImmSearchOptionsT

The SaImmSearchOptionsT is used to specify various options when performing
searches amongst IMM Service objects.

typedef SaUint64T SaImmSearchOptionsT;

Two kinds of options can be specified by SaImmSearchOptionsT:

• Options related to the search criteria. Currently, only one such option is sup-
ported by the IMM Service. It must be specified for all search operations:

#define SA_IMM_SEARCH_ONE_ATTR 0x0001

SA_IMM_SEARCH_ONE_ATTR enables the retrieval of objects containing an
attribute of a particular name and holding a particular value.

• Options used to specify which attributes of the objects matching the search crite-
ria must be returned to the process performing the search. One and only one of
these three options must be specified for each search operation:

#define SA_IMM_SEARCH_GET_ALL_ATTR 0x0100

#define SA_IMM_SEARCH_GET_NO_ATTR 0x0200

#define SA_IMM_SEARCH_GET_SOME_ATTR 0x0400

SA_IMM_SEARCH_GET_ALL_ATTR indicates that for each object matching the
search criteria, all its attributes along with their values must be returned to the
process performing the search.

SA_IMM_SEARCH_GET_NO_ATTR indicates that no attributes of the objects
matching the search criteria must be returned to the process performing the
search. In this case, only the names of the objects matching the search criteria
are returned.

SA_IMM_SEARCH_GET_SOME_ATTR indicates that for each object matching the
search criteria, only a subset of its attributes along with their values must be
returned to the process performing the search. The list of attribute names to be
returned is specified by another parameter of the search operation (see the
attributeNames parameter in Section 4.5.1 on page 62).
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.12 39

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.13 SaImmSearchParametersT_2

The SaImmSearchParametersT_2 type is used to provide the criteria parameters
used for search operations.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaImmAttrValueT attrValue;

} SaImmSearchOneAttrT_2;

The SaImmSearchOneAttrT_2 type contains the attribute description for
SA_IMM_SEARCH_ONE_ATTR search operations. The fields attrName and
attrValue specify the attribute name and value being searched for. The
attrValueType field indicates the type of value that is assigned to the attribute.

If attrValue is not set to NULL, an object matches the search criteria if one of its
attributes has a name identical to the name to which attrName points, the values for
this attribute are of type attrValueType, and the value of the attribute (or one of its
values for multi-valued attributes) is identical to the value to which attrValue
points.

If attrValue is set to NULL, only the attribute name is used as a search criteria, and
all objects having an attribute with such a name will be retrieved by the search opera-
tion, regardless of their attribute values.

If attrName is set to NULL, attrValue must also be set to NULL. Such an empty
criterion will match all IMM Service objects. This empty criterion can be used to
browse through all IMM Service objects.

typedef union {

SaImmSearchOneAttrT_2 searchOneAttr;

} SaImmSearchParametersT_2;

Note: Searching for a particular value of a non-cached runtime attribute should be
used with care, as it forces the IMM Service to fetch all values from the object
implementers, which creates extra load on the system.
40 SAI-AIS-IMM-A.03.01 Section 4.2.13 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.14 SaImmCcbFlagsT_3

The SaImmCcbFlagsT type is used to specify the various characteristics of a CCB.
Currently, only one value is provided.

#define SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS 0x00000001

#define SA_IMM_CCB_ALLOW_ABSENT_APPLIERS 0x00000002

typedef SaUint64T SaImmCcbFlagsT_3;

SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS—if this flag is specified, the CCB can
hold changes for objects for which CCB validators have been specified but are cur-
rently not registered. If this flag is not set, all specified validators must be registered
for all objects that are changed in the CCB.

SA_IMM_CCB_ALLOW_ABSENT_APPLIERS—if this flag is specified, the CCB can
hold changes for objects for which CCB appliers have been specified but are cur-
rently not registered. If this flag is not set, all specified appliers must be registered for
all objects that are changed in the CCB.

4.2.15 SaImmCcbIdT

typedef SaUint64T SaImmCcbIdT;

This type is used to represent a CCB identifier associated with a particular configura-
tion change bundle (CCB).

4.2.16 SaImmContinuationIdT

typedef SaUint64T SaImmContinuationIdT;

The type SaImmContinuationIdT is used to identify a particular invocation of an
administrative operation on an IMM object. Its scope is cluster-wide, and it must be
unique on a per-IMM object basis. For more details, refer to Section 4.9 on page 100.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.14 41

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.17 SaImmAdminOperationIdT

The SaImmAdminOperationIdT type is used to hold an identifier designating a par-
ticular administrative operation to perform on an object. The identifiers for all adminis-
trative operations of a given object class must have different integer values. However,
the same values can be used for administrative operations of different object classes.
In other words, the scope of an operation identifier is the object class.

The IMM Service is not aware of the valid range of operation identifiers of an object
class.

typedef SaUint64T SaImmAdminOperationIdT;

4.2.18 SaImmAdminOperationParamsT_2

The SaImmAdminOperationParamsT_2 type is used to specify the parameters of
an administrative operation performed on an object.

typedef struct {

SaStringT paramName;

SaImmValueTypeT paramType;

SaImmAttrValueT paramBuffer;

} SaImmAdminOperationParamsT_2;

The paramName field indicates the name of the parameter. The paramType field
indicates the type of the parameter. The paramBuffer field contains the parameter
value.

4.2.19 SaImmNotificationMinorIdT

typedef enum {

SA_IMM_NTFID_OP_START = 1,

SA_IMM_NTFID_OP_END = 2,

SA_IMM_NTFID_CCB_APPLY_START = 3,

SA_IMM_NTFID_CCB_APPLY_END = 4

} SaImmNotificationMinorIdT;

This type provides the values for the minorId field of notification class Identifiers
used by the IMM Service.
42 SAI-AIS-IMM-A.03.01 Section 4.2.17 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.2.20 SaImmAdditionalInfoIdT

typedef enum {

SA_IMM_AI_ADMIN_OPERATION_ID = 1,

SA_IMM_AI_ADMIN_OPERATION_PARAM = 2,

SA_IMM_AI_ADMIN_OPERATION_RESULT = 3,

SA_IMM_AI_CCB_ID = 4,

SA_IMM_AI_CCB_RETURN_VALUE = 5

} SaImmAdditionalInfoIdT;

This type provides identifiers for the data that is part of the additional information por-
tion of notifications sent by the IMM Service.

4.2.21 SaImmCallbacksT_3

The SaImmCallbacksT_3 structure defines the set of callbacks a process can pro-
vide to the IMM Service at initialization time.

typedef struct {

SaImmOmAdminOperationInvokeCallbackT_3

saImmOmAdminOperationInvokeCallback;

} SaImmCallbacksT_3;

4.2.22 IMM Service Object Attributes

The following #define directives are used to refer to the name of attributes of objects
in the SA Forum Information Model.

#define SA_IMM_ATTR_CLASS_NAME "saImmAttrClassName"

The IMM Service adds an attribute to each object holding the name of the class of the
object. The name of this attribute is specified by the constant
SA_IMM_ATTR_CLASS_NAME.

#define SA_IMM_ATTR_ADMIN_OWNER_NAME "saImmAttrAdminOwnerName"

When an object has been assigned an administrative owner, the IMM Service stores
the name of the object administrative owner in one attribute of the object. The name
of this attribute is specified by the constant SA_IMM_ATTR_ADMIN_OWNER_NAME.
This attribute does not exist in objects having no administrative owners.

The two preceding attributes are single-value attributes and their value is of type
SA_IMM_ATTR_SASTRINGT.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.20 43

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
#define SA_IMM_ATTR_VALIDATOR_NAME
"saImmAttrValidatorName"

When an object has CCB validators, the IMM Service stores the names of the CCB
validators in one multi-valued attribute of the object. The name of this attribute is
specified by the constant SA_IMM_ATTR_VALIDATOR_NAME, and it is of type
SA_IMM_ATTR_SASTRINGT. This attribute does not exist in objects having no CCB
validators.

#define SA_IMM_ATTR_APPLIER_NAME
"saImmAttrApplierName"

When an object has CCB appliers, the IMM Service stores the names of the CCB
appliers in one multi-valued attribute of the object. The name of this attribute is speci-
fied by the constant SA_IMM_ATTR_APPLIER_NAME, and it is of type
SA_IMM_ATTR_SASTRINGT. This attribute does not exist in objects having no CCB
appliers.

#define SA_IMM_ATTR_RUNTIME_OWNER_NAME
"saImmAttrRuntimeOwnerName"

When an object has a runtime owner, the IMM Service stores the name of the runtime
owner in one single-valued attribute of the object. The name of this attribute is speci-
fied by the constant SA_IMM_ATTR_RUNTIME_OWNER_NAME, and it is of type
SA_IMM_ATTR_SASTRINGT. This attribute does not exist in objects having no runt-
ime owner.

All these attributes are runtime attributes, and for persistent objects (that is, configu-
ration and persistent runtime objects), these attributes are persistent runtime
attributes; otherwise, they are non-persistent runtime attributes.

4.2.23 SaImmRepositoryInitModeT

typedef enum {

SA_IMM_KEEP_REPOSITORY = 1,

SA_IMM_INIT_FROM_FILE = 2

} SaImmRepositoryInitModeT;

The values of SaImmRepositoryInitModeT specify how the IMM Service initial-
izes its internal repository when the IMM Service starts up.

• SA_IMM_KEEP_REPOSITORY: at startup, the IMM Service keeps the contents of
its internal repository.
44 SAI-AIS-IMM-A.03.01 Section 4.2.23 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• SA_IMM_INIT_FROM_FILE: at startup, the IMM Service must overwrite the
contents of its internal repository with the contents of an XML file. The location of
this initial XML file is implementation-dependent.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.2.23 45

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.3 Library Life Cycle

4.3.1 saImmOmInitialize_3()

Prototype

SaAisErrorT saImmOmInitialize_3(

SaImmHandleT *immHandle,

const SaImmCallbacksT_3 *immCallbacks,

SaVersionT *version

);

Parameters

immHandle - [out] A pointer to the handle which identifies this particular initialization
of the IMM Service and which is to be returned by the IMM Service. This handle pro-
vides access to the object management APIs of the IMM Service. The
SaImmHandleT type is defined in Section 4.2.1 on page 33.

immCallbacks - [in] If immCallbacks is set to NULL, no callback is registered; if
immCallbacks is not set to NULL, it is a pointer to an SaImmCallbacksT_3 struc-
ture which contains the callback functions of the process that the IMM Service may
invoke. Only non-NULL callback functions in this structure will be registered. The
SaImmCallbacksT_3 type is defined in Section 4.2.21 on page 43.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required IMM Service version. In this case, minorVersion is ignored and
should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the IMM Service. The SaVersionT type is defined in [2].

Description

This function initializes the object management functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other object
management functions of the Information Model Management Service functionality.
The handle pointed to by immHandle is returned by the IMM Service as the refer-
ence to this association between the process and the object management of the IMM
Service. The process uses this handle in subsequent communication with the object
management of the IMM Service.
46 SAI-AIS-IMM-A.03.01 Section 4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
If the invoking process exits after successfully returning from the
saImmOmInitialize_3() function and before invoking saImmOmFinalize() to
finalize the handle immHandle (see Section 4.3.4 on page 52), the IMM Service
automatically finalizes this handle and any other handles that have been acquired
using the handle immHandle when the IMM Service detects the death of the pro-
cess.

If the implementation supports the version of the Information Model Management
Service API specified by the releaseCode and majorVersion fields of the struc-
ture pointed to by the version parameter, SA_AIS_OK is returned. In this case, the
structure pointed to by the version parameter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.1 47

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saImmOmSelectionObjectGet(), saImmOmDispatch(),
saImmOmFinalize()
48 SAI-AIS-IMM-A.03.01 Section 4.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.3.2 saImmOmSelectionObjectGet()

Prototype

SaAisErrorT saImmOmSelectionObjectGet(

SaImmHandleT immHandle,

SaSelectionObjectT *selectionObject

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

selectionObject - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [2].

Description

This function returns the operating system handle associated with the handle
immHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking saImmOmDispatch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect pending callbacks.

The operating system handle returned by saImmOmSelectionObjectGet() is
valid until saImmOmFinalize() is successfully invoked on the same handle
immHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.2 49

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmDispatch(), saImmOmFinalize()

4.3.3 saImmOmDispatch()

Prototype

SaAisErrorT saImmOmDispatch(

SaImmHandleT immHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saImmOmDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [2].
50 SAI-AIS-IMM-A.03.01 Section 4.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

In the context of the calling thread, this function invokes pending callbacks for the
handle immHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle immHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmSelectionObjectGet(),
saImmOmFinalize()
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.3 51

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.3.4 saImmOmFinalize()

Prototype

SaAisErrorT saImmOmFinalize(

SaImmHandleT immHandle

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

Description

The saImmOmFinalize() function closes the association represented by the
immHandle parameter between the invoking process and the IMM Service. The pro-
cess must have invoked saImmOmInitialize_3() before it invokes this function.
A process must invoke this function once for each handle it acquired by invoking
saImmOmInitialize_3().

If the saImmOmFinalize() function completes successfully, it releases all
resources acquired when saImmOmInitialize_3() was called. Moreover, it
implicitly invokes:

• saImmOmSearchFinalize() on all search handles initialized with
immHandle and not yet finalized.

• saImmOmAccessorFinalize() on all accessor handles initialized with
immHandle and not yet finalized.

• saImmOmAdminOwnerFinalize() on all administrative owner handles initial-
ized with immHandle and not yet finalized.

Furthermore, saImmOmFinalize() cancels all pending callbacks related to asyn-
chronous operations performed with immHandle. Note that because the callback
invocation is asynchronous, it is still possible that some callback calls are processed
after this call returns successfully.

After saImmOmFinalize() returns successfully, the handle immHandle and the
selection object associated with it are no longer valid.
52 SAI-AIS-IMM-A.03.01 Section 4.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saImmOmInitialize_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.3.4 53

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4 Object Class Management
The following APIs are used to create and delete object classes. A caller can also use
them to query the definition of an existing object class.

4.4.1 saImmOmClassCreate_2()

Prototype

SaAisErrorT saImmOmClassCreate_2(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT classCategory,

const SaImmAttrDefinitionT_2 *const *attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

className - [in] The name of the object class to create. The SaImmClassNameT
type is defined in Section 4.2.2 on page 34.

classCategory - [in] Category of the object class. The SaImmClassCategoryT
type is defined in Section 4.2.4 on page 34.

attrDefinitions - [in] Pointer to a NULL-terminated array of pointers to defini-
tions of the class attributes. The SaImmAttrDefinitionT_2 type is defined in
Section 4.2.7 on page 36.

Description

This function creates a new object class with the name className. The new object
class can be a configuration or runtime object class, depending on the
classCategory parameter setting.

Object class definitions are stored in a persistent manner by the IMM Service.
54 SAI-AIS-IMM-A.03.01 Section 4.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrDefinitions parameter refers to a NULL or zero length attribute name, an
invalid value type, an invalid default attribute value, or a set of attribute flags that are
inconsistent with the class category specified by the classCategory parameter.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_EXIST - An object class with a name identical to className already
exists.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.1 55

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4.2 saImmOmClassDescriptionGet_2()

Prototype

SaAisErrorT saImmOmClassDescriptionGet_2(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT *classCategory,

SaImmAttrDefinitionT_2 ***attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

className - [in] The name of the object class for which a description is requested.
The SaImmClassNameT type is defined in Section 4.2.2 on page 34.

classCategory - [out] Pointer to an SaImmClassCategoryT structure to contain
the category of the object class. The SaImmClassCategoryT type is defined in
Section 4.2.4 on page 34.

attrDefinitions - [out] Pointer to a pointer to a NULL-terminated array of point-
ers to definitions of the class attributes. The SaImmAttrDefinitionT_2 type is
defined in Section 4.2.7 on page 36.

Description

This function returns a description of the object class identified by the name
className.

The Information Model Management Service library allocates the memory to return
the attribute definitions. When the calling process no longer needs to access the
attribute definitions, the memory must be freed by calling the
saImmOmClassDescriptionMemoryFree_2() function.
56 SAI-AIS-IMM-A.03.01 Section 4.4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NOT_EXIST - No object class exists with a name identical to
className.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmClassCreate_2(),
saImmOmClassDescriptionMemoryFree_2()
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.2 57

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.4.3 saImmOmClassDescriptionMemoryFree_2()

Prototype

SaAisErrorT saImmOmClassDescriptionMemoryFree_2(

SaImmHandleT immHandle,

SaImmAttrDefinitionT_2 **attrDefinitions

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

attrDefinitions - [in] Pointer to a NULL-terminated array of pointers to attribute
definitions to be freed. The SaImmAttrDefinitionT_2 type is defined in
Section 4.2.7 on page 36.

Description

This function deallocates the memory that was allocated by a previous call to the
saImmOmClassDescriptionGet_2() function; this deallocation includes

• the memory areas containing the attribute definitions which are referred to by the
pointers held in the NULL-terminated array referred to by attrDefinitions
and

• the memory of the NULL-terminated array of pointers referred to by
attrDefinitions.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.
58 SAI-AIS-IMM-A.03.01 Section 4.4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmClassCreate_2(),
saImmOmClassDescriptionGet_2()

4.4.4 saImmOmClassDelete()

Prototype

SaAisErrorT saImmOmClassDelete(

SaImmHandleT immHandle,

const SaImmClassNameT className

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

className - [in] Name of the object class to be deleted. The SaImmClassNameT
type is defined in Section 4.2.2 on page 34.

Description

This function deletes the object class whose name is className, provided no
objects of this class exist.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.4.4 59

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - No object class exists with a name identical to
className.

SA_AIS_ERR_BUSY - The object class cannot be deleted as objects of this class still
exist, or a request to create an object of this class has been added to a CCB.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmClassCreate_2()
60 SAI-AIS-IMM-A.03.01 Section 4.4.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.5 Object Search
The API functions in this section are used to perform object search, that is, to search
for particular objects in the SA Forum Information Model and also to obtain the values
of some of their attributes.

When the object search is initialized, a valid CCB identifier (a nonzero value) can be
supplied. If it is supplied, the object search will behave as if the changes proposed
that far by the CCB in question had already been applied to the SA Forum Informa-
tion Model. When these object search API functions are used during validation of a
CCB (refer to Section 5.5 on page 144), it is guaranteed that no changes of other
pending CCBs can affect the object search, because no two CCBs are allowed to be
in the validate state (see Section 3.1 on page 26) at the same time. The
saImmOmSearchNext_2() function returns objects, their attributes, and values of
these attributes modified according to the changes proposed that far by the CCB in
question.
If zero is provided instead of a valid CCB identifier when the object search is initial-
ized, the object search refers to the current state of the SA Forum Information Model.
Pending CCB changes, that is, CCB changes that have not yet been applied, are
invisible to the object search.

To facilitate the management of the memory allocated by the IMM Service library to
return the results of the search, the search is performed by using a search iterator.

The search criteria is specified when the search iterator is initialized. At initialization
time, the attributes to be retrieved are also specified for each object that matches the
search criteria. Then, each invocation of the iterator returns the object name and the
specified attributes of the next object satisfying the search criteria.

The iteration is terminated by invoking the finalize API.

Every object which was created before the invocation of the
saImmOmSearchInitialize_3() function and which matches the search criteria
and has not been modified or deleted before the invocation of
saImmOmSearchFinalize(), will be returned exactly once by the
saImmOmSearchNext_2() search iterator. No other guarantees are made: objects
that are created after the iteration is initialized, or modified, or deleted before the iter-
ation is finalized, may or may not be returned by the search iterator.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5 61

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.5.1 saImmOmSearchInitialize_3()

Prototype

SaAisErrorT saImmOmSearchInitialize_3(

SaImmHandleT immHandle,

SaImmCcbIdT ccbId,

const SaNameT *rootName,

SaImmScopeT scope,

SaImmSearchOptionsT searchOptions,

const SaImmSearchParametersT_2 *searchParam,

const SaImmAttrNameT *attributeNames,

SaImmSearchHandleT *searchHandle

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

ccbId - [in] A valid CCB identifier or zero. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

rootName - [in] Pointer to the name of the root object for the search. If set to NULL,
the search starts at the root of the IMM Service tree. The SaNameT type is defined
in [2].

scope - [in] Scope of the search. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.

searchOptions - [in] Specifies the type of criteria being used as well as which
attribute values must be returned for each object matching the search criteria. The
SaImmSearchOptionsT type is defined in Section 4.2.12 on page 39.

searchParam - [in] A pointer to the search parameters according to the search cri-
teria specified in searchOptions. The SaImmSearchParametersT_2 type is
defined in Section 4.2.13 on page 40.
62 SAI-AIS-IMM-A.03.01 Section 4.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be returned while iterating through all objects matching the search
criteria.
Only used if the SA_IMM_SEARCH_GET_SOME_ATTR option has been set in the
searchOptions parameter. The attributeNames pointer must be set to NULL
otherwise.
The SaImmAttrNameT type is defined in Section 4.2.2 on page 34.

searchHandle - [out] Search handle used later to iterate through all objects that
match the search criteria. The SaImmSearchHandleT type is defined in
Section 4.2.1 on page 33.

Description

This function initializes a search operation limited to a set of targeted objects identi-
fied by the scope parameter and the name to which the rootName parameter points.

If the ccbId parameter is zero, the object search refers to the current state of the SA
Forum Information Model. Pending CCB changes, that is, CCB changes that have not
yet been applied, are invisible to the object search.
If the ccbId parameter specifies a valid CCB identifier (a nonzero value), the object
search operation behaves as if the modifications proposed that far in the CCB identi-
fied by the ccbId parameter have already been applied to the SA Forum Information
Model.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object having
the name to which rootName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object having
the name to which rootName points and the entire subtree rooted at that object.

• SA_IMM_ONE is not a valid value for the scope parameter.

If the SA_IMM_SEARCH_ONE_ATTR option is not set in the searchOptions parame-
ter, the searchOptions parameter must be set to NULL. In this case, no selection
criteria is applied for the search, and all objects in the defined scope will be retrieved
by the search operation.

One and only one of the following three options must be set in the searchOptions
parameter:

• SA_IMM_SEARCH_GET_ALL_ATTR,
• SA_IMM_SEARCH_GET_NO_ATTR, or
• SA_IMM_SEARCH_GET_SOME_ATTR.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.1 63

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
This parameter specifies which attributes must be returned for each object matching
the search criteria. If SA_IMM_SEARCH_GET_SOME_ATTR is set, the
attributeNames parameter specifies the names of the attributes to be returned.
If SA_IMM_SEARCH_GET_SOME_ATTR is not set, the attributeNames parameter
must be set to NULL.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned if the specified ccbId parameter is nonzero and unknown to the
IMM Service.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The name to which rootName points is not the name of
an existing object.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3()
64 SAI-AIS-IMM-A.03.01 Section 4.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.5.2 saImmOmSearchNext_2()

Prototype

SaAisErrorT saImmOmSearchNext_2(

SaImmSearchHandleT searchHandle,

SaNameT *objectName,

SaImmAttrValuesT_2 ***attributes

);

Parameters

searchHandle - [in] Handle returned by saImmOmSearchInitialize_3(). The
SaImmSearchHandleT type is defined in Section 4.2.1 on page 33.

objectName - [out] Pointer to the name of the next object matching the search cri-
teria. The SaNameT type is defined in [2].

attributes - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures holding the names and values of the attributes (of the object whose
name is pointed to by objectName) that were selected when the search was initial-
ized. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 37.

Description

This function is used to obtain the next object matching the search criteria that was
specified in the corresponding saImmOmSearchInitialize_3() call.

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of
saImmOmSearchNext_2() or saImmOmSearchFinalize() for the same search
handle.

If the handle searchHandle was not obtained by specifying
SA_IMM_SEARCH_GET_ALL_ATTR or SA_IMM_SEARCH_GET_SOME_ATTR in the
searchOptions parameter of the corresponding saImmOmSearchInitialize_3()
call, no attribute names and values will be returned by this call, and the pointer to
which the attributes parameter refers is set to NULL.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.2 65

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Only the attribute name is returned (attrValuesNumber is set to 0 and
attrValues is set to NULL in the SaImmAttrValuesT_2 data structure referred to
by the corresponding entry in the array whose address is referred to by the
attributes parameter) if one of the attributes requested by the search

• has no value or
• is a non-persistent runtime attribute, and no runtime owner is registered for the

object.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - All objects matching the search criteria have already
been returned to the calling process. The caller can now invoke the
saImmOmSearchFinalize() function. Note that if no object matches the search
criteria, this value is returned at the first invocation of saImmOmSearchNext_2().

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

searchHandle was acquired before the cluster node left the cluster member-
ship.
66 SAI-AIS-IMM-A.03.01 Section 4.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
See Also

saImmOmInitialize_3(), saImmOmSearchInitialize_3(),
saImmOmSearchFinalize()

4.5.3 saImmOmSearchFinalize()

Prototype

SaAisErrorT saImmOmSearchFinalize(

SaImmSearchHandleT searchHandle

);

Parameters

searchHandle - [in] Handle returned by saImmOmSearchInitialize_3(). The
SaImmSearchHandleT type is defined in Section 4.2.1 on page 33.

Description

This function finalizes the search initialized by a previous call to
saImmOmSearchInitialize_3(). It frees all memory previously allocated by that
search, in particular, the memory used to return attribute names and values in the
previous saImmOmSearchNext_2() invocation.

Returned Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.5.3 67

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

searchHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmInitialize_3(), saImmOmSearchInitialize_3(),
saImmOmSearchNext_2()
68 SAI-AIS-IMM-A.03.01 Section 4.5.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.6 Object Access
The API functions in this section are used to perform object access, that is, to
access the values of some attributes of an object already known by its name.
Once an application has discovered the object hierarchy, it can use this interface to
fetch some particular attribute values.

When the object access is initialized, a valid CCB identifier (a nonzero value) can be
supplied. If it is supplied, the object access will behave as if the changes proposed
that far by the CCB in question had already been applied to the SA Forum Informa-
tion Model. When these object access API functions are used during validation of a
CCB (refer to Section 5.5 on page 144), it is guaranteed that no changes of other
pending CCBs can affect the object access, because no two CCBs are allowed to be
in the validate state (see Section 3.1 on page 26) at the same time. The
saImmOmAccessorGet_2() function returns the values of the configuration
attributes modified according to the changes proposed that far by the CCB in ques-
tion.
If zero is provided instead of a valid CCB identifier when the object access is initial-
ized, the object access applies to the current state of the SA Forum Information
Model. Pending CCB changes, that is, CCB changes that have not yet been applied,
are invisible to the object access.

The object accessor is a way to facilitate the management of the memory allocated
by the IMM Service library to return attribute names and values.

4.6.1 saImmOmAccessorInitialize_3()

Prototype

SaAisErrorT saImmOmAccessorInitialize_3(

SaImmHandleT immHandle,

SaImmCcbIdT ccbId,

SaImmAccessorHandleT *accessorHandle

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6 69

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
ccbId - [in] A valid CCB identifier or zero. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

accessorHandle - [out] Pointer to the object accessor handle. The
SaImmAccessorHandleT type is defined in Section 4.2.1 on page 33.

Description

This function initializes an object accessor and returns the handle pointed to by the
accessorHandle parameter for further references to the object accessor.

If the ccbId parameter is zero, the object access refers to the current state of the SA
Forum Information Model. Pending CCB changes, that is, CCB changes that have not
yet been applied, are invisible to the object access.
If the ccbId parameter specifies a valid CCB identifier (a nonzero value), the object
access operation behaves as if the modifications proposed that far in the CCB identi-
fied by the ccbId parameter have already been applied to the SA Forum Information
Model.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned if the specified ccbId parameter is nonzero and unknown to the
IMM Service.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.
70 SAI-AIS-IMM-A.03.01 Section 4.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3()

4.6.2 saImmOmAccessorGet_2()

Prototype

SaAisErrorT saImmOmAccessorGet_2(

SaImmAccessorHandleT accessorHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames,

SaImmAttrValuesT_2 ***attributes

);

Parameters

accessorHandle - [in] Object accessor handle. The SaImmAccessorHandleT
type is defined in Section 4.2.1 on page 33.

objectName - [in] Pointer to the name of the object being accessed. The SaNameT
type is defined in [2].

attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be returned. The SaImmAttrNameT type is defined in
Section 4.2.2 on page 34.

attributes - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures containing the name and values of the attributes being accessed. The
SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 37.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6.2 71

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function uses the object accessor referred to by the accessorHandle parame-
ter to obtain the values assigned to some attributes of an object. If attributeNames
is set to NULL, the values of all attributes of the object are returned.

If one of the requested attributes has no value or is a non-persistent runtime attribute,
and there is no registered runtime owner for the object, only the attribute name is
returned (attrValuesNumber is set to 0 and attrValues is set to NULL in the
SaImmAttrValuesT_2 data structure specified by the attributes parameter).

The memory used to return the object attribute names and values is allocated by the
library and will be deallocated at the next invocation of saImmOmAccessorGet_2()
or saImmOmAccessorFinalize().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The name to which objectName points is not the name
of an existing object, or any of the names specified by attributeNames does not
exist for the object identified by the name to which objectName points.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
72 SAI-AIS-IMM-A.03.01 Section 4.6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• the cluster node has rejoined the cluster membership, but the handle
accessorHandle was acquired before the cluster node left the cluster mem-
bership.

See Also

saImmOmAccessorInitialize_3()

4.6.3 saImmOmAccessorFinalize()

Prototype

SaAisErrorT saImmOmAccessorFinalize(

SaImmAccessorHandleT accessorHandle

);

Parameters

accessorHandle - [in] Object accessor handle. The SaImmAccessorHandleT
type is defined in Section 4.2.1 on page 33.

Description

This function finalizes the object accessor referred to by the accessorHandle
parameter and deallocates all memory previously allocated for this object accessor.
In particular, this function frees the memory used to return the object attribute names
and values during the previous invocation of saImmOmAccessorGet_2().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is
corrupted, uninitialized, or has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.6.3 73

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

accessorHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmAccessorInitialize_3()
74 SAI-AIS-IMM-A.03.01 Section 4.6.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.7 Object Administration Ownership
Each object of the IMM Service may have at any time one and only one administra-
tive owner, which has the ability to modify the object or invoke administrative opera-
tions on the object. The administrative owner is usually distinct from the registered
runtime owner. Establishing the administrative ownership of an object or a set of
objects guarantees that a process unrelated with this administrative owner will not
modify the objects concurrently.

As management operations may be performed by a set of cooperating processes, an
administrative owner is identified by its name, and several processes may perform
sequentially or concurrently administrative operations under the same administra-
tive owner name (by initializing several administrative owner handles with the same
name).

A process acting under that administrative owner name will typically release the
administrative ownership on the objects. Note that this process need not necessarily
be any of the one or more processes that set the administrative owner name of the
objects. For recovery purposes, a process with appropriate privileges can also
release the administrative ownership of a set of objects (by invoking the
saImmOmAdminOwnerClear() function) without acting under the name of their cur-
rent administrative owner.

Management applications are responsible for releasing the administrative ownership
on objects when their management activities are completed.

4.7.1 saImmOmAdminOwnerInitialize()

Prototype

SaAisErrorT saImmOmAdminOwnerInitialize(

SaImmHandleT immHandle,

const SaImmAdminOwnerNameT adminOwnerName,

SaBoolT releaseOwnershipOnFinalize,

SaImmAdminOwnerHandleT *ownerHandle

);
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7 75

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

adminOwnerName - [in] Name of the administrative owner. The
SaImmAdminOwnerNameT type is defined in Section 4.2.2 on page 34.

releaseOwnershipOnFinalize - [in] This parameter specifies how to release
administrative ownerships that were acquired with the newly initialized handle
ownerHandle when this handle is finalized. The SaBoolT type is defined in [2].

ownerHandle - [out] Pointer to the handle for the administrative owner. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

Description

This function initializes a handle for an administrative owner whose name is specified
by adminOwnerName. All objects owned by an administrative owner have the
attribute whose name is defined by the constant
SA_IMM_ATTR_ADMIN_OWNER_NAME set to the name of the administrative owner.
For objects without an administrative owner, that attribute does not exist.

If releaseOwnershipOnFinalize is set to SA_TRUE, the IMM Service automati-
cally releases all administrative ownerships that were acquired with the newly initial-
ized handle ownerHandle when this handle is finalized.
If releaseOwnershipOnFinalize is set to SA_FALSE, the IMM Service does not
automatically release the ownership when the handle is finalized. In this case, if a
management application fails while holding the administrative ownership on some
objects, it is the responsibility of the recovery procedure of the failed application to
release the administrative ownership on these objects.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
76 SAI-AIS-IMM-A.03.01 Section 4.7.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmInitialize_3(), saImmOmAdminOwnerSet(),
saImmOmAdminOwnerFinalize()

4.7.2 saImmOmAdminOwnerSet()

Prototype

SaAisErrorT saImmOmAdminOwnerSet(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *const *objectNames,

SaImmScopeT scope

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [2].
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.2 77

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.

Description

This function sets the administrative owner identified by ownerHandle as the owner
of the set of objects identified by the scope and the objectNames parameters. This
function can be used to acquire the administrative ownership of either configuration
or runtime objects.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

The operation fails if one of the targeted objects has already an administrative owner
whose name is different from the name used to initialize ownerHandle. If the opera-
tion fails, the administrative owner of the targeted objects is not changed.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is set to the administrative owner name that was specified when
ownerHandle was initialized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.
78 SAI-AIS-IMM-A.03.01 Section 4.7.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already
has an administrative owner having a name different from the name used to initialize
ownerHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerRelease(),
saImmOmAdminOwnerClear()

4.7.3 saImmOmAdminOwnerRelease()

Prototype

SaAisErrorT saImmOmAdminOwnerRelease(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *const *objectNames,

SaImmScopeT scope

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [2].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.3 79

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function releases the administrative owner of the set of objects identified by the
scope and objectNames parameters.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects (see Section 4.2.16 on page 41) are all cleared.

The operation fails if an administrative operation is currently in progress on one of the
targeted objects. An administrative operation is considered to be in progress on an
object if the saImmOiAdminOperationCallback() object implementer's callback
has been invoked for that operation, and the registered runtime owner is still regis-
tered but has not yet called saImmOiAdminOperationResult() to provide the
operation results. The operation also fails if a change request for one of the targeted
objects is included in a CCB that has not been finalized.

If the operation fails, the administrative owner of all objects in the given scope
remains unchanged.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
80 SAI-AIS-IMM-A.03.01 Section 4.7.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object, or at least one of the objects targeted by this oper-
ation is not owned by the administrative owner whose name was used to initialize
ownerHandle.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet()

4.7.4 saImmOmAdminOwnerFinalize()

Prototype

SaAisErrorT saImmOmAdminOwnerFinalize(

SaImmAdminOwnerHandleT ownerHandle

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

Description

This function releases ownerHandle. If ownerHandle has been initialized with the
releaseOwnershipOnFinalize option set to SA_FALSE, this function neither
affects registered continuation identifiers of any object nor releases the administrative
ownership set on objects by using this handle.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.4 81

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
If ownerHandle has been initialized with the releaseOwnershipOnFinalize
option set to SA_TRUE, this operation also releases the administrative ownership that
has been set on objects by using this handle and clears all continuation identifiers
registered for these objects.

This function implicitly invokes saImmOmCcbFinalize() on all CCB handles initial-
ized with ownerHandle and not yet finalized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_BUSY - ownerHandle has been initialized with the
releaseOwnershipOnFinalize option set to SA_TRUE, and an administrative
operation is currently in progress on one of the targeted objects, or a change request
for one of the targeted objects is included in a CCB that has not been applied or final-
ized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmCcbInitialize_3()
82 SAI-AIS-IMM-A.03.01 Section 4.7.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.7.5 saImmOmAdminOwnerClear()

Prototype

SaAisErrorT saImmOmAdminOwnerClear(

SaImmHandleT immHandle,

const SaNameT *const *objectNames,

SaImmScopeT scope

);

Parameters

immHandle - [in] The handle which was obtained by a previous invocation of the
saImmOmInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmHandleT type is defined
in Section 4.2.1 on page 33.

objectNames - [in] Pointer to a NULL-terminated array of pointers to object names.
The SaNameT type is defined in [2].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.

Description

This function clears the administrative owner of the set of objects identified by the
scope and objectNames parameters.
The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects having
names specified by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects hav-
ing names specified by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects having
names specified by objectNames and the entire subtrees rooted at these
objects.

The operation succeeds even if some targeted objects do not have an administrative
owner, or if the set of targeted objects have different administrative owners.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of all
targeted objects is removed from the objects, and the continuation identifiers regis-
tered for these objects are all cleared.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.7.5 83

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The operation fails if an administrative operation is currently in progress on one of the
targeted objects (for the term “in progress”, see Section 4.7.3 on page 79), or if a
change request for one of the targeted objects is included in a CCB that has not been
applied or finalized.
If the operation fails, the administrative owner of all objects in the given scope
remains unchanged.

This function is intended to be used only when recovering from situations where
some management applications took ownership of some objects and did not release
them.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - At least one of the names specified by objectNames is
not the name of an existing object.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of
the targeted objects, or a change request for one of the targeted objects is included in
a CCB that has not been applied or finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet(),
saImmOmAdminOwnerRelease()
84 SAI-AIS-IMM-A.03.01 Section 4.7.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8 Configuration Changes
All changes of IMM Service configuration objects are performed in the context of con-
figuration change bundles (CCB). A CCB is associated with a single administrative
owner, and all objects changed by the CCB must have the same administrative owner
as the CCB. Once a CCB has been initialized, change requests can be added to the
CCB. A change request can be a creation, a deletion, or a modification. A CCB that
has been initialized, but not yet applied, is called a pending CCB, and it may contain
any number of pending change requests. Later on, when the CCB is applied, all
pending change requests included in the CCB are applied with all-or-nothing
semantics (either all change requests are applied or none are applied).

A CCB is associated with a single administrative owner, and all objects modified by
change requests included in one CCB must have the same administrative owner as
the CCB.

The IMM Service does not prevent applications from reading (by invoking
saImmOmSearchNext_2() or saImmOmAccessorGet_2()) the attribute values of
the objects modified by a CCB while a CCB is being applied. Therefore, it may hap-
pen, for example, that a search operation returns for some matching objects the val-
ues that their attributes had before the CCB was applied and for other objects the
values that their attributes had after the CCB was applied. However, the IMM Service
must guarantee that all CCB changes are applied atomically for each particular
object. The attribute values returned by saImmOmSearchNext_2() or
saImmOmAccessorGet_2() for a particular object must all be the values before the
CCB was applied or all be the values after the CCB was applied (in other words, mix-
ing old and new values is not allowed).

The IMM Service enforces the following limitation regarding concurrent management
tasks for a particular object: at a given time, an object can be the target of either a sin-
gle CCB or one or several administrative operations.

The application of a CCB can succeed only if all specified CCB validators and CCB
appliers are registered for all the objects that are changed by the CCB. The CCB fails
if any object changed by the CCB has a validator or an applier specified for which
there is no process currently registered with the IMM Service. This requirement can
be overruled if the object manager application sets the
SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS or
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags when it initializes the CCB. These
flags indicate that any registration may be missing among the CCB validators or CCB
appliers, respectively.

A CCB is aborted under the following conditions:

• The saImmOmCcbFinalize() function is called before the CCB is applied.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8 85

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• A CCB validator does not respond in time or rejects the changes contained in the
CCB by returning an error to the saImmOiCcbValidateCallback() function.

• A CCB validator process that is required to validate the CCB changes or a CCB
applier process that is required to apply the CCB changes explicitly unregisters
(or the process exits) before all CCB validators have approved the CCB
changes.

The CCB is not aborted if the process that called the saImmOmCcbApply_3() func-
tion exits before this function completes. Once the CCB has been successfully vali-
dated by the current validators, it will not be aborted, even if a new validator registers
while the CCB is being applied.

None of the handles used during the processing of the CCB should be finalized
before the CCB is finalized. Finalizing a handle in such a situation is considered a
usage error. However, it is guaranteed that either all changes contained in the CCB
have been applied persistently to the SA Forum Information Model, or none of them
have been applied.

4.8.1 saImmOmCcbInitialize_3()

Prototype

SaAisErrorT saImmOmCcbInitialize_3(

SaImmAdminOwnerHandleT ownerHandle,

SaImmCcbFlagsT_3 ccbFlags,

SaImmCcbHandleT *ccbHandle,

SaImmCcbIdT *ccbId

);

Parameters

ownerHandle - [in] Administrative owner handle. The
SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

ccbFlags - [in] CCB flags. The SaImmCcbFlagsT_3 type is defined in
Section 4.2.14 on page 41.

ccbHandle - [out] Pointer to the CCB handle. The SaImmCcbHandleT type is
defined in Section 4.2.1 on page 33.

ccbId - [out] Pointer to the CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.
86 SAI-AIS-IMM-A.03.01 Section 4.8.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function initializes a new CCB and returns both a handle (ccbHandle) and a
CCB identifier for it (ccbId). The value of ccbId is global and unique within the IMM
Service. The same value is supplied to CCB validators and CCB appliers in the corre-
sponding callbacks, and it can be used in the functions to initialize an object search
(see Section 4.5 on page 61) and to initialize an object access (see
Section 4.6 on page 69).
The lifetime of the returned CCB identifier, ccbId, is tied to the lifetime of the
returned ccbHandle, that is, this CCB identifier only ceases to exist when the
ccbHandle is finalized.

The CCB is initialized as empty (it contains no change requests).

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.1 87

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
See Also

saImmOmAdminOwnerInitialize()

4.8.2 saImmOmCcbObjectCreate_2()

Prototype

SaAisErrorT saImmOmCcbObjectCreate_2(

SaImmCcbHandleT ccbHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT_2 *const *attrValues

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 33.

className - [in] Object name class. The SaImmClassNameT type is defined in
Section 4.2.2 on page 34.

parentName - [in] Pointer to the name of the parent of the new object. The
SaNameT type is defined in [2].

attrValues - [in] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 37.

Description

This function adds to the CCB identified by its handle ccbHandle a request to create
a new configuration object. Once this new object is successfully created, it will be
automatically administratively owned by the administrative owner of the CCB. The
new object is created as a child of the object designated by the name to which
parentName points. If parentName is set to NULL, the new object is created as a
top level object.

The attributes specified by the array to which attrValues refers must match the
object class definition. Only configuration and persistent runtime attributes can be
specified by this array.
88 SAI-AIS-IMM-A.03.01 Section 4.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Attributes named SA_IMM_ATTR_CLASS_NAME and
SA_IMM_ATTR_ADMIN_OWNER_NAME must not be specified by the attrValues
descriptors, as these attributes are automatically set by the IMM Service.

The creation will only be persistently performed when the CCB is applied.

The IMM Service adds an SA_IMM_ATTR_CLASS_NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
className parameter.

If the parent object is not administratively owned by the administrative owner of the
CCB, this function fails and returns SA_AIS_ERR_BAD_OPERATION.

If this function returns an error, the creation request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies a runtime object class,
• there is no valid RDN attribute specified for the new object,
• the parent object referred to by the parentName parameter and some of its

ancestors are non-persistent objects.
• all of the configuration attributes required at object creation are not provided by

the caller,
• or the attrValues parameter includes:

• non-persistent runtime attributes,
• attributes with values that do not match the defined value type for the

attribute, and
• multiple values for a single-valued attribute.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.2 89

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The parent object is not administratively owned by
the administrative owner of the CCB.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the parentName parameter points is not the name of an
existing object.

• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute

names for className.
• The SA_IMM_ATTR_VALIDATOR_NAME attribute of the parent object contains

the name of a CCB validator that is currently not registered, or the object class
referred to by the className parameter requires at least one CCB validator for
which no CCB validator process is currently registered.

• The SA_IMM_ATTR_APPLIER_NAME attribute of the parent object contains the
name of a CCB applier that is currently not registered, or the object class
referred to by the className parameter requires at least one CCB applier for
which no CCB applier process is currently registered.

SA_AIS_ERR_EXIST - An object with the same name already exists.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA_AIS_ERR_NAME_TOO_LONG - The size of the new object's DN is greater than
SA_MAX_NAME_LENGTH.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize_3(), saImmOmCcbApply_3()
90 SAI-AIS-IMM-A.03.01 Section 4.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.3 saImmOmCcbObjectDelete()

Prototype

SaAisErrorT saImmOmCcbObjectDelete(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 33.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

Description

This function adds to the CCB identified by its handle ccbHandle a request to delete
the configuration object designated by the name to which the objectName parame-
ter points and the entire subtree of configuration objects rooted at that object.

This operation fails if one of the targeted objects is not a configuration object that is
administratively owned by the administrative owner of the CCB. It also fails if one of
the targeted objects has some registered continuation identifiers.

The deletion will only be persistently performed when the CCB is applied.

If this function returns an error, the deletion request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.3 91

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - This value is returned due to one or more of the
following reasons:

• at least one of the targeted objects is not a configuration object that is owned by
the administrative owner of the CCB;

• at least one of the targeted objects has some registered continuation identifiers;

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or both of the following
reasons:

• The name to which the objectName parameter points is not the name of an
existing object.

• The SA_IMM_ATTR_VALIDATOR_NAME attribute of the object contains the
name of a CCB validator that is currently not registered.

• The SA_IMM_ATTR_APPLIER_NAME attribute of the object contains the name of
a CCB applier that is currently not registered.

SA_AIS_ERR_BUSY - At least one of the targeted objects is already the target of an
administrative operation or of a change request in another CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize_3(), saImmOmCcbApply_3()
92 SAI-AIS-IMM-A.03.01 Section 4.8.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.4 saImmOmCcbObjectModify_2()

Prototype

SaAisErrorT saImmOmCcbObjectModify_2(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName,

const SaImmAttrModificationT_2 *const *attrMods

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 33.

objectName - [in] Pointer to the name of the object to be modified. The SaNameT
type is defined in [2].

attrMods - [in] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The SaImmAttrModificationT_2 type is defined in
Section 4.2.10 on page 38.

Description

This function adds to the CCB identified by its handle ccbHandle a request to modify
configuration attributes of a configuration object. Only writable configuration attributes
can be modified (SA_IMM_ATTR_WRITABLE).

This operation fails if the targeted object is not administratively owned by the adminis-
trative owner of the CCB.

The modify request will only be persistently performed when the CCB is applied.

If this function returns an error, the modify request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.4 93

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrMods parameter includes:

• runtime attributes,
• attributes with values that do not match the defined value type for the attribute,
• a new value for the RDN attribute,
• attributes that cannot be modified,
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The modified object is not a configuration object
owned by the administrative owner of the CCB.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the objectName parameter points is not the name of an
existing object.

• One or more attribute names specified by the attrMods parameter are not valid
for the object class.

• The SA_IMM_ATTR_VALIDATOR_NAME attribute of the object contains the
name of a CCB validator that is currently not registered.

• The SA_IMM_ATTR_APPLIER_NAME attribute of the object contains the name of
a CCB applier that is currently not registered.

SA_AIS_ERR_BUSY - The object designated by the name to which objectName
points is already the target of an administrative operation or of a change request in
another CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.
94 SAI-AIS-IMM-A.03.01 Section 4.8.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize_3(), saImmOmCcbApply_3()

4.8.5 saImmOmCcbApply_3()

Prototype

SaAisErrorT saImmOmCcbApply_3(

SaImmCcbHandleT ccbHandle,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 33.

correlationIds - [in/out] Pointer to the correlation identifiers associated with the
CCB being applied. The rootCorrelationId and parentCorrelationId fields
are in parameters and hold the root and parent correlation identifiers, respectively.
These correlation identifiers are included by the IMM Service in its notifications trig-
gered by the invocation of this API. The notificationId field is an out parameter
that holds the notification identifier of the notification that the IMM Service sends to
report that the CCB has been applied. The SaNtfCorrelationIdsT type is defined
in [6].
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.5 95

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

This function initiates the persistent application of all requests included in the configu-
ration change bundle identified by its handle ccbHandle. The requests are applied
with all-or-nothing semantics, that is, either all requests are applied or none are
applied.

In the first step to apply the changes contained in the CCB persistently, the IMM Ser-
vice invokes the saImmOiCcbValidateCallback() function of all CCB validators
involved in the change requests contained in the CCB (see
Section 5.5.1 on page 146) to validate the CCB (see Section 5.5 on page 144). If the
validation succeeds, the IMM Service applies all changes in the CCB persistently to
the SA Forum Information Model and then invokes the
saImmOiCcbApplyCallback() functions of all the CCB appliers of all objects
affected by the CCB (see Section 5.6.1 on page 151) to deploy the changes.

This operation fails if the administrative ownership of an object targeted by this CCB
has changed since the change was added to the CCB, and the new administrative
owner of the object is no longer the administrative owner of the CCB.

If this function returns with SA_AIS_OK, the CCB changes have been applied to the
SA Forum Information Model and deployed by the CCB appliers; if it returns with
SA_AIS_ERR_DEPLOYMENT, the CCB has been successfully applied to the SA
Forum Information Model, it is, however, unspecified whether the CCB changes have
been completely or only partially deployed or not deployed at all. For all other return
values, the CCB has not been applied.

When this call returns with success or failure, all requests included in the CCB when
the call was issued have been removed. The CCB is empty and can be populated
again with change requests belonging to the same administrative owner.

Return Values

SA_AIS_OK - The function completed successfully. The CCB changes have been
applied to the SA Forum Information Model and deployed by the CCB appliers.

SA_AIS_ERR_DEPLOYMENT - The CCB has been successfully applied to the SA
Forum Information Model; however, it is unspecified whether the CCB changes have
been completely or only partially deployed or not deployed at all. This value is also
returned if ccbHandle is invalidated after the CCB changes have been applied to the
SA Forum Information Model.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete.
96 SAI-AIS-IMM-A.03.01 Section 4.8.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The changes requested do not constitute a valid
set of changes.

SA_AIS_ERR_FAILED_OPERATION - The operation failed because the CCB has
been aborted. The CCB is now empty.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize_3(), saImmOmCcbObjectCreate_2(),
saImmOmCcbObjectDelete(), saImmOmCcbObjectModify_2(),
SaImmOiCcbValidateCallbackT, SaImmOiCcbApplyCallbackT_3
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.5 97

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.8.6 saImmOmCcbFinalize()

Prototype

SaAisErrorT saImmOmCcbFinalize(

SaImmCcbHandleT ccbHandle

);

Parameters

ccbHandle - [in] CCB handle. The SaImmCcbHandleT type is defined in
Section 4.2.1 on page 33.

Description

This function finalizes the CCB identified by ccbHandle, which also implies that the
CCB identifier associated with it (that is, the one returned in the corresponding
saImmOmCcbInitialize_3() call) is no longer valid.

If the saImmOmCcbFinalize() function is called after changes have been added to
the CCB and before the saImmOmCcbApply_3() function is invoked, the CCB is
aborted, and all change requests contained in the CCB are removed. Invoking the
saImmOmCcbFinalize() function while the CCB is being applied is considered an
error. However, it is guaranteed that either all changes have been applied persistently
to the SA Forum Information Model, or none of them.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.
98 SAI-AIS-IMM-A.03.01 Section 4.8.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ccbHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOmCcbInitialize_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.8.6 99

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9 Administrative Operations Invocation
Processes can invoke administrative operations on IMM objects by using the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() API functions.

The IMM Service transfers the administrative operation to the registered runtime
owner process by invoking its saImmOiAdminOperationCallback() registered
callback, passing along all parameters provided to the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() API functions.

If the invoking process exits (due to a failure, for example) before the administrative
operation completes, the IMM Service allows another process to carry over the invo-
cation and wait for its result by invoking the
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() API functions. These functions are
called continuation functions. Saying in this section that a process carries over an
administrative operation means that the process invokes the appropriate IMM Service
API functions to wait for the result of an administrative operation that has been cor-
rectly initiated. Note that carrying over an administrative operation does not affect the
outcome of the administrative operation.
The administrative operation may have completed when a continuation function is
called. In this case, the continuation function will just fetch the result of the adminis-
trative operation that has been buffered by the IMM Service.
A runtime owner is not aware of the continuation functions, the support of which is
entirely handled by the IMM Service.

In order for an administrative operation to be carried over, the original invoker of the
administrative operation must provide a nonzero continuation identifier. The contin-
uation identifier must be unique on a per-object basis. It is the responsibility of the
process that initiates the administrative operation to store the continuation identifier in
a location where a process that may need to carry over the operation can access it.
The location where a continuation identifier is stored is not specified by the IMM Ser-
vice and is application-specific; checkpoints or files may be used to store continuation
identifiers.
The IMM Service registers a particular continuation identifier with an object when an
administrative operation is invoked on the object by a call to
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3(). The continuation identifier will stay
registered with the object until explicitly cleared with
saImmOmAdminOperationContinuationClear(), or until the administrative
ownership on the object that was in effect at the time of the invocation of
100 SAI-AIS-IMM-A.03.01 Section 4.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3()is released.
As long as a continuation identifier stays registered with the object, it is said to be a
registered continuation identifier, and the IMM Service shall keep any result of the
associated administrative operation available.
Continuation identifiers are not persistent, and they are all cleared when the IMM Ser-
vice is terminated.

The IMM Service does not allow concurrent continuation operations for the same
continuation identifier. As a consequence, saImmOmAdminOperationContinue()
and saImmOmAdminOperationContinueAsync() will fail and return an
SA_AIS_ERR_EXIST error if

• the administrative owner handle that was used when the continuation identifier
for an object was first provided in an invocation of
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() is still valid, or if

• the administrative owner handle that was used when the continuation identifier
for an object was last provided in an invocation of any of the two continuation
functions is still valid.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9 101

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9.1 saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3()

Prototype

SaAisErrorT saImmOmAdminOperationInvoke_3(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

SaNtfCorrelationIdsT *correlationIds,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 *const *params,

SaAisErrorT *operationReturnValue,

SaTimeT timeout

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

continuationId - [in] Continuation identifier for this particular invocation of the
administrative operation. In case ownerHandle is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() functions.
The continuationId parameter must be set to 0 if the invocation shall not be car-
ried over at a later point of time. The SaImmContinuationIdT type is defined in
Section 4.2.16 on page 41.

correlationIds - [in/out] Pointer to the correlation identifiers associated with the
administrative operation. The rootCorrelationId and parentCorrelationId
fields are in parameters and hold the root and parent correlation identifiers, respec-
tively. These correlation identifiers are included by the IMM Service in its notifications
triggered by the invocation of this API. The notificationId field is an out param-
eter that holds the notification identifier of the notification that the IMM Service sends
102 SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
to report the invocation of the administrative operation. The
SaNtfCorrelationIdsT type is defined in [6].

operationId - [in] Identifier of the administrative operation.
The SaImmAdminOperationIdT type is defined in Section 4.2.17 on page 42.

params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.18 on page 42.

operationReturnValue - [out] Pointer to the value returned by the registered
runtime owner for the invoked operation. This value is specific to the administrative
operation being performed, and it is valid only if the
saImmOmAdminOperationInvoke_3() function returns SA_AIS_OK. For more
details about this value, refer to the description of the administrative operation in
question in the documentation of the object implementer that is currently the regis-
tered runtime owner. The SaAisErrorT type is defined in [2].

timeout - [in] The saImmOmAdminOperationInvoke_3() invocation is consid-
ered to have failed if it does not complete by the time specified.
The SaTimeT type is defined in [2].

Prototype

SaAisErrorT saImmOmAdminOperationInvokeAsync_3(

SaImmAdminOwnerHandleT ownerHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

const SaNtfCorrelationIdsT *correlationIds,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 *const *params

);
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.1 103

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

invocation - [in] Used to match this invocation of
saImmOmAdminOperationInvokeAsync_3() with the corresponding invocation
of the SaImmOmAdminOperationInvokeCallbackT_3 callback.
The SaInvocationT type is defined in [2].

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

continuationId - [in] Continuation identifier for this particular invocation of the
administrative operation. In case ownerHandle is finalized before the process
retrieved the result of the operation, the result of the operation may be obtained by
specifying another valid administrative owner handle in an invocation of one of the
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() functions.
The continuationId parameter must be set to 0 if the operation shall not be car-
ried over at a later point of time. The SaImmContinuationIdT type is defined in
Section 4.2.16 on page 41.

correlationIds - [in] Pointer to the correlation identifiers associated with the
administrative operation. The rootCorrelationId and parentCorrelationId
fields are in parameters and hold the root and parent correlation identifiers, respec-
tively. These correlation identifiers are included by the IMM Service in its notifications
triggered by the invocation of this API. The notificationId field is not used. The
SaNtfCorrelationIdsT type is defined in [6].

operationId - [in] Identifier of the administrative operation.
The SaImmAdminOperationIdT type is defined in Section 4.2.17 on page 42.

params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.18 on page 42.
104 SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Description

Using the IMM Service as an intermediary, these two functions request the registered
runtime owner of the object designated by the name to which objectName points to
perform an administrative operation characterized by operationId on that object.
Administrative operations can be performed on configuration and runtime objects.

Each descriptor pointed to by an element of the array of pointers to which the
params parameter points represents an input parameter of the administrative opera-
tion to execute.

The function saImmOmAdminOperationInvoke_3() is the synchronous variant
and returns only when the registered runtime owner has successfully completed the
execution of the administrative operation, or when an error has been detected by the
IMM Service or the registered runtime owner.

The function saImmOmAdminOperationInvokeAsync_3() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request to be trans-
mitted to the registered runtime owner. If the IMM Service detects an error while reg-
istering the request, an error is immediately returned, and no further invocation of the
saImmOmAdminOperationInvokeCallback() callback function of the registered
runtime owner must be expected for this invocation of
saImmOmAdminOperationInvokeAsync_3(). If no error is detected by the IMM
Service while registering the request, the invocation of
saImmOmAdminOperationInvokeAsync_3() completes successfully, and a later
invocation of the saImmOmAdminOperationInvokeCallback() callback function
will occur to indicate the success or failure of the administrative operation on the tar-
get object.

If the administrative owner handle ownerHandle becomes finalized before the pro-
cess could retrieve the result of the administrative operation (returned by
saImmOmAdminOperationInvoke_3() or passed to the
saImmOmAdminOperationInvokeCallback() callback function of the process),
the current process or another process may invoke one of the functions
saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync() on a valid administrative owner
handle to carry over the operation to retrieve its results, if necessary.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.1 105

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could com-
plete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOmInitialize_3() to initialize the IMM Service and obtain the IMM Service
handle (with which the handle ownerHandle was obtained by invoking
saImmOmAdminOwnerInitialize()) was incomplete, since the
SaImmOmAdminOperationInvokeCallbackT_3 callback function was missing.
This return value applies only to the saImmOmAdminOperationInvokeAsync_3()
function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which
objectName points is not owned by the administrative owner associated with
ownerHandle.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or there is no registered runtime owner for this
object.

SA_AIS_ERR_EXIST - The object designated by the name to which objectName
points has already a registered continuation identifier identical to continuationId.

SA_AIS_ERR_BUSY - The object designated by the name to which objectName
points is already the target of a change request in a CCB.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.
106 SAI-AIS-IMM-A.03.01 Section 4.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem with the
registered runtime owner.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(),
SaImmOmAdminOperationInvokeCallbackT_3,
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync(),
saImmOmAdminOperationContinueClear()

4.9.2 SaImmOmAdminOperationInvokeCallbackT_3

Prototype

typedef void (*SaImmOmAdminOperationInvokeCallbackT_3) (

SaInvocationT invocation,

SaNtfIdentifierT notificationId,

SaAisErrorT operationReturnValue,

SaAisErrorT error

);

Parameters

invocation - [in] Used to match this callback invocation to the corresponding pre-
vious invocation of either saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last. The SaInvocationT type is defined in [2].

notificationId - [in] Holds the notification identifier of the notification that the
IMM Service sends to report the invocation of the administrative operation. The
SaNtfIdentifierT type is defined in [6].
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.2 107

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
operationReturnValue - [in] Value returned by the registered runtime owner for
the administrative operation requested in the corresponding previous invocation of
either saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last.
This value is specific to the administrative operation being performed, and it is valid
only if the error parameter is set to SA_AIS_OK. For more details about this value,
refer to the object implementer administrative operation description.
The SaAisErrorT type is defined in [2].

error - [in] Indicates whether the IMM Service succeeded or not to invoke the reg-
istered runtime owner.
The SaAisErrorT type is defined in [2].
The returned values are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such

as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle in the corresponding
invocation of either saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is invalid, since it is corrupted, uninitialized, or has
already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
• SA_AIS_ERR_NO_MEMORY - Either the IMM Service library or the provider of the

service is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other

than memory).
• SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which

the objectName parameter points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is not owned by the administrative owner associated
with ownerHandle.
108 SAI-AIS-IMM-A.03.01 Section 4.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter
points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is not the name of an existing object, or there is no reg-
istered runtime owner for this object.

• SA_AIS_ERR_EXIST - Two cases must be distinguished:
• This callback has been requested by the
saImmOmAdminOperationInvokeAsync_3() call: the object designated
by the name to which the objectName parameter points in the
saImmOmAdminOperationInvokeAsync_3() call has already a registered
continuation identifier identical to continuationId.

• This callback has been requested by the
saImmOmAdminOperationContinueAsync() call: the object designated
by the name to which the objectName parameter points in the
saImmOmAdminOperationContinueAsync() call has already a registered
continuation identifier identical to continuationId, and the administrative
owner handle specified for this object in a preceding call to one of the following
functions (depending on which of these four functions was called last) has not
yet been finalized:
• either saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3(), or

• either saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync()

• SA_AIS_ERR_BUSY - The object designated by the name to which the
objectName parameter points in the corresponding invocation of either
saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) is already the target of a change request in a CCB.

• SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem
with the registered runtime owner.

• SA_AIS_ERR_VERSION - The invoked function is not supported in the version
specified in the call to initialize this instance of the IMM Service library. This
return code applies only if this call was triggered by a previous invocation of
either saImmOmAdminOperationInvokeAsync_23() or
saImmOmAdminOperationContinueAsync().

• SA_AIS_ERR_UNAVAILABLE - The operation requested by either the corre-
sponding saImmOmAdminOperationContinueAsync() call or the corre-
sponding saImmOmAdminOperationInvokeAsync_3() call is unavailable on
this cluster node due to one of the two reasons:
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.2 109

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle
ownerHandle specified in either the corresponding
saImmOmAdminOperationContinueAsync() call or the corresponding
saImmOmAdminOperationInvokeAsync_3() call was acquired before the
cluster node left the cluster membership.

Description

The IMM Service invokes this callback function when the operation requested by the
corresponding invocation of either saImmOmAdminOperationInvokeAsync_3()
or saImmOmAdminOperationContinueAsync() (depending on which of these
functions was called last) completes successfully, or an error is detected.

This callback is invoked in the context of a thread calling saImmOmDispatch() with
the handle immHandle that was used to initialize the ownerHandle specified in one
of the corresponding functions saImmOmAdminOperationInvokeAsync_3() or
saImmOmAdminOperationContinueAsync(), depending on which of these func-
tions was called last.

Return Values

None

See Also

saImmOmAdminOwnerInitialize(), saImmOmDispatch(),
saImmOmAdminOperationInvokeAsync_3(),
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync(),
saImmOmAdminOperationContinueClear()
110 SAI-AIS-IMM-A.03.01 Section 4.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9.3 saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync()

Prototype

SaAisErrorT saImmOmAdminOperationContinue(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId,

SaAisErrorT *operationReturnValue

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

continuationId - [in] Identifies the corresponding previous invocation of
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3().
The SaImmContinuationIdT type is defined in Section 4.2.16 on page 41.

operationReturnValue - [out] Pointer to the value returned by the registered
runtime owner for the operation requested by the corresponding previous call to
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3(). The value returned by the regis-
tered runtime owner is specific to the administrative operation being performed, and it
is valid only if the saImmOmAdminOperationContinue() function returns
SA_AIS_OK. For more details about this value, refer to the object implementer
administrative operation description. The SaAisErrorT type is defined in [2].
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.3 111

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
Prototype

SaAisErrorT saImmOmAdminOperationContinueAsync(

SaImmAdminOwnerHandleT ownerHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmContinuationIdT continuationId

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

invocation - [in] Used to match this invocation of
saImmOmAdminOperationContinueAsync() with the corresponding invocation
of the SaImmOmAdminOperationInvokeCallbackT_3 callback.
The SaInvocationT type is defined in [2].

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

continuationId - [in] Identifies the corresponding previous invocation of
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3().
The SaImmContinuationIdT type is defined in Section 4.2.16 on page 41.

Description

These two functions allow a process to carry over the invocation of an administrative
operation that had been initiated with a particular administrative handle but did not
complete before the handle was finalized (explicitly or as a side effect of the process
termination).

The process carrying over the operation may invoke a synchronous or asynchronous
continuation function regardless of whether the respective administrative operation
was initiated by invoking saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3().

The function saImmOmAdminOperationContinue() is the synchronous variant
and returns only when the registered runtime owner has successfully completed the
execution of the administrative operation, or when an error has been detected by the
IMM Service or the registered runtime owner.
112 SAI-AIS-IMM-A.03.01 Section 4.9.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
The function saImmOmAdminOperationContinueAsync() is the asynchronous
variant; it returns as soon as the IMM Service has registered the request. If the IMM
Service detects an error while registering the request, an error is immediately
returned, and no further invocation of the
SaImmOmAdminOperationInvokeCallbackT_3 callback must be expected for
this invocation of saImmOmAdminOperationContinueAsync(). If no error is
detected by the IMM Service while registering the request, the invocation of
saImmOmAdminOperationInvokeAsync_3() completes successfully, and the
SaImmOmAdminOperationInvokeCallbackT_3 callback will be invoked later to
indicate the success or failure of the administrative operation on the target object.

The object name pointed to by objectName and the continuation identifier
continuationId must be the same that were supplied in a corresponding previous
invocation of saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOmInitialize_3() to initialize the IMM Service and obtain the IMM Service
handle (with which the handle ownerHandle was obtained by invoking
saImmOmAdminOwnerInitialize()) was incomplete, since the
SaImmOmAdminOperationInvokeCallbackT_3 callback function was missing.
This return value only applies to the saImmOmAdminOperationContinueAsync()
function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.3 113

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which the
objectName parameter points is not owned by the administrative owner associated
with ownerHandle.

SA_AIS_ERR_NOT_EXIST - This error is returned if one of the following conditions
apply:

• The name to which the objectName parameter points is not the name of an
existing object, or there is no registered runtime owner for this object.

• The continuationId parameter is not a valid continuation identifier (that is, it
is not a registered continuation identifier) for the object whose name is pointed to
by the objectName parameter.

SA_AIS_ERR_EXIST - The object designated by the name to which the
objectName parameter points has already a registered continuation identifier identi-
cal to continuationId, and the administrative owner handle specified for this
object in the last call to one of the following functions (depending on which of these
four functions was called last) has not yet been finalized:

• either saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3(), or

• either saImmOmAdminOperationContinue() or
saImmOmAdminOperationContinueAsync()

SA_AIS_ERR_BUSY - The object designated by the name to which the objectName
parameter points is already the target of a change request in a CCB.

SA_AIS_ERR_FAILED_OPERATION - The operation failed due to a problem with the
registered runtime owner.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3(),
SaImmOmAdminOperationInvokeCallbackT_3,
saImmOmAdminOperationContinueClear()
114 SAI-AIS-IMM-A.03.01 Section 4.9.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
4.9.4 saImmOmAdminOperationContinuationClear()

Prototype

SaAisErrorT saImmOmAdminOperationContinuationClear(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmContinuationIdT continuationId

);

Parameters

ownerHandle - [in] Administrative owner handle.
The SaImmAdminOwnerHandleT type is defined in Section 4.2.1 on page 33.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

continuationId - [in] The continuation identifier that was supplied in the corre-
sponding previous invocation of saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3().
The SaImmContinuationIdT type is defined in Section 4.2.16 on page 41.

Parameters

Description

This function instructs the IMM Service to clear all information kept to allow the con-
tinuation of the administrative operation identified by continuationId for the
object whose name is pointed to by objectName and the administrative owner iden-
tified by ownerHandle. After successful completion of this function, the
continuationId identifier is cleared, that is, it is no longer a registered continua-
tion identifier.

The object name pointed to by objectName and the continuation identifier
continuationId must be the same that were supplied in the corresponding previ-
ous invocation of saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-IMM-A.03.01 Section 4.9.4 115

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Management API Specification
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The object designated by the name to which the
objectName parameter points is not owned by the administrative owner associated
with ownerHandle.

SA_AIS_ERR_NOT_EXIST - This error is returned if one of the following conditions
apply:

• The name to which the objectName parameter points is not the name of an
existing object, or there is no registered runtime owner for this object.

• The continuationId parameter is not a valid continuation identifier (that is, it
is not a registered continuation identifier) for the object whose name is pointed to
by the objectName parameter.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

ownerHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3(),
SaImmOmAdminOperationInvokeCallbackT_3,
saImmOmAdminOperationContinue(),
saImmOmAdminOperationContinueAsync()
116 SAI-AIS-IMM-A.03.01 Section 4.9.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5 IMM Service - Object Implementer API Specification

5.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the IMM Service object imple-
menter API:

#include <saImmOi.h>

To use the IMM Service object implementer API, an application must be bound with
the following library:

libSaImmOi.so

5.2 Type Definitions

5.2.1 IMM Service Handles

The following handles are used by IMM Service object implementer API functions:

typedef SaUint64T SaImmOiHandleT;

typedef SaUint64T SaImmOiCcbIteratorHandleT;

5.2.2 SaImmOiImplementerNameT

The SaImmOiImplementerNameT type represents an object implementer name; it
points to an UTF-8 encoded character string, terminated by the NULL character.

typedef SaStringT SaImmOiImplementerNameT;

5.2.3 SaImmOiRoleFlagsT

The SaImmOiRoleFlagsT type is used to specify the role or roles of an object imple-
menter. A value of this type is one of the flags described further down or a logical or
of the SA_IMM_ROLE_CCB_VALIDATOR and SA_IMM_ROLE_CCB_APPLIER flags.

#define SA_IMM_ROLE_RUNTIME_OWNER 0x00000001

#define SA_IMM_ROLE_CCB_VALIDATOR 0x00000002

#define SA_IMM_ROLE_CCB_APPLIER 0x00000004

typedef SaUint32T SaImmOiRoleFlagsT;
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 5 117

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
The meaning of the flags listed above is:

• SA_IMM_ROLE_RUNTIME_OWNER - if this flag is specified in a call to
saImmOiObjectImplementerSet_3() or
saImmOiClassImplementerSet_3(), the implementer name associated
with the specified object implementer handle will become the name of the runt-
ime owner of the corresponding objects.

• SA_IMM_ROLE_CCB_VALIDATOR - if this flag is specified in a call to
saImmOiObjectImplementerSet_3() or
saImmOiClassImplementerSet_3(), the implementer name associated
with the specified object implementer handle will become the name of a CCB
validator of the corresponding objects.

• SA_IMM_ROLE_CCB_APPLIER - if this flag is specified in a call to
saImmOiObjectImplementerSet_3() or
saImmOiClassImplementerSet_3(), the implementer name associated
with the specified object implementer handle will become the name of a CCB
applier of the corresponding objects.

5.2.4 SaImmOiCcbIteratorOptionT

The SaImmOiCcbIteratorOptionT type is used to specify the information that
should be returned for the objects in the CCB.

#define SA_IMM_CCB_ITERATOR_REGISTERED_OBJECTS 0x01

#define SA_IMM_CCB_ITERATOR_OBJECT_NAME_ONLY 0x02

#define SA_IMM_CCB_ITERATOR_MODIFIED_ATTRIBUTES 0x04

typedef SaUint64T SaImmOiCcbIteratorOptionT;

The values of this type definition have the following meaning:

SA_IMM_CCB_ITERATOR_REGISTERED_OBJECTS - only return objects for which
the invoking process is a registered CCB validator or CCB applier. If
SA_IMM_CCB_ITERATOR_REGISTERED_OBJECTS is not set, all objects in the CCB
are returned.

The two options SA_IMM_CCB_ITERATOR_OBJECT_NAME_ONLY and
SA_IMM_CCB_ITERATOR_MODIFIED_ATTRIBUTES are mutually exclusive (only
one of them can be specified). If none of these two options is specified, the object
name and all its attributes are returned for each object.
118 SAI-AIS-IMM-A.03.01 Section 5.2.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.2.5 SaImmOiObjectChangeT

The SaImmOiObjectChangeT type is used to specify how a returned object has
been changed.

typedef enum {

SA_IMM_OBJECT_CREATE = 1,

SA_IMM_OBJECT_DELETE = 2,

SA_IMM_OBJECT_MODIFY = 3

} SaImmOiObjectChangeT;

The values of this type definition have the following meaning:

• SA_IMM_OBJECT_CREATE - indicates that the object has been created.
• SA_IMM_OBJECT_DELETE - indicates that the object has been deleted.
• SA_IMM_OBJECT_MODIFIED - indicates that some attribute of the object has

been modified (add, delete, or replace).

5.2.6 SaImmOiObjectTraverseT

The SaImmOiObjectTraverseT is used to indicate how the SA Forum Information
Model should be searched for changes.

typedef enum {

SA_IMM_OBJECT_ENTER = 1,

SA_IMM_OBJECT_CONTINUE = 2

} SaImmOiObjectTraverseT;

The values of this type definition have the following meaning:

• SA_IMM_OBJECT_ENTER - this value is used to request the iterator to search
the subtree below the last returned object.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.2.5 119

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
• SA_IMM_OBJECT_CONTINUE - this value is used to request the iterator not to
enter the subtree below the last returned object.

5.2.7 SaImmOiCallbacksT_3

The SaImmOiCallbacksT_3 structure defines the set of callbacks a process imple-
menting IMM Service objects can provide to the IMM Service at initialization time.

typedef struct {

SaImmOiAdminOperationCallbackT_3
saImmOiAdminOperationCallback;

SaImmOiCcbAbortCallbackT_3
saImmOiCcbAbortCallback;

SaImmOiCcbApplyCallbackT_3
saImmOiCcbApplyCallback;

SaImmOiCcbValidateCallbackT
saImmOiCcbValidateCallback;

SaImmOiCcbFinalizeCallbackT
saImmOiCcbFinalizeCallback;

SaImmOiRtAttrUpdateCallbackT
saImmOiRtAttrUpdateCallback;

} SaImmOiCallbacksT_3;
120 SAI-AIS-IMM-A.03.01 Section 5.2.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.3 Library Life Cycle

5.3.1 saImmOiInitialize_3()

Prototype

SaAisErrorT saImmOiInitialize_3(

SaImmOiHandleT *immOiHandle,

const SaImmOiCallbacksT_3 *immOiCallbacks,

SaVersionT *version

);

Parameters

immOiHandle - [out] A pointer to the handle which identifies this particular initializa-
tion of the IMM Service and which is to be returned by the IMM Service. This handle
provides access to the object implementer APIs of the IMM Service. The
SaImmOiHandleT type is defined in Section 5.2.1 on page 117.

immOiCallbacks - [in] If immOiCallbacks is set to NULL, no callback is regis-
tered; if immOiCallbacks is not set to NULL, it is pointer to an
SaImmOiCallbacksT_3 structure which contains the callback functions of the pro-
cess that the IMM Service may invoke. Only non-NULL callback functions in this
structure will be registered. The SaImmOiCallbacksT_3 type is defined in
Section 5.2.7 on page 120.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required Information Model Management Service version. In this case,
minorVersion is ignored and should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Information Model Management Service. The SaVersionT
type is defined in [2].

Description

This function initializes the object implementer functions of the Information Model
Management Service for the invoking process and registers the various callback
functions. This function must be invoked prior to the invocation of any other IMM Ser-
vice object implementer functionality. The handle pointed to by immOiHandle is
returned by the IMM Service as the reference to this association between the process
and the IMM Service. The process uses this handle in subsequent communication
with the IMM Service.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3 121

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
The returned handle immOiHandle is not associated with any implementer name.
The association of the handle with an implementer name is performed by the invoca-
tion of the saImmOiImplementerSet() function.

If the invoking process exits after successfully returning from the
saImmOiInitialize_3() function and before invoking saImmOiFinalize() to
finalize the handle immOiHandle (see Section 5.3.4 on page 126), the IMM Service
automatically finalizes this handle when the death of the process is detected.

If the implementation supports the version of the IMM Service object implementer API
specified by the releaseCode and majorVersion fields of the structure pointed to
by the version parameter, SA_AIS_OK is returned. In this case, the structure
pointed to by the version parameter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion
122 SAI-AIS-IMM-A.03.01 Section 5.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Information
Model Management Service implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiFinalize(), saImmOiImplementerSet()

5.3.2 saImmOiSelectionObjectGet()

Prototype

SaAisErrorT saImmOiSelectionObjectGet(

SaImmOiHandleT immOiHandle,

SaSelectionObjectT *selectionObject

);
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.2 123

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

selectionObject - [out] A pointer to the operating system handle that the invok-
ing process can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [2].

Description

This function returns the operating system handle associated with the handle
immOiHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking saImmOiDispatch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect pending callbacks.

The operating system handle returned by saImmOiSelectionObjectGet() is
valid until saImmOiFinalize() is successfully invoked on the same handle
immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).
124 SAI-AIS-IMM-A.03.01 Section 5.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiDispatch(), saImmOiFinalize()

5.3.3 saImmOiDispatch()

Prototype

SaAisErrorT saImmOiDispatch(

SaImmOiHandleT immOiHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saImmOiDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [2].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle immOiHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle immOiHandle has been finalized.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.3 125

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiSelectionObjectGet(),
saImmOiFinalize()

5.3.4 saImmOiFinalize()

Prototype

SaAisErrorT saImmOiFinalize(

SaImmOiHandleT immOiHandle

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.
126 SAI-AIS-IMM-A.03.01 Section 5.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

The saImmOiFinalize() function closes the association represented by the
immOiHandle parameter between the invoking process and the Information Model
Management Service. The process must have invoked saImmOiInitialize_3()
before it invokes this function. A process must invoke this function once for each han-
dle it acquired by invoking saImmOiInitialize_3().

This function does not release the associations established between object classes
or objects and the implementer name that may still be associated with the handle
immOiHandle.
The next time a process associates the same implementer name with an object
implementer handle, that process automatically becomes the implementer of all
objects having the same implementer name.

If the saImmOiFinalize() function completes successfully, it releases all
resources acquired when saImmOiInitialize_3() was called.
Furthermore, saImmOiFinalize() cancels all pending callbacks related to asyn-
chronous operations performed with the handle immOiHandle. Note that because
the callback invocation is asynchronous, it is still possible that some callback calls are
processed after this call returns successfully.

If a process terminates, the Information Model Management Service implicitly final-
izes all associations (handles) with the Information Model Management Service that
were initialized by the process, as described in the preceding paragraph.

After saImmOiFinalize() returns successfully, the handle immOiHandle and the
selection object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOiInitialize_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.3.4 127

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4 Object Implementer API
With each object in the SA Forum Information Model, the IMM Service associates a
set of processes that perform the different tasks required for the correct deployment,
administration, and status update of this object, that is, for implementing it. The asso-
ciations are created through names (termed implementer names) that are set for the
object. A process may then register for a name and become an implementer of the
objects for which this name is set. The different tasks of implementing an object are
grouped into roles:

(1) runtime owner: A process having this role can create, delete, and modify runt-
ime objects. Such a process is termed the runtime owner of the particular
object. As a runtime object is only created by its runtime owner, the IMM Service
can automatically set the implementer name for the object and for this role when
the object is created. The runtime owner of a configuration object is responsible
for maintaining the runtime attributes of the object and for carrying out the
administrative operations issued on the object. Such a process indicates this
role with respect to the object by registering with the IMM Service as a runtime
owner for the object. At any given time, only a single process in the entire clus-
ter can assume this role for an object regardless of whether the object is a con-
figuration or runtime object. The name of the runtime owner is contained in the
SA_IMM_ATTR_RUNTIME_OWNER_NAME attribute of the object.

(2) CCB applier: A process which interprets a configuration object and deploys any
part of the configuration that the object reflects in the SAF system is termed a
CCB applier of that configuration object. Such a process indicates this role with
respect to the object by registering with the IMM Service as a CCB applier for
the object. As a result, it is informed of any configuration modifications applied
to this object. At any given time, one or more processes in the cluster can
assume this role for an object. CCB appliers must explicitly indicate to the IMM
Service which configuration objects they implement. This can be done for all
objects of a given class or by targeting a particular set of objects. The list of
CCB appliers is contained in the SA_IMM_ATTR_APPLIER_NAME attribute of
the object.

(3) CCB validator: A process which validates any proposed configuration change
for a configuration object is termed a CCB validator of the particular object. At
any given time, one or more processes in the entire cluster can assume this role
for an object. Whenever a CCB is to be applied that impacts this configuration
object, all CCB validator processes associated with the object are requested by
the IMM Service to validate the proposed changes. CCB validators must explic-
itly indicate to the IMM Service which configuration objects they implement. This
can be done for all objects of a given class or by targeting a particular set of
objects. The list of CCB validators is contained in the
SA_IMM_ATTR_VALIDATOR_NAME attribute of the object.
128 SAI-AIS-IMM-A.03.01 Section 5.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Any process having these roles is termed an object implementer. In a few occur-
rences in this document, the term “object implementer” is also used to refer to any
process having successfully obtained an object implementer handle, even if the pro-
cess has not yet a role associated to it. The context clarifies the intended meaning.

The IMM Service keeps records of all object implementers and their associated roles
with respect to every object.

A runtime object has only a runtime owner, and it is always the object implementer
that created the object. For configuration objects, the implementer name for a certain
role is set, and it remains associated with the object until explicitly released. The
description refers to this association by saying that the object “has an implementer”
or, for the particular roles, “has a runtime owner”, “has a CCB validator”, or “has a
CCB applier”. This association and these terms apply even if the process that held
the corresponding role for this implementer name (called the registered object
implementer) clears the implementer name associated with its object implementer
handle.
This feature enables faster recovery of object implementers failures, as the new
object implementer does not have to explicitly re-register all objects it implements.
Simply registering itself with the same implementer name allows the IMM Service to
associate all objects with the same implementer name with that process.
The process of registration for an object implementer role, its release, and impact on
in-progress CCBs is specified in the related functions and in
Section 5.5 on page 144.

Similar to the term registered object implementer, the more specific terms registered
runtime owner, registered CCB validator, and registered CCB applier are also
used to refer to these processes.

An object implementer handle can be associated with only one implementer name.

Typical use cases consist of enforcing system-wide constraints. For an illustration,
see the example in Appendix A.
For sequence diagrams that illustrate the detailed sequence of API operations for
configuration changes using CCBs, refer to Appendix B.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4 129

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.1 saImmOiImplementerSet()

Prototype

SaAisErrorT saImmOiImplementerSet(

SaImmOiHandleT immOiHandle,

const SaImmOiImplementerNameT implementerName

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

implementerName - [in] Name of the object implementer. The
SaImmOiImplementerNameT type is defined in Section 5.2.2 on page 117.

Description

This function sets the implementer name specified in the implementerName param-
eter for the handle immOiHandle. This function also registers the invoking process
as an object implementer having the name which is specified in the
implementerName parameter. At any given time, only a single process in the entire
cluster can be registered under a particular object implementer name. The invoking
process becomes the implementer of all existing IMM Service objects that have an
implementer name identical to implementerName.
Also, at any given time one immOiHandle handle can be associated with at most
one object implementer name. If a process wants to register for multiple implementer
names, it must obtain a separate immOiHandle handle for each of them by repeated
initialization of the object implementer library.

In order to be a valid parameter to all object implementer APIs except for
saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiImplementerSet(), and saImmOiFinalize(), an object implementer
handle must be successfully associated with an implementer name.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
130 SAI-AIS-IMM-A.03.01 Section 5.4.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOiInitialize_3() to initialize the IMM Service object implementer library
and obtain the handle specified by the immOiHandle parameter was incomplete,
since one or more of the following callback functions, depending on the role currently
associated with the object implementer name implementerName, were missing:

• implementerName parameter contains a name which is currently associated
with the runtime owner role: SaImmOiRtAttrUpdateCallbackT and
SaImmOiAdminOperationCallbackT_3;

• implementerName parameter contains a name which is currently associated
with the CCB applier role: SaImmOiCcbApplyCallbackT_3;

• implementerName parameter contains a name which is currently associated
with the CCB validator role: SaImmOiCcbValidateCallbackT,
SaImmOiCcbFinalizeCallbackT, and SaImmOiCcbAbortCallbackT_3.

SA_AIS_ERR_EXIST - An object implementer with the same name is already regis-
tered with the IMM Service or an object implementer name is already set for the han-
dle immOiHandle.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiImplementerClear(),
SaImmOiRtAttrUpdateCallbackT, SaImmOiAdminOperationCallbackT_3,
SaImmOiCcbApplyCallbackT_3, SaImmOiCcbValidateCallbackT,
SaImmOiCcbFinalizeCallbackT, SaImmOiCcbAbortCallbackT_3
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.1 131

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.2 saImmOiImplementerClear()

Prototype

SaAisErrorT saImmOiImplementerClear(

SaImmOiHandleT immOiHandle

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

Description

This function clears the implementer name associated with the immOiHandle handle
and unregisters the invoking process as an object implementer for the name previ-
ously associated with immOiHandle.

With no associated implementer name, immOiHandle is only a valid parameter for
the following APIs: saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiImplementerSet(), and saImmOiFinalize().

IMM object classes and objects that have an implementer name equal to the name
previously associated with immOiHandle keep the same implementer name, but
stay without any registered object implementer until a process invokes
saImmOiImplementerSet() again with the same implementer name.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.
132 SAI-AIS-IMM-A.03.01 Section 5.4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiImplementerSet(),
saImmOiSelectionObjectGet(), saImmOiDispatch(),
saImmOiFinalize(), SaImmOiRtAttrUpdateCallbackT,
SaImmOiAdminOperationCallbackT_3, SaImmOiCcbApplyCallbackT_3,
SaImmOiCcbValidateCallbackT, SaImmOiCcbFinalizeCallbackT,
SaImmOiCcbAbortCallbackT_3

5.4.3 saImmOiClassImplementerSet_3()

Prototype

SaAisErrorT saImmOiClassImplementerSet_3(

SaImmOiHandleT immOiHandle,

SaImmOiRoleFlagsT role,

const SaImmClassNameT className

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

role - [in] Role of this object implementer. The SaImmOiRoleFlagsT type is
defined in Section 5.2.3 on page 117.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 34.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.3 133

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

An object implementer whose name is associated with the handle immOiHandle
invokes this function to inform the IMM Service that the object implementer assumes
the role or roles specified by the role parameter for all the objects that are instances
of the object class whose name is specified by the className parameter (existing
objects as well as objects that will be created in the future).

If this operation succeeds and the role parameter contains the
SA_IMM_ROLE_RUNTIME_OWNER flag, the current process becomes the runtime
owner of all objects of the object class whose name is specified by className; addi-
tionally, for each targeted object, the IMM Service adds to the object’s
SA_IMM_ATTR_RUNTIME_OWNER_NAME attribute the implementer name (if not
already present) associated with the handle immOiHandle.
This operation fails if the object class whose name is specified by the className
parameter or an object of this class has already a runtime owner whose name is dif-
ferent from the implementer name associated with the handle immOiHandle.

If this operation succeeds and the role parameter contains the
SA_IMM_ROLE_CCB_APPLIER flag, the current process becomes a CCB applier of
all objects of the object class whose name is specified by className; additionally,
for each targeted object, the IMM Service adds to the object’s
SA_IMM_ATTR_APPLIER_NAME attribute the implementer name (if not yet present)
associated with the handle immOiHandle.

If this operation succeeds and the role parameter contains the
SA_IMM_ROLE_CCB_VALIDATOR flag, the current process becomes a CCB validator
of all objects of the object class whose name is specified by className; additionally,
for each targeted object, the IMM Service adds to the object’s
SA_IMM_ATTR_VALIDATOR_NAME attribute the implementer name (if not yet
present) associated with the handle immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
134 SAI-AIS-IMM-A.03.01 Section 5.4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOiInitialize_3() to initialize the IMM Service object implementer library
and obtain the handle specified by the immOiHandle parameter was incomplete,
since one or more of the following callback functions, depending on the role param-
eter, were missing:

• role parameter contains the SA_IMM_ROLE_RUNTIME_OWNER flag:
SaImmOiRtAttrUpdateCallbackT and
SaImmOiAdminOperationCallbackT_3;

• role parameter contains the SA_IMM_ROLE_CCB_APPLIER flag:
SaImmOiCcbApplyCallbackT_3;

• role parameter contains the SA_IMM_ROLE_CCB_VALIDATOR flag:
SaImmOiCcbValidateCallback, SaImmOiCcbFinalizeCallbackT, and
SaImmOiCcbAbortCallbackT_3.

SA_AIS_ERR_BAD_OPERATION - The className parameter specifies the name of
a runtime object class.

SA_AIS_ERR_NOT_EXIST - The className parameter does not specify the name
of an existing class.

SA_AIS_ERR_EXIST - The object class whose name is specified by the className
parameter or an object of that class has already a runtime owner whose name is dif-
ferent from the implementer name associated with the handle immOiHandle.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), SaImmOiRtAttrUpdateCallbackT,
SaImmOiAdminOperationCallbackT_3, SaImmOiCcbApplyCallbackT_3,
SaImmOiCcbValidateCallbackT, SaImmOiCcbFinalizeCallbackT,
SaImmOiCcbAbortCallbackT_3
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.3 135

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.4.4 saImmOiClassImplementerRelease_3()

Prototype

SaAisErrorT saImmOiClassImplementerRelease_3(

SaImmOiHandleT immOiHandle,

SaImmOiRoleFlagsT role,

const SaImmClassNameT className

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

role - [in] Role of this object implementer. The SaImmOiRoleFlagsT type is
defined in Section 5.2.3 on page 117.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 34.

Description

An object implementer whose name is associated with the handle immOiHandle
invokes this function to inform the IMM Service that the object implementer no longer
holds the role or roles specified by the role parameter for all the objects that are
instances of the object class whose name is specified by the className parameter
(existing objects as well as objects that will be created in the future).

An object implementer can release just some of the roles for which it has registered.
It may, for example, register as both a CCB validator and a CCB applier, and then, at
a later time, unregister as a CCB applier. It will then remain a CCB validator.

If this operation succeeds, and the CCB validator, CCB applier, or runtime owner role
is to be released, the IMM Service removes the implementer name from the attribute
SA_IMM_ATTR_VALIDATOR_NAME, SA_IMM_ATTR_APPLIER_NAME, and
SA_IMM_ATTR_RUNTIME_OWNER_NAME, respectively. If no more implementer
names remain in any of these attribute, the attribute is removed.

If this operation succeeds, and the role parameter contains the
SA_IMM_ROLE_RUNTIME_OWNER flag, the IMM Service removes all non-persistent
cached runtime attributes from all objects of that class.
136 SAI-AIS-IMM-A.03.01 Section 5.4.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
In any of the following cases, this operation fails.

• for the class whose name is specified by className, the invoking process does
not hold at least one of the roles to be released;

• one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator;

• one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The className parameter specifies the name of
a runtime object class.

SA_AIS_ERR_NOT_EXIST - The name specified by the className parameter is not
the name of an existing object class, or the invoking process does not hold at least
one of the roles to be released for the class whose name is specified by className.

SA_AIS_ERR_BUSY - This value is returned if

• one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator,
or

• one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.4 137

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiClassImplementerSet_3()

5.4.5 saImmOiObjectImplementerSet_3()

Prototype

SaAisErrorT saImmOiObjectImplementerSet_3(

SaImmOiHandleT immOiHandle,

SaImmOiRoleFlagsT role,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

role - [in] Role of this object implementer. The SaImmOiRoleFlagsT type is
defined in Section 5.2.3 on page 117.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.
138 SAI-AIS-IMM-A.03.01 Section 5.4.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

An object implementer whose name is associated with the handle immOiHandle
invokes this function to inform the IMM Service that the object implementer assumes
the role or roles specified by the role parameter for the objects identified by the
scope and objectName parameters.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation is the object designated by
the name to which objectName points.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which objectName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by the name to which objectName points and the entire subtree rooted at
that object.

If this operation succeeds, and the role parameter contains the
SA_IMM_ROLE_RUNTIME_OWNER flag, the current process becomes the runtime
owner of the targeted objects; additionally, for each targeted object, the IMM Service
adds the implementer name associated with the handle immOiHandle (if not yet
present) to the SA_IMM_ATTR_RUNTIME_OWNER_NAME attribute of the object.
This operation fails if one of the targeted objects has already a runtime owner whose
name is different from the implementer name associated with the handle immOiHan-
dle.

If this operation succeeds and the role parameter contains the flag
SA_IMM_ROLE_CCB_VALIDATOR or SA_IMM_ROLE_CCB_APPLIER, the IMM Ser-
vice adds the implementer name associated with the handle immOiHandle (if not yet
present) to the SA_IMM_ATTR_VALIDATOR_NAME or
SA_IMM_ATTR_APPLIER_NAME attribute of the targeted objects, respectively. Addi-
tionally, the current process becomes for each of the targeted objects a CCB validator
or a CCB applier, respectively.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.5 139

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INIT - The corresponding previous invocation of
saImmOiInitialize_3() to initialize the IMM Service object implementer library
and obtain the handle specified by the immOiHandle parameter was incomplete,
since one or more of the following callback functions, depending on the role param-
eter, were missing:

• role parameter contains the SA_IMM_ROLE_RUNTIME_OWNER flag:
SaImmOiRtAttrUpdateCallbackT and
SaImmOiAdminOperationCallbackT_3;

• role parameter contains the SA_IMM_ROLE_CCB_APPLIER flag:
SaImmOiCcbApplyCallbackT_3;

• role parameter contains the SA_IMM_ROLE_CCB_VALIDATOR flag:
SaImmOiCcbValidateCallbackT, SaImmOiCcbFinalizeCallbackT, and
SaImmOiCcbAbortCallbackT_3.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime objects.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already
has a runtime owner having a name different from the name associated with the han-
dle immOiHandle.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.
140 SAI-AIS-IMM-A.03.01 Section 5.4.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
See Also

saImmOiInitialize_3(), saImmOiObjectImplementerRelease_3(),
SaImmOiRtAttrUpdateCallbackT, SaImmOiAdminOperationCallbackT_3,
SaImmOiCcbApplyCallbackT_3, SaImmOiCcbValidateCallbackT,
SaImmOiCcbFinalizeCallbackT, SaImmOiCcbAbortCallbackT_3

5.4.6 saImmOiObjectImplementerRelease_3()

Prototype

SaAisErrorT saImmOiObjectImplementerRelease_3(

SaImmOiHandleT immOiHandle,

SaImmOiRoleFlagsT role,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

role - [in] Role of this object implementer. The SaImmOiRoleFlagsT type is
defined in Section 5.2.3 on page 117.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

scope - [in] Scope of the operation. The SaImmScopeT type is defined in
Section 4.2.11 on page 38.

Description

An object implementer whose name is associated with the handle immOiHandle
invokes this function to inform the IMM Service that the object implementer no longer
holds the role or roles specified by the role parameter for the set of objects identified
by scope and the name to which objectName points.

An object implementer can release just some of the roles for which it has registered.
It may, for example, register as both CCB validator and CCB applier, and then, at a
later time, unregister as CCB applier. It will then remain CCB validator.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.6 141

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation is the object designated by
the name to which objectName points.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by the name to which objectName points and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by the name to which objectName points and the entire subtree rooted at
that object.

If this operation succeeds and the role parameter contains the flag
SA_IMM_ROLE_CCB_VALIDATOR, SA_IMM_ROLE_CCB_APPLIER, or
SA_IMM_ROLE_RUNTIME_OWNER, the IMM Service removes the implementer name
associated with the handle immOiHandle from the
SA_IMM_ATTR_VALIDATOR_NAME, SA_IMM_ATTR_APPLIER_NAME, or
SA_IMM_ATTR_RUNTIME_OWNWR_NAME attribute of all the targeted objects, respec-
tively. If no more implementer names remain in any of these attributes, the attribute is
removed.

If this operation succeeds and the role parameter contains the
SA_IMM_ROLE_RUNTIME_OWNER flag, the IMM Service removes all non-persistent
cached runtime attributes from all the targeted objects.

In any of the following cases, this operation fails.

• for one or more of the targeted objects, the invoking process does not hold at
least one of the roles to be released;

• one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator;

• one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
142 SAI-AIS-IMM-A.03.01 Section 5.4.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime objects.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or the invoking process does not hold at least
one of the roles to be released for one or more of the targeted objects.

SA_AIS_ERR_BUSY - This value is returned if

• one or more objects affected by this operation are taking part in an in-progress
CCB operation, and one of the roles to be released is that of the CCB validator,
or

• one or more of the affected objects are taking part in an in-progress administra-
tive operation, and one of the roles to be released is that of the runtime owner.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOiInitialize_3(), saImmOiClassImplementerSet_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.4.6 143

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.5 CCB Validator Callbacks
When the user of the object management API requests the IMM Service to apply all
change requests contained in a CCB by invoking the saImmOmCcbApply_3() func-
tion, the CCB enters the critical region, and the IMM Service applies the CCB in two
steps:

1. In the first step, the IMM Service indicates to each CCB validator that validates at
least one object for which the CCB holds one or more changes that the CCB is
now complete and that the CCB validator must perform a local and global valida-
tion of the entire set of CCB changes (the meaning of these terms is explained
further down). This indication is done by invoking the
saImmOiCcbValidateCallback() callback function of each CCB validator. If
any of the CCB validators returns an error or does not respond within the
required time limit (specified by the saImmOiTimeout attribute in the
SaImmMngt object class, shown in Section 7.2 on page 177), the attempt to
apply the CCB fails, and the following actions are performed:
• The IMM Service informs all CCB validators affected by the CCB that the CCB

is aborted by invoking the saImmOiCcbAbortCallback() callback function
of each CCB validator. When this callback of a CCB validator is invoked, the
CCB validator shall dispose of the corresponding CCB identifier (as well as of
any associated state), as the IMM Service may re-use the same CCB identifier
to designate another set of changes later.

• The saImmOmCcbApply_3() function returns an error, and the CCB leaves
the critical section.

2. If all CCB validators agree with the proposed changes, the IMM Service applies
the changes, and it then invokes the saImmOiCcbApplyCallback() callback
function of each CCB applier as described in Section 5.6 on page 150 to inform
them that the CCB has been applied.
Subsequently, the IMM Service invokes the
saImmOiCcbFinalizeCallback() callback function of all CCB validators
before it returns to the caller of the saImmOmCcbApply_3() function. When its
saImmOiCcbFinalizeCallback() callback is invoked, the CCB validator
shall dispose of the corresponding CCB identifier (as well as of any associated
state) for the same reason given in 1.).

Each CCB-related callback is invoked with a CCB identifier as a parameter.

The same CCB initialized with saImmOmCcbInitialize_3() may hold changes
validated by different CCB validators. The IMM Service guarantees that the CCB
identifiers passed to the different CCB validators are identical, meaning that the
scope of the CCB identifier is global to the entire cluster.
144 SAI-AIS-IMM-A.03.01 Section 5.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
A CCB validator shall obtain the changes contained in a CCB by invoking the CCB
iterator functions described in Section 5.7 on page 153. Using an appropriate
immHandle, it can also invoke the object search API functions described in
Section 4.5 on page 61 and the object access API functions of
Section 4.6 on page 69.

All changes are applied to the SA Forum Information Model by the IMM Service and
deployed by the CCB appliers as a single transaction. Thus, the validation only con-
siders the new state (resulting from all proposed changes) that needs to be validated
prior to the application of the CCB. As a consequence, CCB validators are requested
to perform two types of validation, local and global validation, when their
saImmOiCcbValidateCallback() is invoked:

• Local validation consists of type and constraints checking of an attribute or an
object, and it excludes any dependency checking, such as validating the impact
or the consistency of the modification with respect to other attributes or objects.

• Global validation consists of making sure that the configuration of the SA
Forum Information Model, as it would appear if all the modifications in the CCB
were applied, is consistent and valid from the CCB validator's perspective.

Note: If the data model allows for a configuration that a CCB applier cannot accept,
perhaps due to memory constraints, there must be a CCB validator which has
validation code to guard against such configuration changes.

When a change request is added to the CCB, the IMM Service checks that the SA
Forum Information Model tree hierarchy is consistent:

• it checks that a newly created object has a parent in the hierarchy, and
• it checks that an object being deleted has no child.

The Information Model Management Service may also perform a local validation of
the object attributes against the specification of the object class to which the object
belongs.

If a CCB validator or a CCB applier either registers or unregisters itself while a CCB is
in progress, and the CCB holds changes for objects this CCB validator or CCB
applier implements, the IMM Service aborts the CCB, unless the CCB was initialized
with the appropriate SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS and
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags set. Note that if the IMM Service
has applied the changes contained in the successfully validated CCB to the SA
Forum Information Model (that is, the changes have been persisted by the IMM Ser-
vice), the CCB cannot be aborted under any circumstances.

Appendix B provides sequence diagrams that show the detailed sequence of API
operations for configuration changes using CCBs.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5 145

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.5.1 SaImmOiCcbValidateCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbValidateCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

ccbId - [in] CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbId is now complete. The invoked process must perform a local and
a global validation (see Section 5.5 on page 144) of the configuration, as it would
appear if the CCB had been applied to the SA Forum Information Model and
deployed in the SA Forum system by CCB appliers, and it must additionally ensure
that no errors will be generated when these changes are effectively applied.

If all CCB validators that implement and validate objects changed by the CCB agree
with the changes (they return SA_AIS_OK), the IMM Service will apply the changes to
the SA Forum Information Model and then invoke the
saImmOiCcbApplyCallback() callback functions of the CCB appliers to notify
them that the CCB has been applied.

If any CCB validator fails to return from the saImmOiCcbValidateCallback()
function within the time interval specified by the saImmOiTimeout attribute (defined
in the SaImmMngt object class, shown in Section 7.2 on page 177), the in-progress
CCB is failed by the IMM Service.
146 SAI-AIS-IMM-A.03.01 Section 5.5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
The IMM Service invokes this callback in the context of a thread of a CCB validator
calling saImmOiDispatch() with the handle immOiHandle that was specified
when the process invoked saImmOiImplementerSet(),
saImmOiObjectImplementerSet_3(), or
saImmOiClassImplementerSet_3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbId parameter.

Return Values

SA_AIS_OK - The function completed successfully. The global validation was suc-
cessful and the CCB validator agrees to apply the CCB.

SA_AIS_ERR_NO_MEMORY - The CCB validator is out of memory and cannot allocate
the memory required to later apply all requested changes.

SA_AIS_ERR_NO_RESOURCES - The CCB validator is out of required resources
(other than memory) to later apply all requested changes.

SA_AIS_ERR_BAD_OPERATION - The validation by the CCB validator of all change
requests contained in the CCB failed.

See Also

saImmOmCcbApply_3(), saImmOiInitialize_3(), saImmOiDispatch(),
saImmOiImplementerSet(), saImmOiClassImplementerSet_3(),
saImmOiObjectImplementerSet_3()

5.5.2 SaImmOiCcbAbortCallbackT_3

Prototype

typedef void (*SaImmOiCcbAbortCallbackT_3)(

SaImmOiHandleT immOiHandle,

SaImmCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5.2 147

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
ccbId - [in] CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbId is aborted, so that they can dispose of the CCB identifier ccbId
and of any associated state.

The IMM Service invokes this callback in the context of a thread of a CCB validator
calling saImmOiDispatch() with the handle immOiHandle that was specified
when the process invoked saImmOiImplementerSet(),
saImmOiObjectImplementerSet_3(), or
saImmOiClassImplementerSet_3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbId parameter.

Return Values

None

See Also

saImmOmCcbApply_3(), saImmOiInitialize_3(), saImmOiDispatch(),
saImmOiImplementerSet(), saImmOiClassImplementerSet_3(),
saImmOiObjectImplementerSet_3()
148 SAI-AIS-IMM-A.03.01 Section 5.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.5.3 SaImmOiCcbFinalizeCallbackT

Prototype

typedef void (*SaImmOiCcbFinalizeCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_23() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

ccbId - [in] CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

Description

The IMM Service invokes this callback function to inform CCB validators that the CCB
identified by ccbId has been applied, so that they can dispose of the CCB identifier
ccbId and of any associated state.

The IMM Service invokes this callback in the context of a thread of a CCB validator
calling saImmOiDispatch() with the handle immOiHandle that was specified
when the process invoked saImmOiImplementerSet(),
saImmOiObjectImplementerSet_3(), or
saImmOiClassImplementerSet_3() to become a registered CCB validator for
one or more objects or classes of objects changed by the CCB identified by the
ccbId parameter.

Return Values

None

See Also

saImmOmCcbApply_3(), saImmOiInitialize_3(), saImmOiDispatch(),
saImmOiImplementerSet(), saImmOiClassImplementerSet_3(),
saImmOiObjectImplementerSet_3()
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.5.3 149

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.6 CCB Applier Callback
The IMM Service invokes the saImmOiCcbApplyCallback() callback function of
a CCB applier to notify the CCB applier that the configuration of objects in which it is
interested has been modified.

The IMM Service invokes this callback after a modification has been approved, that
is, after all CCB validators have returned successfully from their
saImmOiCcbValidateCallback() function, and the CCB has been applied to the
SA Forum Information Model.

The IMM Service invokes the saImmOiCcbApplyCallback() function of all CCB
appliers according to their rank (saImmCcbApplierRank configuration attribute in
the SaImmCcbApplier object class, see Section 7.2 on page 177). The lower the
value of this attribute, the higher the rank. CCB appliers with a lower rank are invoked
after all CCB appliers with a higher rank have completed the operation. CCB appliers
with the same rank are invoked in an arbitrary order. A CCB applier with no config-
ured rank value is invoked after all CCB appliers with configured rank have com-
pleted the operation.

To ensure that the system is in a consistent state, no new CCB is allowed to enter the
critical region until all CCB appliers of the current CCB have completed their opera-
tion, and until all modifications of the current CCB have been deployed. However, to
avoid infinite blocking by a CCB applier, the IMM Service waits for the return of the
saImmOiCcbApplyCallback() callback function at most the time specified by the
saImmOiTimeout attribute (defined in the SaImmMngt object class, shown in
Section 7.2 on page 177).

The CCB identifier provided in the SaImmOiCcbApplyCallbackT_3 function has
the same value as the CCB identifier provided in the associated CCB validator call-
backs (see Section 5.5 on page 144).

A CCB applier can obtain the configuration changes by invoking functions of the CCB
iterator API (see Section 5.7). Using an appropriate immHandle, it can also invoke
the object search API functions (see Section 4.5 on page 61), or the object access
API functions (see Section 4.6 on page 69).

If a process acting as a CCB applier exits or simply unregisters during the application
of the CCB, and another process (or the same process, if it simply unregistered) reg-
isters for the same CCB applier role while the application of the CCB is still in
progress, the IMM Service invokes the saImmOiCcbApplyCallback() on the
newly registered process.
If no process registers for the particular CCB applier role within this time interval, the
new CCB applier (whenever it registers subsequently) will need to obtain the configu-
ration as it would do at initial startup via the object management API.
As by default CCB appliers must be registered for all the objects changed in a CCB
150 SAI-AIS-IMM-A.03.01 Section 5.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
for the CCB change to succeed, no subsequent CCB involving objects of the unregis-
tered appliers will succeed unless the SA_IMM_CCB_ALLOW_ABSENT_APPLIERS
flag is set for the CCB.

As the IMM Service may re-use the same CCB identifier to designate another set of
changes later, a CCB applier shall dispose of the corresponding CCB identifier (as
well as of any associated state) after it responds to the
saImmOiCcbApplyCallback() callback call.

Appendix B provides sequence diagrams that explain the detailed sequence of API
operations for configuration changes using CCBs.

5.6.1 SaImmOiCcbApplyCallbackT_3

Prototype

typedef void (*SaImmOiCcbApplyCallbackT_3)(

SaImmOiHandleT immOiHandle,

const SaNtfCorrelationIdsT *correlationIds,

SaImmCcbIdT ccbId

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

correlationIds – [in] Pointer to the correlation identifiers associated with the
CCB being applied. The rootCorrelationId and parentCorrelationId fields
are in parameters. The rootCorrelationId field holds the root correlation identi-
fier that has been provided by the invoker of the saImmOmCcbApply_3() function.
The parentCorrelationId field holds the notification identifier of the notification
that the IMM Service sends to report that the CCB is being applied. The
notificationId field is not used. The SaNtfCorrelationIdsT type is defined
in [6].

ccbId - [in] CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.6.1 151

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

The IMM Service invokes this callback function to inform a CCB applier that the CCB
identified by ccbId has been applied by the IMM Service.

All configuration changes have already been validated by the CCB validators in previ-
ous calls to their saImmOiCcbValidateCallback() callback functions.

Each CCB applier is responsible for determining the effect of the configuration
changes.

If any CCB applier fails to return from the saImmOiCcbApplyCallback() function
within the time interval specified by the saImmOiTimeout attribute (defined in the
SaImmMngt object class, shown in Section 7.2 on page 177), the IMM Service
returns SA_AIS_ERR_DEPLOYMENT to the saImmOmCcbApply_3() call, but this
does not invalidate the CCB. The changes are persisted in the SA Forum Information
Model maintained by the IMM Service (see paragraph in Section 5.6 on page 150).

The IMM Service invokes this callback in the context of a thread of a CCB applier pro-
cess calling saImmOiDispatch() with the handle immOiHandle that was specified
when the process invoked saImmOiImplementerSet(),
saImmOiObjectImplementerSet_3(), or
saImmOiClassImplementerSet_3() to become a registered CCB applier for one
or more objects or classes of objects changed by the CCB identified by the ccbId
parameter.

Return Values

None

See Also

saImmOmCcbApply_3(), SaImmOiCcbValidateCallbackT,
saImmOiImplementerSet(), saImmOiClassImplementerSet_3(),
saImmOiObjectImplementerSet_3(), saImmOiDispatch()
152 SAI-AIS-IMM-A.03.01 Section 5.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.7 CCB Iterator API
The API functions in this section are used to iterate through configuration changes
associated with a given CCB identifier. In order to facilitate the management of the
memory allocated by the IMM Service library to return the results of the search, the
search is performed using a search iterator.

What objects and values should be returned can be specified when the iterator is ini-
tialized. An object implementer may select to receive only objects in the CCB for
which it is a registered object implementer. For each found object the returned values
can be either the name of the modified object alone, or the object name together with
its attributes. If the latter option is requested, one can specify whether all the
attributes or only the modified ones are returned.

Each invocation of the saImmOiCcbIteratorNext() function returns the next
modified object in the SA Forum Information Model that matches the iterator options.

The traverse parameter specifies the direction of the search for this next modified
object, namely whether the subtree of the last found object is searched or if the itera-
tion continues at the same level or above.

When these iterator API functions are used during the validation or commit phase of a
CCB, it is guaranteed that no changes of other pending CCBs can affect the object
search, because no two CCBs are allowed to be in the critical region, that is, in the
validate or commit phases (see Section 3.1 on page 26) at the same time.

The iteration is terminated by invoking the finalize function.

The CCB iterator API should only be used by a CCB validator during the validation
phase, or by a CCB applier during the commit phase. For this API, the CCB identifier
becomes valid when the saImmOmCcbApply_3() function is invoked by an object
management process and becomes invalid when this function returns, that is, as
soon as the CCB has been applied. In other words, the API is available while the
CCB is in the critical region and for the CCB in the critical region.

When the IMM Service returns from the saImmOmCcbApply_3() invocation, it final-
izes any CCB iterator handle that is still initialized for the CCB.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7 153

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.7.1 saImmOiCcbIteratorInitialize()

Prototype

SaAisErrorT saImmOiCcbIteratorInitialize(

SaImmOiHandleT immOiHandle,

SaImmCcbIdT ccbId,

SaImmOiCcbIteratorOptionT iteratorOptions,

SaImmOiCcbIteratorHandleT *iteratorHandle

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

ccbId - [in] CCB identifier. The SaImmCcbIdT type is defined in
Section 4.2.15 on page 41.

iteratorOptions - [in] Specifies what objects are searched and which attribute
values must be returned for each found object. The
SaImmOiCcbIteratorOptionT type is defined in Section 5.2.4 on page 118.

iteratorHandle - [out] Pointer to the iterator handle used later to iterate through
the SA Forum Information Model to search for configuration changes. The
SaImmOiCcbIteratorHandleT type is defined in Section 5.2.1 on page 117.

Description

This function initializes an iterator for changes induced by the CCB specified by the
ccbId parameter.
The iteratorOptions parameter specifies which information is returned for each
modified object.

If this function completes successfully, the iteratorHandle parameter points to the
iterator handle to be used in the other functions of the iterator API.
154 SAI-AIS-IMM-A.03.01 Section 5.7.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned if the specified ccbId parameter is unknown to the IMM Service or
invalid to be used for iteration, as the CCB is not yet complete.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), saImmOiCcbIteratorNext(),
saImmOiCcbIteratorFinalize()
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.1 155

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.7.2 saImmOiCcbIteratorNext()

Prototype

SaAisErrorT saImmOiCcbIteratorNext(

SaImmOiCcbIteratorHandleT iteratorHandle,

SaImmOiObjectTraverseT traverse,

SaImmOiObjectChangeT *objectChange,

SaNameT *objectName,

SaImmAttrValuesT_2 ***attributes

);

Parameters

iteratorHandle - [in] Iterator handle returned by the
saImmOiCcbIteratorInitialize() function. The
SaImmOiCcbIteratorHandleT type is defined in Section 5.2.1 on page 117.

traverse - [in] Specifies whether the subtree of the previously found object should
be entered or not when iterating for modified objects. This parameter is ignored in the
first invocation of this function subsequent to the invocation of the corresponding
saImmOiCcbIteratorInitialize() function. The SaImmOiObjectTraverseT
type is defined in Section 5.2.6 on page 119.

objectChange - [out] Pointer to the change status of the found object. The
SaImmOiObjectChangeT is defined in Section 5.2.5 on page 119.

objectName - [out] In the first invocation of this function after the initialization of the
iterator, this parameter points to the name of the first object modified by the CCB. In
subsequent invocations of this function, this parameter points to the name of the
object found next with respect to the last found object in the direction indicated by the
traverse parameter. The SaNameT type is defined in [2].

attributes - [out] Pointer to a pointer to a NULL-terminated array of pointers to
data structures holding the names and values of attributes of the object whose name
is pointed to by objectName. The attributes were selected when the search was ini-
tialized. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 37.
156 SAI-AIS-IMM-A.03.01 Section 5.7.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Description

This function is used to obtain the next object (or the first object if this is the first invo-
cation of this function subsequent to the invocation of the corresponding
saImmOiCcbIteratorInitialize() function) that has been modified and
matches the iteratorOptions specified in the
saImmOiCcbIteratorInitialize() function when performing a depth-first
search of the configuration tree for modified objects.

Each object is reported once. The status of the object is reported with respect to its
last committed status, regardless of the number of changes the object went through
to reach this status. For example, if the object was newly created, and then some of
its attributes were modified, the object is reported as newly created, but the attributes
referred to by the attributes parameter will contain the latest values cumulating all
the subsequent modifications.

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of
saImmOiCcbIteratorNext() or saImmOiCcbIteratorFinalize() for the
same iterator handle.

If the handle iteratorHandle was obtained by specifying
SA_IMM_CCB_ITERATOR_OBJECT_NAME_ONLY in the iteratorOptions parame-
ter of the corresponding saImmOiCcbIteratorInitialize() call, no attribute
names and values will be returned by this call, and the pointer to which the
attributes parameter refers is set to NULL.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle iteratorHandle is invalid, since it is
corrupted, uninitialized, has already been finalized, or it is not associated with an
implementer name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.2 157

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - All objects matching the iteration criteria either have
already been returned to the calling process, or they have been explicitly skipped by
specifying SA_IMM_OBJECT_CONTINUE in the traverse parameter. The caller can
now invoke the saImmOiCcbIteratorFinalize() function.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

iteratorHandle was acquired before the cluster node left the cluster mem-
bership.

See Also

saImmOiInitialize_3(), saImmOiCcbIteratorInitialize(),
saImmOiCcbIteratorFinalize()

5.7.3 saImmOiCcbIteratorFinalize()

Prototype

SaAisErrorT saImmOiCcbIteratorFinalize(

SaImmOiCcbIteratorHandleT iteratorHandle

);

Parameters

iteratorHandle - [in] Iterator handle returned by the
saImmOiCcbIteratorInitialize() function. The
SaImmOiCcbIteratorHandleT type is defined in Section 5.2.1 on page 117.

Description

This function finalizes the CCB iteration initialized by a previous call to the
saImmOiCcbIteratorInitialize() function. It frees all memory previously allo-
cated by that iteration and, in particular, the memory used to return attribute names
and values in the previous saImmOiCcbIteratorNext() invocation.
158 SAI-AIS-IMM-A.03.01 Section 5.7.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle iteratorHandle is invalid, since it is
corrupted, uninitialized, has already been finalized, or it is not associated with an
implementer name.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

iteratorHandle was acquired before the cluster node left the cluster mem-
bership.

See Also

saImmOiInitialize_3(), saImmOiCcbIteratorInitialize(),
saImmOiCcbIteratorNext()
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.7.3 159

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.8 Runtime Owner APIs
As has been explained in Section 5.4 on page 128, a runtime owner is responsible
for managing runtime objects and runtime attributes of either configuration or runtime
objects and for carrying out administrative operations issued on these objects. The
next two sections describe the corresponding APIs.

5.8.1 Runtime Objects Management API

The set of functions contained in this section are used by a registered runtime owner
to create or delete runtime objects and update the runtime attributes of either configu-
ration or runtime objects. They are similar to the functions provided in the IMM Ser-
vice object management interface, the difference being that they are not part of a
configuration change bundle (CCB).

The values of non-cached runtime attributes are not accessible when a runtime
owner is not registered for the objects to which these attributes belong.

A runtime attribute whose value is cached by the IMM Service must be updated by its
runtime owner whenever the attribute’s value changes. The value of non-cached
attributes must be updated by the runtime owner only when the IMM Service requests
such an update by invoking the runtime owner’s
saImmOiRtAttrUpdateCallback() callback function.

Updating cached runtime attribute values in the IMM Service generates some load on
the system each time the values change. Attributes whose values change frequently,
but are rarely read by using the object management API should typically not be
cached.

5.8.1.1 saImmOiRtObjectCreate_2()

Prototype

SaAisErrorT saImmOiRtObjectCreate_2(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT_2 *const *attrValues

);
160 SAI-AIS-IMM-A.03.01 Section 5.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

className - [in] Object class name. The SaImmClassNameT type is defined in
Section 4.2.2 on page 34.

parentName - [in] Pointer to the name of the parent of the new object. The
SaNameT type is defined in [2].

attrValues- [in] Pointer to a NULL-terminated array of pointers to attribute
descriptors. The SaImmAttrValuesT_2 type is defined in Section 4.2.8 on page 37.

Description

This function creates a new IMM Service runtime object.

The new object is created as a child of the object designated by the name to which
parentName points. If parentName is set to NULL, the new object is created as a
top level object.

The attributes referred to by the pointers in the array of pointers to which the
attrValues parameter points must match the object class definition. These
attributes can only be cached runtime attributes. One and only one of these attributes
must have the SA_IMM_ATTR_RDN flag set; this attribute is used as the Relative Dis-
tinguished Name of the new object.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_RUNTIME_OWNER_NAME
must not be specified by the attrValues descriptors, as these attributes are auto-
matically set by the IMM Service.

The IMM Service adds an SA_IMM_ATTR_CLASS_NAME attribute to the new object;
the value of this attribute contains the name of the object class as specified by the
className parameter.

The invoking process becomes the registered runtime owner of the new object.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.1 161

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies the name of a configuration object class,
• there is no valid RDN attribute specified for the new object,
• some cached attributes do not have values,
• the class referred by the className parameter includes a persistent attribute

but the parent object indicated by the parentName parameter and some of its
ancestors are non-persistent objects,

• the attrValues parameter includes:
• attributes with values that do not match the defined value type for the attribute,
• multiple values for a single-valued attribute, and
• non-cached runtime attributes.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The name to which the parentName parameter points is not the name of an
existing object.

• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute

names for the object class designated by the name className.

SA_AIS_ERR_EXIST - An object with the same name already exists.
162 SAI-AIS-IMM-A.03.01 Section 5.8.1.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_NAME_TOO_LONG - The size of the new object's DN is greater than
SA_MAX_NAME_LENGTH.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster membership.

See Also

saImmOiInitialize_3()

5.8.1.2 saImmOiRtObjectDelete()

Prototype

SaAisErrorT saImmOiRtObjectDelete(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

Description

This function deletes the object designated by the name to which the objectName
parameter points and the entire subtree of objects rooted at that object.

This operation fails if one of the targeted objects is not a runtime object implemented
by the invoking process.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.2 163

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - This value is returned due to one or more of the
following reasons:

• at least one of the targeted objects is a configuration object;
• at least one of the targeted object is a runtime object not implemented by the

invoking process.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3()
164 SAI-AIS-IMM-A.03.01 Section 5.8.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.8.1.3 saImmOiRtObjectUpdate_2()

Prototype

SaAisErrorT saImmOiRtObjectUpdate_2(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrModificationT_2 *const *attrMods

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

objectName - [in] Pointer to the name of the updated object. The SaNameT type is
defined in [2].

attrMods - [in] Pointer to a NULL-terminated array of pointers to descriptors of the
modifications to perform. The SaImmAttrModificationT_2 type is defined in
Section 4.2.10 on page 38.

Description

This function updates runtime attributes of a configuration or runtime object.

Attributes named SA_IMM_ATTR_CLASS_NAME,
SA_IMM_ATTR_ADMIN_OWNER_NAME, and SA_IMM_ATTR_RUNTIME_OWNER_NAME
must not be modified.

This operation fails and returns the SA_AIS_ERR_BAD_OPERATION error code if the
targeted object is not implemented by the invoking process.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.3 165

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the
attrMods parameter includes:

• configuration attributes,
• a new value for the RDN attribute,
• attributes with values that do not match the defined value type for the attribute,
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The targeted object is not implemented by the
invoking process.

SA_AIS_ERR_NOT_EXIST - The name to which the objectName parameter points
is not the name of an existing object, or one or more attribute names specified by the
attrMods parameter are not valid for the object class.

SA_AIS_ERR_FAILED_OPERATION - The targeted object is not implemented by the
invoking process.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version speci-
fied in the call to initialize this instance of the IMM Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3()
166 SAI-AIS-IMM-A.03.01 Section 5.8.1.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.8.1.4 SaImmOiRtAttrUpdateCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiRtAttrUpdateCallbackT)(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

objectName - [in] Pointer to the name of the object for which the update is
requested. The SaNameT type is defined in [2].

attributeNames - [in] Pointer to a NULL-terminated array of attribute names for
which values must be updated. The SaImmAttrNameT type is defined in
Section 4.2.2 on page 34.

Description

The IMM Service invokes this callback function to request a runtime owner to update
the values of some attributes of an IMM Service object. These attributes are
attributes whose values are not cached by the IMM Service. The target object is iden-
tified by the name to which objectName points. The process must use the
saImmOiRtObjectUpdate_2() function to update the values of the attributes
whose names are specified by the attributeNames parameter.

If a requested attribute has no value, the SA_IMM_ATTR_VALUES_REPLACE flag of
the SaImmAttrModificationTypeT structure can be used in the
saImmOiRtObjectUpdate_2() call to set the attribute value to the empty set.

On successful return of this callback, all requested attributes have been updated.

The IMM Service invokes this callback in the context of a thread of a runtime owner
calling saImmOiDispatch() with the handle immOiHandle that was specified
when the process invoked saImmOiRtObjectCreate_2() or
saImmOiImplementerSet() and became the registered runtime owner for the
object to which the objectName parameter points.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.1.4 167

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The runtime owner is out of memory and cannot provide
the service.

SA_AIS_ERR_NO_RESOURCES - The runtime owner is out of required resources
(other than memory) to provide the service.

SA_AIS_ERR_FAILED_OPERATION - The runtime owner failed to update the
requested attributes due to an error occurring in the
saImmOiRtObjectUpdate_2() invocation.

See Also

saImmOiInitialize_3(), saImmOiDispatch(),
saImmOiRtObjectCreate_2(), saImmOiImplementerSet()
168 SAI-AIS-IMM-A.03.01 Section 5.8.1.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.8.2 Administrative Operations

5.8.2.1 SaImmOiAdminOperationCallbackT_3

Prototype

typedef void (*SaImmOiAdminOperationCallbackT_3) (

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

const SaNtfCorrelationIdsT *correlationIds,

const SaNameT *objectName,

SaImmAdminOperationIdT operationId,

const SaImmAdminOperationParamsT_2 *const *params

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

invocation - [in] Used to match this invocation of
SaImmOiAdminOperationCallbackT_3 with the corresponding invocation of
saImmOiAdminOperationResult(). The SaInvocationT type is defined in [2].

correlationIds – [in] Pointer to the correlation identifiers associated with the
administrative operation. The rootCorrelationId and parentCorrelationId
fields are in parameters. The rootCorrelationId field holds the root correlation
identifier that has been provided by the invoker of the administrative operation. The
parentCorrelationId field holds the notification identifier of the notification that
the IMM Service sends to report the invocation of the administrative operation. The
notificationId field is not used. The SaNtfCorrelationIdsT type is defined
in [6].

objectName - [in] Pointer to the object name. The SaNameT type is defined in [2].

operationId - [in] Identifier of the administrative operation. The
SaImmAdminOperationIdT type is defined in Section 4.2.17 on page 42.
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.2 169

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
params - [in] Pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The SaImmAdminOperationParamsT_2 type is defined in
Section 4.2.18 on page 42.

Description

The IMM Service invokes this callback function to request a runtime owner to execute
an administrative operation on the object designated by the name to which
objectName points. The administrative operation identified by the operationId
parameter has been initiated by an invocation of the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() functions.

Each element referred to by a pointer of the array of pointers to which the params
parameter points represents an input parameter of the administrative operation to
execute.

The IMM Service invokes this callback in the context of a thread of a runtime owner
process calling saImmOiDispatch() with the handle immOiHandle that was spec-
ified when the process invoked saImmOiImplementerSet(),
saImmOiObjectImplementerSet(), or saImmOiClassImplementerSet() for
configuration objects or saImmOiRtObjectCreate_2() for runtime objects to
become the registered runtime owner for the object to which the objectName
parameter points.

The runtime owner indicates the success or failure of the administrative operation by
invoking the saImmOiAdminOperationResult() function. The
saImmOiAdminOperationResult() function can be invoked from the callback
itself or outside the callback by any thread of the process that initialized the
immOiHandle.

Return Values

None

See Also

saImmOiInitialize_3(), saImmOmAdminOperationInvoke_3(),
saImmOmAdminOperationInvokeAsync_3(),
saImmOiAdminOperationResult(), saImmOiImplementerSet(),
saImmOiObjectImplementerSet(), saImmOiClassImplementerSet(),
saImmOiRtObjectCreate_2()
170 SAI-AIS-IMM-A.03.01 Section 5.8.2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
5.8.2.2 saImmOiAdminOperationResult()

Prototype

SaAisErrorT saImmOiAdminOperationResult(

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

SaAisErrorT result

);

Parameters

immOiHandle - [in] The handle which was obtained by a previous invocation of the
saImmOiInitialize_3() function and which identifies this particular initialization
of the Information Model Management Service. The SaImmOiHandleT type is
defined in Section 5.2.1 on page 117.

invocation - [in] Used to match this invocation of
saImmOiAdminOperationResult() with the previous corresponding invocation of
the SaImmOiAdminOperationCallbackT_3 callback. The SaInvocationT type
is defined in [2].

result - [in] Result of the execution of the administrative operation. The
SaAisErrorT type is defined in [2].

Description

An object implementer invokes this function to inform the IMM Service about the
result of the execution of an administrative operation requested by the IMM Service
by an invocation of the object implementer’s
saImmOiAdminOperationCallback() callback.

This function can be called only by the process for which its
saImmOiAdminOperationCallback() callback has been invoked.

If the runtime owner exits or simply unregisters during the execution of the adminis-
trative operation and another process (or the same process, if it simply unregistered)
registers for the same runtime owner role within the time interval specified by the
saImmOiTimeout attribute (defined in the SaImmMngt object class, shown in
Section 7.2 on page 177), the IMM Service invokes the
saImmOiAdminOperationCallback() callback on the newly registered process.
If no process registers within this time interval, the IMM Service— depending on how
the administrative operation was initiated— either returns the
AIS Specification SAI-AIS-IMM-A.03.01 Section 5.8.2.2 171

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Object Implementer API Specification
SA_AIS_ERR_TIMEOUT error to the corresponding invocation of the
saImmOmAdminOperationInvoke_3() function or invokes the
saImmOmAdminOperationInvokeCallback() function with the error parameter
set to SA_AIS_ERR_TIMEOUT.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node due to one of the two reasons:

• the cluster node has left the cluster membership;
• the cluster node has rejoined the cluster membership, but the handle

immOiHandle was acquired before the cluster node left the cluster member-
ship.

See Also

saImmOiInitialize_3(), SaImmOiAdminOperationCallbackT_3
172 SAI-AIS-IMM-A.03.01 Section 5.8.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
6 IMM Service Administration API
This section describes the administrative API functions that the IMM Service exposes
on behalf of itself to a system administrator. These API functions are described using
a ‘C’ API syntax. The main clients of this administrative API are system management
applications.

6.1 Administrative Operations on the IMM Service
Administrative operations on the IMM Service can be carried out using the IMM Ser-
vice API functions saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() (refer to Section 4.9 on page 100)
on an object that represents the IMM Service and for which the IMM Service is the
object implementer.

Return values are passed in the operationReturnValue parameter (see
Section 4.9.1 on page 102).

6.2 Include File and Library Name
The following IMM Service header file containing declarations of data types and func-
tion prototypes must be included in the source of an application using the IMM Ser-
vice Administration API:

#include <saImm.h>

To use the IMM Service Administration API, an application must be bound with the
following IMM Service library:

libSaImm.so

6.3 Type Definitions
The specification of IMM Service Administration API requires the following type.

6.3.1 SaImmMngtAdminOperationT

typedef enum {

SA_IMM_ADMIN_EXPORT = 1

} SaImmMngtAdminOperationT;
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 6 173

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
6.4 IMM Service Administration API

6.4.1 SA_IMM_ADMIN_EXPORT

Parameters

operationId - [in] = SA_IMM_ADMIN_EXPORT

objectName - [in] = The LDAP name of the object of class SaImmService that
represents the IMM Service. The DN of this object is
"safRdn=immManagement,safApp=safImmService".
For SA Forum naming conventions and rules, see [2].

params - [in] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor has the following format:

params[0].paramName = SA_IMM_ADMIN_EXPORT;

params[0].paramType = SA_IMM_ATTR_SASTRINGT;

params 0].paramBuffer = filePathname;

filePathname is the standard relative POSIX pathname of the file to which the IMM
contents must be exported. This pathname is relative to an implementation defined
root directory. The type of this parameter is SaStringT, defined in [2].

Description

This administrative operation requests the IMM Service to export all its persistent
contents (class definitions as well as persistent objects and attributes) into a file
whose relative pathname is specified by the filePathname parameter.

The persistent contents will be stored into the file according to the IMM XML Schema
Definition (see [4]).

The saImmExportFileUri attribute of the SaImmMngt IMM configuration class
(see Section 7.2 on page 177) shall be used to retrieve the file after the export opera-
tion completed.

operationReturnValue

SA_AIS_OK - The operation completely successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.
174 SAI-AIS-IMM-A.03.01 Section 6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The operation cannot be provided at this time. The
caller may retry later. This error generally should be returned in cases where the
requested administrative operation is valid but not currently possible.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - The IMM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources to carry out the
operation.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which objectName points.

See Also

-

AIS Specification SAI-AIS-IMM-A.03.01 Section 6.4.1 175

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
7 IMM Service UML Information Model
The IMM Service Information Model is described in UML and has been organized in a
UML class diagram.

The IMM Service UML model is implemented by the IMM Service. For further details
on this implementation, refer to the SA Forum Overview document ([1]).

The IMM Service UML class diagram has two object classes, which show the con-
tained attributes and the administrative operations applicable on these classes
(if any).

7.1 DN Formats for the IMM Service UML Class Diagram

7.2 IMM Service UML Classes
The SaImmMngt configuration object class exports all IMM global attributes and
administrative operations.

The SaImmCcbApplier configuration object class specifies a list of CCB appliers,
each with a rank. The rank indicates the order that the IMM Service uses to invoke
the apply CCB callbacks of these CCB appliers. For details, see
Section 5.6 on page 150.

FIGURE 3 shows these two classes. A description of each attribute of these classes
is found in the XMI file (see [3]). For additional details, refer to the SA Forum Over-
view document ([1]).

Table 3 DN Formats for Objects of the IMM Service Class Diagram

Object Class DN Formats for Objects of the Class

SaImmMngt “safRdn=immManagement, safApp=safImmService”

SaImmCcbApplier “safCcbApplier=...,safRdn=immManagement,
safApp=safImmService
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 7 177

Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 3 IMM Service UML Classes

<<CONFIG>>
SaImmCcbApplier

safCcbApplier : SaStringT [1]{RDN, CONFIG}
saImmCcbApplierRank : SaUint32T [1]{CONFIG, WRITABLE}

<<CONFIG>>
SaImmMngt

safRdn : SaStringT [1]{RDN,CONFIG,SASTRINGT}
saImmRepositoryInit : SaImmRepositoryInitModeT [0..1] = SA_IMM_INIT_FROM_FILE{CONFIG, WRITABLE, SAUINT32T}
saImmLastUpdate : SaTimeT [1]{RUNTIME}
saImmExportFileUri : SaStringT [1]{RUNTIME}
saImmNumOis : SaUint32T [1]{RUNTIME}
saImmNumAdminOwnedObjects : SaUint32T [1]{RUNTIME}
saImmNumInitializedCcbs : SaUint32T [1]{RUNTIME}
saImmOiTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}

SA_IMM_ADMIN_EXPORT()

0..*

1

178 SAI-AIS-IMM-A.03.01 Section 7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8 IMM Service Alarms and Notifications
The Information Model Management Service produces alarms and notifications to
convey important information regarding the operational and functional state of the
objects under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention, and notifications which signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service AvailabilityTM Forum (abbreviated as NTF, see [6]), and hence the
various notifications are partitioned into categories, as described in this service.

In some cases, this specification uses the word “Unspecified” for values of attributes
that the vendor is at liberty to set to whatever makes sense in the vendor’s context,
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see
[7]).

8.1 Setting Common Attributes
The following attributes of the notifications presented in Section 8.2 on page 181 are
not shown in their description, as the generic description presented here applies to all
of them:

• Notification Id - Depending on the Notification Service function used to send the
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and must contain at least the
safApp RDN value portion of the DN set to the specified standard RDN value of
the SA Forum AIS Service generating the notification, that is, safImmService.
For details on the AIS naming convention, refer to the Overview document ([1]).

The following notes apply to all IMM Service notifications presented in
Section 8.2 on page 181:

• Correlated Notifications - Correlation ids are supplied to correlate notifications
that have been generated because of a related cause. The correlated notifica-
tions attribute should include
AIS Specification SAI-AIS-IMM-A.03.01 Chapter 8 179

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
• in the first position the root notification identifier of the related tree of notifica-
tions as described in the Notification Service specification (see [6]);

• in the second position the parent notification identifier of the same tree;
• in the third position the notification identifier of the sibling notification, if any.

This sibling notification is the opening pair of the current notification such as
the alarm that is being cleared or the start of an administrative operation or a
configuration change that has ended.

If any of these notifications is unknown, the SA_NTF_IDENTIFIER_UNUSED
value must be used. This value may be omitted in trailing positions.

• Notification Class Identifier - The vendorId field of the SaNtfClassIdT data
structure must be set to SA_NTF_VENDOR_ID_SAF, and the majorId field must
be set to SA_SVC_IMM (as defined in the SaServicesT enumeration in [2]) for
all notifications that follow the standard formats described in this specification.
The minorId field will vary based on the specific notification.
180 SAI-AIS-IMM-A.03.01 Section 8.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8.2 Information Model Management Service Notifications
The following subsections describe the notifications that an Information Model Man-
agement Service implementation shall produce.

8.2.1 Information Model Management Service Alarms

The Information Model Management Service does not issue any alarms at the time of
publication of this specification.

8.2.2 Information Model Management Service Notifications of Miscellaneous Type

8.2.2.1 Administrative Operation Start

Description

The IMM Service sends the following notification when the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() functions are called.

The additional information field contains the administrative operation identifier
(operationId parameter) and the administrative operation parameters (values
referred to by the params parameter), if any.
AIS Specification SAI-AIS-IMM-A.03.01 Section 8.2 181

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 4 Administrative Operation Start

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ADMIN_OPERATION_START

Notification Object Mandatory LDAP DN of the object on which the administrative
operation is invoked

Notification Class
Identifier

NTF-Internal minorId = SA_IMM_NTFID_OP_START, see
Section 4.2.19 on page 42

Event Time Mandatory Time when either the
saImmOmAdminOperationInvoke_3() or the
saImmOmAdminOperationInvokeAsync_3()
functions was invoked

Number of Correlated
Notifications

Mandatory 0, 1, or 2

Correlated Notifica-
tions

Mandatory rootCorrelationId and
parentCorrelationId passed to either
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3()

Number of Elements
in Additional Informa-
tion Array

Mandatory At least 1

Additional Information
additionalInfo[0]

Mandatory {SA_IMM_AI_ADMIN_OPERATION_ID,
SA_NTF_VALUE_UINT64, operationId parame-
ter passed to
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3()}

Additional Information
additionalInfo[i]

Optional {SA_IMM_AI_ADMIN_OPERATION_ID,
SA_NTF_VALUE_xxx, value referred to by the
params parameter passed to
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3()}
182 SAI-AIS-IMM-A.03.01 Section 8.2.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8.2.2.2 Administrative Operation End

Description

The IMM Service sends the following notification after the runtime owner provided a
result for the operation previously invoked by the
saImmOmAdminOperationInvoke_3() or
saImmOmAdminOperationInvokeAsync_3() functions. The IMM Service also
sends this notification to inform about any kind of error that may be returned by the
aforementioned functions and by the
saImmOmAdminOperationInvokeCallback() function.

The first additional information field contains the administrative operation identifier.
The second one contains the result of the administrative operation, which can be:

• the return value of the saImmOmAdminOperationInvoke_3() function, if this
function was invoked;

• the return value of the saImmOmAdminOperationInvokeAsync_3() func-
tion, if this function was invoked, and the corresponding callback is not invoked;

• the value returned in the error parameter of the
saImmOmAdminOperationInvokeCallback() function, if this function was
invoked.
AIS Specification SAI-AIS-IMM-A.03.01 Section 8.2.2.2 183

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 5 Administrative Operation End

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ADMIN_OPERATION_END

Notification Object Mandatory LDAP DN of the object on which the administrative
operation is invoked

Notification Class
Identifier

NTF-Internal minorId = SA_IMM_NTFID_OP_END, see
Section 4.2.19 on page 42

Event Time Mandatory Time when the runtime owner provided a
response, or when the IMM Service detected an
error

Number of Corre-
lated Notifications

Mandatory 3

Correlated Notifica-
tions

Mandatory rootCorrelationId and
parentCorrelationId passed to either
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3()
and additionally the notification identifier of the cor-
responding SA_NTF_ADMIN_OPERATION_START
notification

Number of Elements
in Additional Informa-
tion Array

Mandatory 2

Additional Informa-
tion
additionalInfo[0]

Mandatory {SA_IMM_AI_ADMIN_OPERATION_ID,
SA_NTF_VALUE_UINT64, operationId param-
eter passed to
saImmOmAdminOperationInvoke_3() or to
saImmOmAdminOperationInvokeAsync_3()}

Additional Informa-
tion
additionalInfo[1]

Mandatory {SA_IMM_AI_ADMIN_OPERATION_RESULT,
SA_NTF_VALUE_UINT64(SaAisErrorT), as
explained above in the description section of this
notification}
184 SAI-AIS-IMM-A.03.01 Section 8.2.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8.2.2.3 Configuration Update Start

Description

The IMM Service sends the following notification when the saImmOmCcbApply_3()
function is invoked.

Table 6 Configuration Update Start

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_CONFIG_UPDATE_START

Notification Object Mandatory Empty

Notification Class Identifier NTF-Internal minorId =
SA_IMM_NTFID_CCB_APPLY_START, see
Section 4.2.19 on page 42

Event Time Mandatory Time when the saImmOmCcbApply_3()
function was invoked

Number of Correlated Noti-
fications

Mandatory 0, 1, or 2

Correlated Notifications Mandatory rootCorrelationId and
parentCorrelationId passed to
saImmOmCcbApply_3()

Number of Elements in
Additional Information Array

Mandatory 1

Additional Information
additionalInfo[0]

Mandatory {SA_IMM_AI_CCB_ID,
SA_NTF_VALUE_UINT64, value of the
CCB identifier returned by the
saImmOmCcbInitialize_3() function}
AIS Specification SAI-AIS-IMM-A.03.01 Section 8.2.2.3 185

Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
8.2.2.4 Configuration Update End

Description

The IMM Service sends the following notification when the saImmOmCcbApply_3()
function returns.

.

Table 7 Configuration Update End

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_CONFIG_UPDATE_END

Notification Object Mandatory Empty

Notification Class
Identifier

NTF-Internal minorId = SA_IMM_NTFID_CCB_APPLY_END,
see Section 4.2.19 on page 42

Event Time Mandatory Time when the saImmOmCcbApply_3() func-
tion returned

Number of Correlated
Notifications

Mandatory 3

Correlated Notifica-
tions

Mandatory rootCorrelationId and
parentCorrelationId passed to
saImmOmCcbApply_3() and additionally the
notification identifier of the corresponding
SA_NTF_CONFIG_UPDATE_START notification

Number of Elements
in Additional Informa-
tion Array

Mandatory 2

Additional Information
additionalInfo[0]

Mandatory {SA_IMM_AI_CCB_ID,
SA_NTF_VALUE_UINT64, value of the CCB
identifier returned by the
saImmOmCcbInitialize_3() function}

Additional Information
additionalInfo[1]

Mandatory {SA_IMM_AI_CCB_RETURN_VALUE,
SA_NTF_VALUE_UINT64(SaAisErrorT),
return value of the saImmOmCcbApply_3()
function}
186 SAI-AIS-IMM-A.03.01 Section 8.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Example Use Case

1

5

10

15

20

25

30

35

40
Appendix A Example Use Case
This example shows how the IMM Service APIs can be used by an application.

FIGURE 4 Example of Using the IMM Service to Change the Configuration of a Real Application

(a) System Setup

The example consists of four Object Implementers (OIs), an SSL VPN stack, an
IPSec VPN stack, a traffic interface, and a billing engine.

(b) Global Constraints

A global constraint is that a billing account must always be configured for all VPNs,
and that the billing account must also be configured in the billing engine.

(c) Shared Configuration Data

The IP address of the traffic interface is a shared configuration data.
The traffic interface needs the IP address to properly configure the interface, the two
VPN stacks need the IP address to bind the listening socket to the proper address.
AIS Specification SAI-AIS-IMM-A.03.01 Appendix A 187

Service AvailabilityTM Application Interface Specification
Example Use Case

1

5

10

15

20

25

30

35

40
(d) Registrations

The four OIs will register as CCB validators and CCB appliers for their corresponding
objects in the IMM. The traffic interface OI must be configured with a higher rank as a
CCB applier than the two VPN stacks, so that it can apply the changes ahead of
them.

The billing engine will register as CCB Validator for the billing account settings in the
SSL and IPSec VPN stacks. It will be invoked whenever any of those settings are cre-
ated, deleted, or modified.

The SSL and IPSec VPN stacks register as CCB appliers for the IP address configu-
ration of the traffic interface.

(e) Configuration Change: Change IP Address

Suppose that a manager decides to change the IP address of the management inter-
face, then the following will happen:

1. The manager creates a CCB with the new IP address of the traffic interface.
2. The manager calls the apply function to indicate that no more modifications will

be included in the CCB.
3. The IMM Service invokes the saImmOiCcbValidateCallback() callback of

the traffic interface, so that the traffic interface can validate that the new IP
address does not conflict with the rest of its configuration.

4. The IMM Service calls the apply function to take the new configuration into active
duty. The new IP address is communicated to all CCB appliers in an order given
by the rank of the CCB applier in a configured list, that is, the traffic interface,
which has been configured to be notified before the VPN stacks, will be notified
first, and the two VPN stacks after that. The notification ordering is important as
the traffic interface needs to be updated first, because the VPN stacks cannot
bind to the new address unless the interface has already been changed.

5. When called back, all CCB appliers invoke the iterator functions to obtain their
new configuration. The new IP address is communicated to all CCB appliers in
an order given by the rank of this CCB applier in a configured list, that is, the traf-
fic interface, which has been configured to be notified before the VPN stacks, will
be notified first, and the two VPN stacks after that.
The CCB appliers now modify their internal states to use the new IP address.
The notification ordering is important as the traffic interface needs to be updated
first, because the VPN stacks cannot bind to the new address unless the inter-
face has already been changed.
188 SAI-AIS-IMM-A.03.01 Appendix A AIS Specification

Service AvailabilityTM Application Interface Specification
Example Use Case

1

5

10

15

20

25

30

35

40
(f) Configuration Change: Create New VPN

Suppose the manager creates a new IPSec VPN. The following will happen:

1. The manager creates a new CCB with the new IPSec VPN.
2. The manager calls the apply function to indicate that no more modifications will

be added to the CCB.
3. The IMM Service invokes callbacks, so that the IPSec stack can validate the

whole IPSec configuration. The IMM Service also invokes the callbacks of the
billing engine, so that the billing engine can validate its settings.

4. The IMM Service calls the apply function to make the new configuration the new
running configuration.

5. The IPsec stack invokes the iterator functions to obtain the new configuration; the
IPsec stack finally updates its internal state.
AIS Specification SAI-AIS-IMM-A.03.01 Appendix A 189

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

1

5

10

15

20

25

30

35

40
Appendix B Sequence Diagrams
The following sequence diagrams show some important scenarios. For simplicity, the
suffix “Callback” and any version suffix like “_3” are not shown in the diagrams.
AIS Specification SAI-AIS-IMM-A.03.01 Appendix B 191

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

1

5

10

15

20

25

30

35

40
FIGURE 5 Successful CCB, Independent CCB Appliers and Validators

OM IMM CCB Validator CCB Applier

saImmOmCcbInitialize ()

saImmOmCcbObjectCreate()

saImmOmCcbObjectModify ()

saImmOmCcbObjectDelete()

saImmOmCcbApply()

saImmOiCcbValidate(ccbId)

OK

saImmOiCcbApply(ccbId)

OK

OK

saImmOiCcbIteratorInitialize(ccbId)

saImmOiCcbIteratorNext()

saImmOiCcbIteratorFinalize()

Apply

data

saImmOiCcbIteratorInitialize(ccbId)

saImmOiCcbIteratorNext()

saImmOiCcbIteratorFinalize()

data

{no other CCB
must be in the
critical area}

saImmOiCcbFinalize(ccbId)
192 SAI-AIS-IMM-A.03.01 Appendix B AIS Specification

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

1

5

10

15

20

25

30

35

40
FIGURE 6 Failed CCB, Independent CCB Appliers and Validators

OM IMM CCB Validator CCB Applier

saImmOmCcbInitialize ()

saImmOmCcbObjectCreate()

saImmOmCcbObjectModify ()

saImmOmCcbObjectDelete()

saImmOmCcbApply()

saImmOiCcbValidate (ccbId)

Error

saImmOiCcbAbort(ccbId)Error

saImmOiCcbIteratorInitialize(ccbId)

saImmOiCcbIteratorNext()

saImmOiCcbIteratorFinalize()

data{no other CCB
must be in the
critical area}
AIS Specification SAI-AIS-IMM-A.03.01 Appendix B 193

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

1

5

10

15

20

25

30

35

40
FIGURE 7 Successful CCB, OI is both CCB Validator and CCB Applier

OM IMM CCB Validator+Applier

saImmOmCcbInitialize ()

saImmOmCcbObjectCreate()

saImmOmCcbObjectModify ()

saImmOmCcbObjectDelete()

saImmOmCcbApply()

saImmOiCcbValidate(ccbId)

OK

saImmOiCcbApply(ccbId)

OK

OK

Apply
{no other CCB
must be in the
critical area}

saImmOiCCbFinalize(ccbId)
194 SAI-AIS-IMM-A.03.01 Appendix B AIS Specification

Service AvailabilityTM Application Interface Specification
Sequence Diagrams

1

5

10

15

20

25

30

35

40
FIGURE 8 Failed CCB, OI is both CCB Validator and CCB Applier

OM IMM CCB Validator+Applier

saImmOmCcbInitialize ()

saImmOmCcbObjectCreate()

saImmOmCcbObjectModify ()

saImmOmCcbObjectDelete()

saImmOmCcbApply()

saImmOiCcbValidate(ccbId)

Error

saImmOiCcbAbort(ccbId)Error

{no other CCB
must be in the
critical area}
AIS Specification SAI-AIS-IMM-A.03.01 Appendix B 195

Service AvailabilityTM Application Interface Specification
Compatibility Issues

1

5

10

15

20

25

30

35

40
Appendix C Compatibility Issues
An IMM Service implementation that is capable of supporting multiple versions of the
IMM Service API specifications concurrently must handle the case that a CCB will
affect object implementers that were written against different versions of the APIs.
This section describes the considerations that an object manager needs to take into
account in such a case and also presents an example to illustrate the collaboration
between these entities of different versions.

Up to the A.02.01 version of the IMM Service specification, each change request
issued by an object manager was immediately propagated by the IMM Service to the
single object implementer of the targeted object. Thus, change requests could be ver-
ified at this early stage and rejected by an object implementer due to any reason,
including the ordering of the change requests. The current specification removes the
requirement of propagating each change requests to the object implementers;
instead, it asks for validation only when the object manager has completed the CCB
and invokes the saImmOmApply_3() function. As a consequence, the object imple-
menters receive for verification only the proposed final state of the SA Forum Infor-
mation Model, and they are unaware how this state was reached; however, an IMM
Service implementation supporting earlier versions and the current versions of the
API, will act appropriately toward each object implementer.

C.1 Object Manager Considerations

Object manager applications implemented against an earlier version of the IMM Ser-
vice API face no problem in collaborating with implementations written against the
current specification. Any CCB that would succeed according to earlier versions shall
succeed according to the new version.

The setting of the SA_IMM_CCB_REGISTERED_OI flag is interpreted by the IMM Ser-
vice in the following way:

• If this flag is set by the object implementer initializing the CCB, it is interpreted as
if none of the SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS and
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags were set.

• If the SA_IMM_CCB_REGISTERED_OI flag is not set, it is mapped as if both the
SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS and
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags were set.

Object manager applications implemented against the current specification need to
consider object implementers that were written against an earlier version of the spec-
ification, as these object implementers will receive and therefore verify the change
AIS Specification SAI-AIS-IMM-A.03.01 Appendix C 197

Service AvailabilityTM Application Interface Specification
Compatibility Issues

1

5

10

15

20

25

30

35

40
requests in the order the object manager issues them. This may have the undesirable
effect that these object implementers refuse change requests even before the
saImmOmApply_3() function is invoked.

Thus, to successfully apply the CCB in this case, the object manager needs to issue
the change requests pertaining to the CCB in a way that is compliant to earlier ver-
sions of the specification.

The setting of the SA_IMM_CCB_ALLOW_ABSENT_VALIDATORS and
SA_IMM_CCB_ALLOW_ABSENT_APPLIERS flags are propagated by the IMM Service
to the object implementers of earlier versions as follows:

• If one or both of these flags are set, this setting is propagated as if
SA_IMM_CCB_REGISTERED_OI flag were not set;

• If neither of these flags are set then, this setting is propagated as if the
SA_IMM_CCB_REGISTERED_OI flag were set.

C.2 Example Using Object Implementers of Different Versions

Assume a setup similar to the one described in Appendix A and with the following
additional versioning information:

• the object manager (OM) uses the A.03.01 version of the IMM API;
• the object implementer implementing the traffic interface uses the A.02.01 ver-

sion of the IMM API;
• an object implementer using the A.03.01 version of the IMM API acts as both

• runtime owner and CCB applier of the VPN stack (not used in this example)
and

• CCB validator for the traffic interface and the VPN stack.

This CCB validator needs to validate that the DNS name in the certificate used by the
VPN stack must match the IP address of the traffic interface. When performing a con-
figuration change of the traffic interface, the sequence of invocations presented in
FIGURE 9 shall occur.
198 SAI-AIS-IMM-A.03.01 Appendix C.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Compatibility Issues

1

5

10

15

20

25

30

35

40
FIGURE 9 IMM Service Mediating Between Object Implementers of Different Versions

OM A.03 IMM A.03 Traffic Interface VPN Stack

saImmOmCcbInitialize_3()

saImmCcbObjectModify_2()

OK

OK

saImmOiCcbObjectModifyCallback (ccbId)

OK

saImmCcbApply_3()

saImmOiCcbCompletedCallback(ccbId)

OK

saImmOiCcbValidateCallback (ccbId)

saImmOiIteratorInitialize(ccbId)

OK

saImmOiIteratorNext()

DATA

saImmOiIteratorNext()

DONE

saImmOiIteratorFinalize()

OK

OK

saImmOiCcbApplyCallback (ccbId)

OK

saImmOiCcbFinalizeCallback (ccbId)OK

saImmOmCcbFinalize()

OK
AIS Specification SAI-AIS-IMM-A.03.01 Appendix C.2 199

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
Index of Definitions
A
abort transaction state 26
administrative

operations 100
owner 75
owner name 75
ownership 75

administrative operations 100
administrative owner 75
administrative owner name 75
administrative ownership 75

C
carries over 100
CCB 85

in-progress 28
CCB applier 128

registered 129
CCB states

abort transaction state 26
commit transaction state 27
populate state 26
transaction start state 26
transaction validate state 26

CCB validator 128
registered 129

change request 85
commit transaction state 27
configuration

attributes 24
change bundles 85
objects 24

configuration attributes 24
configuration change bundles 85
configuration objects 24
continuation

functions 100
identifier 100
registered continuation identifier 101

continuation functions 100
continuation identifier 100

G
global validation 145

I
IMM XML Schema Definition 30
implementer name 128
in progress 80
in-progress CCB 28
internal persistent repository 30

L
local validation 145

O
object access 69
object accessor 69

object implementer 24, 129
API 25
implementer name 128
registered 129

object implementer API 25
object management API 25
object search 61
objects

configuration 24
runtime 24

operation in progress 80

P
pending CCB 85
pending change requests 85
populate state 26

R
registered CCB applier 129
registered CCB validator 129
registered continuation identifier 101
registered object implementer 129
registered runtime owner 129
repository see internal persistent repository
runtime

attributes 24
objects 24

runtime attributes 24
runtime objects 24
runtime owner 128

registered 129

S
search

criteria 61
iterator 61

search criteria 61
search iterator 61

T
transaction start state 26
transaction validate state 26
AIS Specification SAI-AIS-IMM-A.03.01 201

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Information Model Management Service

	3 Information Model Management Service API
	3.1 IMM Service State Transitions During CCB Processing
	3.2 Object Naming
	3.3 Internal Persistent Repository
	3.4 Unavailability of the IMM Service API on a Non-Member Node
	3.4.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.4.2 Guidelines for IMM Service Implementers

	4 IMM Service - Object Management API Specification
	4.1 Include File and Library Name
	4.2 Type Definitions
	4.2.1 Handles Used by the IMM Service
	4.2.2 Various IMM Service Names
	4.2.3 SaImmValueTypeT
	4.2.4 SaImmClassCategoryT
	4.2.5 SaImmAttrFlagsT
	4.2.6 SaImmAttrValueT
	4.2.7 SaImmAttrDefinitionT_2
	4.2.8 SaImmAttrValuesT_2
	4.2.9 SaImmAttrModificationTypeT
	4.2.10 SaImmAttrModificationT_2
	4.2.11 SaImmScopeT
	4.2.12 SaImmSearchOptionsT
	4.2.13 SaImmSearchParametersT_2
	4.2.14 SaImmCcbFlagsT_3
	4.2.15 SaImmCcbIdT
	4.2.16 SaImmContinuationIdT
	4.2.17 SaImmAdminOperationIdT
	4.2.18 SaImmAdminOperationParamsT_2
	4.2.19 SaImmNotificationMinorIdT
	4.2.20 SaImmAdditionalInfoIdT
	4.2.21 SaImmCallbacksT_3
	4.2.22 IMM Service Object Attributes
	4.2.23 SaImmRepositoryInitModeT

	4.3 Library Life Cycle
	4.3.1 saImmOmInitialize_3()
	4.3.2 saImmOmSelectionObjectGet()
	4.3.3 saImmOmDispatch()
	4.3.4 saImmOmFinalize()

	4.4 Object Class Management
	4.4.1 saImmOmClassCreate_2()
	4.4.2 saImmOmClassDescriptionGet_2()
	4.4.3 saImmOmClassDescriptionMemoryFree_2()
	4.4.4 saImmOmClassDelete()

	4.5 Object Search
	4.5.1 saImmOmSearchInitialize_3()
	4.5.2 saImmOmSearchNext_2()
	4.5.3 saImmOmSearchFinalize()

	4.6 Object Access
	4.6.1 saImmOmAccessorInitialize_3()
	4.6.2 saImmOmAccessorGet_2()
	4.6.3 saImmOmAccessorFinalize()

	4.7 Object Administration Ownership
	4.7.1 saImmOmAdminOwnerInitialize()
	4.7.2 saImmOmAdminOwnerSet()
	4.7.3 saImmOmAdminOwnerRelease()
	4.7.4 saImmOmAdminOwnerFinalize()
	4.7.5 saImmOmAdminOwnerClear()

	4.8 Configuration Changes
	4.8.1 saImmOmCcbInitialize_3()
	4.8.2 saImmOmCcbObjectCreate_2()
	4.8.3 saImmOmCcbObjectDelete()
	4.8.4 saImmOmCcbObjectModify_2()
	4.8.5 saImmOmCcbApply_3()
	4.8.6 saImmOmCcbFinalize()

	4.9 Administrative Operations Invocation
	4.9.1 saImmOmAdminOperationInvoke_3(), saImmOmAdminOperationInvokeAsync_3()
	4.9.2 SaImmOmAdminOperationInvokeCallbackT_3
	4.9.3 saImmOmAdminOperationContinue(), saImmOmAdminOperationContinueAsync()
	4.9.4 saImmOmAdminOperationContinuationClear()

	5 IMM Service - Object Implementer API Specification
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 IMM Service Handles
	5.2.2 SaImmOiImplementerNameT
	5.2.3 SaImmOiRoleFlagsT
	5.2.4 SaImmOiCcbIteratorOptionT
	5.2.5 SaImmOiObjectChangeT
	5.2.6 SaImmOiObjectTraverseT
	5.2.7 SaImmOiCallbacksT_3

	5.3 Library Life Cycle
	5.3.1 saImmOiInitialize_3()
	5.3.2 saImmOiSelectionObjectGet()
	5.3.3 saImmOiDispatch()
	5.3.4 saImmOiFinalize()

	5.4 Object Implementer API
	5.4.1 saImmOiImplementerSet()
	5.4.2 saImmOiImplementerClear()
	5.4.3 saImmOiClassImplementerSet_3()
	5.4.4 saImmOiClassImplementerRelease_3()
	5.4.5 saImmOiObjectImplementerSet_3()
	5.4.6 saImmOiObjectImplementerRelease_3()

	5.5 CCB Validator Callbacks
	5.5.1 SaImmOiCcbValidateCallbackT
	5.5.2 SaImmOiCcbAbortCallbackT_3
	5.5.3 SaImmOiCcbFinalizeCallbackT

	5.6 CCB Applier Callback
	5.6.1 SaImmOiCcbApplyCallbackT_3

	5.7 CCB Iterator API
	5.7.1 saImmOiCcbIteratorInitialize()
	5.7.2 saImmOiCcbIteratorNext()
	5.7.3 saImmOiCcbIteratorFinalize()

	5.8 Runtime Owner APIs
	5.8.1 Runtime Objects Management API
	5.8.1.1 saImmOiRtObjectCreate_2()
	5.8.1.2 saImmOiRtObjectDelete()
	5.8.1.3 saImmOiRtObjectUpdate_2()
	5.8.1.4 SaImmOiRtAttrUpdateCallbackT

	5.8.2 Administrative Operations
	5.8.2.1 SaImmOiAdminOperationCallbackT_3
	5.8.2.2 saImmOiAdminOperationResult()

	6 IMM Service Administration API
	6.1 Administrative Operations on the IMM Service
	6.2 Include File and Library Name
	6.3 Type Definitions
	6.3.1 SaImmMngtAdminOperationT

	6.4 IMM Service Administration API
	6.4.1 SA_IMM_ADMIN_EXPORT

	7 IMM Service UML Information Model
	7.1 DN Formats for the IMM Service UML Class Diagram
	7.2 IMM Service UML Classes

	8 IMM Service Alarms and Notifications
	8.1 Setting Common Attributes
	8.2 Information Model Management Service Notifications
	8.2.1 Information Model Management Service Alarms
	8.2.2 Information Model Management Service Notifications of Miscellaneous Type
	8.2.2.1 Administrative Operation Start
	8.2.2.2 Administrative Operation End
	8.2.2.3 Configuration Update Start
	8.2.2.4 Configuration Update End

	Appendix A Example Use Case
	Appendix B Sequence Diagrams
	Appendix C Compatibility Issues
	C.1 Object Manager Considerations
	C.2 Example Using Object Implementers of Different Versions

	Index of Definitions

