
Service AvailabilityTM Forum
Application Interface Specification

Volume 7: Lock Service SAI-AIS-LCK-B.01.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

AIS Specification SAI-AIS-LCK-B.01.01 3

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

Service AvailabilityTM Application Interface Specification

Legal Notice

4 SAI-AIS-LCK-B.01.01 AIS Specification

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Volume 7, Lock Service

1 Document Introduction . 7
 1.1 Document Purpose . 7
 1.2 AIS Documents Organization . 7
 1.3 How to Provide Feedback on the Specification . 8
 1.4 How to Join the Service Availability™ Forum . 8
 1.5 Additional Information . 8
 1.5.1 Member Companies . 8
 1.5.2 Press Materials . 8

2 Overview . 11

 2.1 Lock Service . 11

3 SA Lock Service API . 13
 3.1 Lock Service Model . 13
 3.1.1 Lock Resource Name, Lock Resource Handle, Lock Id . 13
 3.1.2 Deadlock . 14
 3.1.3 Lock Modes and Lock Waiter Callback . 14
 3.1.4 Lock Stripping, Process Failure and Orphan Locks . 15
 3.1.5 Optional Lock Service Features . 16
 3.2 Include File and Library Names . 16
 3.3 Type Definitions . 16
 3.3.1 SaLckHandleT . 17
 3.3.2 SaLckLockIdT . 17
 3.3.3 SaLckResourceHandleT . 17
 3.3.4 SaLckCallbacksT . 17
 3.3.5 SaLckResourceOpenFlagsT . 18
 3.3.6 SaLckLockFlagsT . 19
 3.3.7 SaLckLockStatusT . 19
 3.3.8 SaLckLockModeT . 20
 3.3.9 SaLckOptionsT . 20
 3.3.10 SaLckWaiterSignalT . 21
 3.4 Library Life Cycle . 21
 3.4.1 saLckInitialize() . 21
 3.4.2 saLckSelectionObjectGet() . 24
 3.4.3 saLckOptionCheck() . 25
 3.4.4 saLckDispatch() . 26
 3.4.5 saLckFinalize() . 27
 3.5 Lock Resource Operations . 29
 3.5.1 saLckResourceOpen() and saLckResourceOpenAsync() . 29
 3.5.2 SaLckResourceOpenCallbackT . 32
AIS Specification SAI-AIS-LCK-B.01.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.5.3 saLckResourceClose() . 33
 3.5.4 saLckResourceLock() . 35
 3.5.5 saLckResourceLockAsync() . 38
 3.5.6 SaLckLockGrantCallbackT . 40
 3.5.7 SaLckLockWaiterCallbackT . 42
 3.5.8 saLckResourceUnlock() . 44
 3.5.9 saLckResourceUnlockAsync() . 45
 3.5.10 SaLckResourceUnlockCallbackT . 47
 3.5.11 saLckLockPurge() . 48
6 SAI-AIS-LCK-B.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Lock Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum. It is intended for use by implementors of the
Application Interface Specification and by application developers who would use the
Application Interface Specification to develop applications that must be highly
available. The AIS is defined in the C programming language, and requires
substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and with the Service AvailabilityTM Forum System Management
Specification, which is still under development.

1.2 AIS Documents Organization
The Application Interface Specification is organized into the following volumes:

Volume 1, the Overview document, provides a brief guide to the remainder of the
Application Interface Specification. It describes the objectives of the AIS specification
as well as programming models and definitions that are common to all specifications.
Additionally, it contains an overview of the Availability Management Framework and
of the other services as well as the system description and conceptual models,
including the physical and logical entities that make up the system. Volume 1 also
contains a chapter that describes the main abbreviations, concepts and terms used in
the AIS documents.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisOverview.B0101.pdf

Volume 2 describes the Availability Management Framework API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisAmf.B0101.pdf

Volume 3 describes the Cluster Membership Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisClm.B0101.pdf

Volume 4 describes the Checkpoint Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisCkpt.B0101.pdf
AIS Specification SAI-AIS-LCK-B.01.01 Section 1 7

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
Volume 5 describes the Event Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisEvt.B0101.pdf

Volume 6 describes the Message Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisMsg.B0101.pdf

Volume 7 (this volume) describes the Lock Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisLck.B0101.pdf

1.3 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.4 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.5 Additional Information

1.5.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website
(http://www.saforum.org).

1.5.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
8 SAI-AIS-LCK-B.01.01 Section 1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-LCK-B.01.01 Section 1.5.2 9

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
10 SAI-AIS-LCK-B.01.01 Section 1.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Lock Service within the Application Interface Specifica-
tion (AIS).

2.1 Lock Service
The Lock Service is a distributed lock service, intended for use in a cluster, where
processes in different nodes might compete with each other for access to a shared
resource.

The Lock Service provides entities, called lock resources, that are used to synchro-
nize access to shared resources between application processes.

The Lock Service provides a simple lock model supporting two locking modes for
exclusive access and shared access. All implementations must offer synchronous
and asynchronous calls, lock timeout, trylock, and lock wait notifications. Implementa-
tions may optionally offer the additional features of deadlock detection and lock
orphaning. A Lock Service interface allows an application to query for support for one
or more of the optional features. If an application depends on one of the optional fea-
tures for proper operation, it should use this interface to check whether the feature is
provided. Maximum portability is achieved by avoiding use of the optional features.
However, because they offer powerful functionality, it may make sense to take advan-
tage of them when they are available.

The locks provided by the Lock Service are not recursive. Thus, claiming one lock
does not implicitly claim another lock; rather, each lock must be claimed individually.
AIS Specification SAI-AIS-LCK-B.01.01 Section 2 11

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
12 SAI-AIS-LCK-B.01.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3 SA Lock Service API

3.1 Lock Service Model
A lock resource is a globally-named resource, access to which is controlled by enti-
ties called locks.

A lock is a protected access to a lock resource. A lock request is an attempt to
obtain a lock. If a process has requested a lock, and the lock is granted to the pro-
cess, the process is said to hold the lock, and it is referred to in this text as a lock
holder. A pending (or queued) lock request is a lock request that has not yet been
granted.

Locks can be requested in one of two lock modes: exclusive mode or shared read
mode. Only one exclusive lock can be granted against a lock resource at any time,
while any number of shared locks can be granted against a lock resource so long as
there is no exclusive lock granted on that lock resource. At any time a lock is held
against a lock resource, there can be one or more pending lock requests. A single
process can request multiple locks against a single lock resource, in addition to the
more usual case of multiple processes requesting locks against any single lock
resource.
Locks cannot be converted from one mode to another, but must be explicitly dropped
and reacquired in the new mode. More details on lock modes are given in Section
3.1.3 below.

The Lock Service informs an application about deadlocks, provided that the Lock Ser-
vice implementation supports the optional deadlock detection feature.

The effectiveness of locks depends on cooperation of the processes that use the
Lock Service. It is not the responsibility of the Lock Service to define the relationship
between locks and the related lock resources. Application processes must under-
stand what the Lock Service does and does not do, and obey the access controls
granted by the locks.

3.1.1 Lock Resource Name, Lock Resource Handle, Lock Id
As stated earlier, a lock resource is a globally-named, cluster-wide resource. Each
process interested in acquiring locks against this lock resource needs to create a ref-
erence to the global lock resource.

The lock resource name is used to allow all such requests to rendezvous on the
same resource. The lock resource name is a string, on which no interpretation is
placed.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3 13

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
Each process that creates a reference to a global lock resource will receive a lock
resource handle (SaLckResourceHandleT). The scope of an
SaLckResourceHandleT is local to the process that opened the resource. The pro-
cess can create multiple references to the global lock resource and will receive a dif-
ferent SaLckResourceHandleT for each such reference.

The process specifies the appropriate SaLckResourceHandleT against which to
acquire (lock) locks against the global lock resource, and the process will receive a
different lock Id (SaLckLockIdT) for each such lock request made. The scope of an
SaLckLockIdT is local to the process acquiring the lock. An SaLckLockIdT is used to
specify which lock to release (unlock) against a global lock resource.

3.1.2 Deadlock
To prevent deadlock, processes that use the Lock Service might choose to define a
numerical order 0,1,...,n for the locks that they use. If a lock with order number j is
held and another lock with order number k is claimed, k must be greater than j. Lock
Service implementations that offer deadlock detection will indicate a deadlock by set-
ting the lockStatus parameter to the value SA_LCK_LOCK_DEADLOCK when
returning from saLckResourceLock(), or when executing saLckLockGrantCallback() if
the lock was requested via saLckResourceLockAsync().

It is the responsibility of a process that uses the Lock Service to ensure that multiple
invocations of saLckResourceLock() and saLckResourceLockAsync() do not result in
deadlock.

3.1.3 Lock Modes and Lock Waiter Callback
Locks support two lock modes:

• Protected Read (PR) - A shared read, i.e., any number of lockers may hold a
read lock and no one may hold an exclusive lock.

• Exclusive (EX) - Only a single locker may hold the lock.

Lock requests can be blocked. For example, a request for an EX lock is blocked and
the request is queued if the lock is already held in EX mode or if one or more PR
locks exist. If such is the case, it can be specified that one or more processes holding
the existing lock or locks are notified via a lock waiter callback that they are blocking
a request. It is recommended that processes provide a lock waiter callback function
and specify it in the SaLckLockWaiterCallbackT field of the SaLckCallbacksT struc-
ture. However, this is not required: If the field is NULL, a lock holder will not be
informed that it is blocking lock requests. The lock holders are expected to drop their
locks in response to this notification. Once all current lock holders have dropped their
locks, the EX request is granted. While such an EX request is pending, new PR
requests are queued, rather than granted immediately.
14 SAI-AIS-LCK-B.01.01 Section 3.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
EX lock requests should generally be handled in the order that they are made,
although no guarantees are made on this. The Lock Service retains knowledge of
locks and lock requests across arbitrary failures of cluster components.

It is required that existing EX lock requests take priority over PR requests. As long as
any EX request is pending or held, PR requests must be queued. Only after the exist-
ing EX lock has been released and all pending EX lock requests have been granted
and released, shall any queued PR requests be granted.

It is implementation-dependent what happens if an EX request arrives during the
granting of a set (one or more) of queued PR requests. The Lock Service may halt
granting requests, keeping those not granted on the queue, or it may continue to
drain the queue by granting locks. It is required to deliver a lock waiter callback to all
PR holders to which the PR lock has been granted, and which specified a non-NULL
lock waiter callback function.

This model is quite useful for locks that are held for limited amounts of time, where
EX locks are most generally useful. This model also allows a high degree of control of
resources where lock holders can maintain a PR lock, and be informed of requests to
update the resource via a lock waiter callback that an EX request is pending. The
holder can drop its PR lock and immediately request it again to be queued behind the
EX request, so that it can be granted as soon as the resource is updated.

3.1.4 Lock Stripping, Process Failure and Orphan Locks
Locks can be stripped from a holder under the following conditions:

• The process owning the lock fails.
• The node that hosts the process owning the lock fails.
• The process owning the lock calls saLckResourceClose() against the locked

resource or calls saLckFinalize() without first releasing all of its locks.

The Lock Service handles lock stripping as both an unlock against the lock and a
close operation on the lock resource. If there are no other holders of the lock (for
shared locks) and no queued requests for the lock, then the Lock Service is allowed
to "forget about" the lock. Requests for the lock (opens, lock calls) regard it as a new
lock.

If there are other holders of the lock (for shared locks), then they continue to hold the
lock, and no change is indicated to them. If there are queued requests for the lock, all
grantable requests are granted, as discussed earlier for priority of requests. If queued
requests remain (e.g., EX and PR requests queued, the EX is granted and the PR is
queued), then these requests remain on the queue.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.1.4 15

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
On implementations, which support the orphan lock feature, stripping of locks can be
disabled with an option, SA_LCK_LOCK_ORPHAN, to the lock call. In this case,
when the process holding the lock exits, the lock remains on the lock resource grant
queue and is called an orphan lock or simply an orphan. An API call is provided to
purge existing orphan locks held on a lock resource. When a lock request is blocked
by an orphan, the status code SA_LCK_LOCK_ORPHANED is returned to the caller.
On implementations, which do not support the orphan lock feature, the
SA_LCK_LOCK_ORPHAN option is ignored, and the lock will always be stripped in
the situations described, and the SA_LCK_LOCK_ORPHANED status code will not
be returned.

For best performance, the orphan feature should not be enabled. However, in some
cases the feature is necessary, for example, when guarding resources that cannot be
updated atomically.

If a failed process has queued requests, the queued requests are simply dropped.

3.1.5 Optional Lock Service Features
The optional features are deadlock detection and orphan lock. The
saLckOptionCheck() routine can be invoked to determine whether these optional fea-
tures are supported by the Lock Service in use.

3.2 Include File and Library Names
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Lock Service API:

#include <saLck.h>

To use the Lock Service API, an application must be bound with the following library:

libSaLck.so

3.3 Type Definitions
The Lock Service uses the types described in the following sections.
16 SAI-AIS-LCK-B.01.01 Section 3.1.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.3.1 SaLckHandleT

typedef SaUint64T SaLckHandleT;

The type of the handle supplied by the Lock Service to a process during initialization
of the Lock Service and used by a process when it invokes functions of the Lock Ser-
vice API so that the Lock Service can recognize the process.

3.3.2 SaLckLockIdT

typedef SaUint64T SaLckLockIdT;

A type used to identify a lock that is either held, or requested to be held, against a
lock resource. The scope of an SaLckLockIdT is process-wide, so each one that is
given to the process via saLckResourceLock() or saLckResourceLockAsync() will be
unique regardless of the lock resource for which it is used.

3.3.3 SaLckResourceHandleT

typedef SaUint64T SaLckResourceHandleT;

A type used to identify a lock resource.

3.3.4 SaLckCallbacksT
The callbacks structure, supplied by a process to the Lock Service, contains the call-
back functions that the Lock Service may invoke.

typedef struct {

SaLckResourceOpenCallbackT saLckResourceOpenCallback;

SaLckLockGrantCallbackT saLckLockGrantCallback;

SaLckLockWaiterCallbackT saLckLockWaiterCallback;

SaLckResourceUnlockCallbackT saLckResourceUnlockCallback;

} SaLckCallbacksT;

The fields of the SaLckCallbacksT structure have the following interpretation:
• saLckResourceOpenCallback() - The callback function that is invoked when a

a (cluster-wide) lock resource is created for locking operations. This callback
can be a NULL value, which means that the lock resource can be opened only
synchronously.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.3.1 17

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
• saLckLockGrantCallback() - The callback function that is invoked when the
lock is granted asynchronously or deadlock is detected (provided that the
implementation of the Lock Service supports the optional deadlock detection
feature). This callback can be a NULL value, which means that the lock can be
locked only synchronously.

• saLckLockWaiterCallback() - This callback function is invoked to inform a cur-
rent holder of a lock that this lock is blocking another lock request. The call-
back is invoked with the lock mode being requested that is being blocked, and
with a waiterSignal, a value specified in the lock request that is being blocked.
This callback can be a NULL value, which means that the lock holder will not
be notified if it is blocking another lock request.

• saLckResourceUnlockCallback() - The callback function that is invoked when
the lock is asynchronously unlocked. This callback can be a NULL value,
which means that the lock can be unlocked only synchronously.

3.3.5 SaLckResourceOpenFlagsT

#define SA_LCK_RESOURCE_CREATE 0x1

typedef SaUint32T SaLckResourceOpenFlagsT;

The SaLckResourceOpenFlagsT type defines flags that can be used to control lock
resource open requests. In this version of the Lock Service, only one flag is defined.

If SA_LCK_RESOURCE_CREATE is specified, and if the named lock resource does
not already exist, it is created. If the open request completes successfully, a resource
handle for the named lock resource is returned.

If SA_LCK_RESOURCE_CREATE is not set, the processing is as follows:

• If the named lock resource already exists, a resource handle will be returned.
• If the named lock resource does not already exist, an error of

SA_AIS_ERR_NOT_EXIST is returned.
18 SAI-AIS-LCK-B.01.01 Section 3.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.3.6 SaLckLockFlagsT

#define SA_LCK_LOCK_NO_QUEUE 0x1

#define SA_LCK_LOCK_ORPHAN 0x2

typedef SaUint32T SaLckLockFlagsT;

The SaLckLockFlagsT type defines flags that can be used to control lock requests.
The interpretation of these flag values is as follows:

• SA_LCK_LOCK_NO_QUEUE - Requests that the Lock Service not queue the
lock request if the lock request cannot be granted immediately. The Lock Ser-
vice returns the status SA_LCK_LOCK_NOT_QUEUED in the status block.
Note: This allows the process to perform a “trylock” to query if the lock can be
granted immediately, and if it cannot be, drop the request rather than queuing
it to be granted later.

• SA_LCK_LOCK_ORPHAN - Requests that the Lock Service not purge this
lock if the process or node hosting the process holding the lock fails, or if the
process holding the lock calls saLckResourceClose() against the locked
resource or calls saLckFinalize() without first releasing the lock.

3.3.7 SaLckLockStatusT
An enumeration type of the possible lock status return values from the Lock Service
that indicates the status of the lock itself.

typedef enum {

SA_LCK_LOCK_GRANTED = 1,

SA_LCK_LOCK_DEADLOCK = 2,

SA_LCK_LOCK_NOT_QUEUED = 3,

SA_LCK_LOCK_ORPHANED = 4,

SA_LCK_LOCK_NO_MORE = 5,

SA_LCK_LOCK_DUPLICATE_EX = 6

} SaLckLockStatusT;

The values of the SaLckLockStatusT enumeration type have the following interpreta-
tion:

• SA_LCK_LOCK_GRANTED - Lock request was granted in the mode
requested.

• SA_LCK_LOCK_DEADLOCK - Lock request would cause deadlock. This
value will only be returned if the implementation supports the optional dead-
lock detection feature.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.3.6 19

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
• SA_LCK_LOCK_NOT_QUEUED - Lock request is blocked and would have to
be queued but the request was submitted with the
SA_LCK_LOCK_NO_QUEUE flag.

• SA_LCK_LOCK_ORPHANED - Lock request could not be granted because
the lock is an orphan, a now-failed lock holder specified the
SA_LCK_LOCK_ORPHAN flag. This value will only be returned if the imple-
mentation supports the optional orphan locks feature.

• SA_LCK_LOCK_NO_MORE - The Lock Service cannot support any more
locks.

• SA_LCK_LOCK_DUPLICATE_EX - The process requesting an EX lock
already holds a granted or pending EX lock against the same
SaLckResourceHandleT, as was specified in the lock request.

3.3.8 SaLckLockModeT

typedef enum {

SA_LCK_PR_LOCK_MODE = 1,

SA_LCK_EX_LOCK_MODE = 2

} SaLckLockModeT;

The SaLckLockModeT enumeration type defines the possible lock modes. These
lock modes have the following interpretation:

• SA_LCK_PR_LOCK_MODE - Allows the requesting process to read from a
resource while other processes simultaneously read from the same resource.
No process can write to the resource while one or more PR locks is held on the
resource. This is an example of a shared lock.

• SA_LCK_EX_LOCK_MODE - Allows the requesting process to read from, or
write to, a resource while it prevents any other process from accessing that
resource.

3.3.9 SaLckOptionsT

#define SA_LCK_OPT_ORPHAN_LOCKS 0x1

#define SA_LCK_OPT_DEADLOCK_DETECTION 0x2

typedef SaUint32T SaLckOptionsT;

The SaLckOptionsT type is used to hold a bitmap indicating the optional features
supported by an implementation of the Lock Service. The application should call the
saLckOptionCheck() function to fill this bitmap, and then use the flags described
below to determine if one or more of the optional features are provided:
20 SAI-AIS-LCK-B.01.01 Section 3.3.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SA_LCK_OPT_ORPHAN_LOCKS indicates that the Lock Services supports orphan
locks.
SA_LCK_OPT_DEADLOCK_DETECTION indicates that the Lock Service supports
deadlock detection.

It is allowable for an arbitrary Lock Services implementation to support none of these,
one of these, or all of these optional features.

3.3.10 SaLckWaiterSignalT

typedef SaUint64T SaLckWaiterSignalT;

The SaLckWaiterSignalT type is used in locking requests to pass information in the
case that one or more processes are already holding a lock that blocks a locking
request from being granted. The Lock Service defines no meaning for the values
placed in this parameter by the caller, and the interpretation of the value is up to the
recipient. It is assumed that all processes contending for a lock will be related and will
have agreed upon the meaning of the values passed.

3.4 Library Life Cycle

3.4.1 saLckInitialize()

Prototype

SaAisErrorT saLckInitialize(

SaLckHandleT *lckHandle,

const SaLckCallbacksT *lckCallbacks,

SaVersionT *version

);

Parameters

lckHandle - [out] A pointer to the handle designating this particular initialization of the
Lock Service that is to be returned by the Lock Service.

lckCallbacks - [in] If lckCallbacks is set to NULL, no callback is registered; otherwise,
it is a pointer to a SaLckCallbacksT structure, containing the callback functions of the
process that the Lock Service may invoke. Only non-NULL callback functions in this
structure will be registered.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.3.10 21

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
version - [in/out] As an input parameter, version is a pointer to the required Lock Ser-
vice version. In this case, minorVersion is ignored and should be set to 0x00.
As an output parameter, the version actually supported by the Lock Service is deliv-
ered.

Description
This function initializes the Lock Service for the invoking process and registers the
various callback functions. This function must be invoked prior to the invocation of
any other Lock Service functionality. The handle lckHandle is returned as the refer-
ence to this association between the process and the Lock Service. The process
uses this handle in subsequent communication with the Lock Service.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can

support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:
22 SAI-AIS-LCK-B.01.01 Section 3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Lock Service implementation.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.4.1 23

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
See Also
saLckSelectionObjectGet(), saLckDispatch(), saLckOptionCheck(), saLckFinalize()

3.4.2 saLckSelectionObjectGet()

Prototype

SaAisErrorT saLckSelectionObjectGet(

SaLckHandleT lckHandle,

SaSelectionObjectT *selectionObject

);

Parameters

lckHandle - [in] The handle, obtained through the saLckInitialize() function, designat-
ing this particular initialization of the Lock Service.

selectionObject - [out] A pointer to the operating system handle that the process can
use to detect pending callbacks.

Description
The saLckSelectionObjectGet() function returns the operating system handle
selectionObject, associated with the handle lckHandle. The invoking process can use
this handle to detect pending callbacks, instead of repeatedly invoking
saLckDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saLckSelectionObjectGet() is valid until
saLckFinalize() is invoked on the same handle lckHandle.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.
24 SAI-AIS-LCK-B.01.01 Section 3.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lckHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also
saLckInitialize(), saLckDispatch(), saLckOptionCheck(), saLckFinalize()

3.4.3 saLckOptionCheck()

Prototype

SaAisErrorT saLckOptionCheck(

 SaLckHandleT lckHandle,

SaLckOptionsT *lckOptions

);

Parameters

lckHandle - [in] The handle obtained from the saLckInitialize() function, designating
this particular initialization of the Lock Service.

lckOptions - [out] Bitmap that contains flags indicating which, if any, of the optional
Lock Service features are supported by the Lock Service.

Description
This function is used to determine if any of the optional Lock Service features are pro-
vided by the used implementation of the Lock Service. For each such supported
optional feature, a flag will be ORed into the lckOptions bitmask. After returning from
this function, the application should use the flags defined in Section 3.3.9 to test for
the presence of any required optional features. If a desired optional feature is not
supported by this implementation of the Lock Service, it is up to the application to
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.4.3 25

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
determine what action to take in response to this. Note that attempts to use an unsup-
ported optional feature, such as specifying SA_LCK_LOCK_ORPHAN when orphan
locks are not supported, will result in an error.

A more subtle problem can occur if an application expects to have deadlock detection
support available, but does not check whether this option is supported. If deadlock
detection is not supported, the application may encounter a deadlock situation but no
error will be returned to the application.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle lckHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also
saLckInitialize()

3.4.4 saLckDispatch()

Prototype

 SaAisErrorT saLckDispatch(

 SaLckHandleT lckHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

lckHandle - [in] The handle obtained from the saLckInitialize() function, designating
this particular initialization of the Lock Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saLckDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in volume 1 of the
AIS specification.
26 SAI-AIS-LCK-B.01.01 Section 3.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
Description
This function invokes, in the context of the calling thread, pending callbacks for the
handle lckHandle in a way that is specified by the dispatchFlags parameter.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lckHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also
saLckInitialize(), saLckSelectionObjectGet(), saLckOptionCheck(), saLckFinalize()

3.4.5 saLckFinalize()

Prototype

SaAisErrorT saLckFinalize(

SaLckHandleT lckHandle

);

Parameters

lckHandle - [in] The handle, obtained through the saLckInitialize() function, designat-
ing this particular initialization of the Lock Service.

Description
The saLckFinalize() function closes the association, represented by the lckHandle
parameter, between the invoking process and the Lock Service. The process must
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.4.5 27

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
have invoked saLckInitialize() before it invokes this function. A process must invoke
this function once for each handle it acquired by invoking saLckInitialize().

If the saLckFinalize() function returns successfully, the saLckFinalize() function
releases all resources acquired when saLckInitialize() was called. Moreover, if the
process holds a lock when saLckFinalize() is called, it releases the lock. Similarly, if
the process has a lock request queued when saLckFinalize() is called, it drops the
pending request. Furthermore, it cancels all pending callbacks related to the particu-
lar handle. Note that because the callback invocation is asynchronous, it is still possi-
ble that some callback calls are processed after this call returns successfully.

After saLckFinalize() is invoked, the selection object is no longer valid.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lckHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also
saLckInitialize()
28 SAI-AIS-LCK-B.01.01 Section 3.4.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.5 Lock Resource Operations

3.5.1 saLckResourceOpen() and saLckResourceOpenAsync()

Prototype

SaAisErrorT saLckResourceOpen(

SaLckHandleT lckHandle,

const SaNameT *lockResourceName,

SaLckResourceOpenFlagsT resourceFlags,

SaTimeT timeout,

SaLckResourceHandleT *lockResourceHandle

);

SaAisErrorT saLckResourceOpenAsync(

SaLckHandleT lckHandle,

SaInvocationT invocation,

const SaNameT *lockResourceName,

SaLckResourceOpenFlagsT resourceFlags,

);

Parameters

lckHandle - [in] The handle, obtained through the saLckInitialize() function, designat-
ing this particular initialization of the Lock Service.

invocation - [in] This parameter allows the invoking component to match this invoca-
tion of saLckResourceOpenAsync() with the corresponding callback call.

lockResourceName - [in] A pointer to the name of the lock resource being requested
that identifies a lock resource globally in a cluster.

resourceFlags - [in] Flags that are bitwise ORed together to select multiple options
and to control the behavior of the call. For information on the flag settings, see Sec-
tion 3.3.5 on page 18.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5 29

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
timeout - [in] The saLckResourceOpen() invocation is considered to have failed if it
does not complete by the time specified.

lockResourceHandle - [out] A pointer to the lock resource handle, which is assigned
by the Lock Service and returned to the caller. This handle must be used in subse-
quent requests to lock, unlock, purge, and close this lock resource.

Description
The saLckResourceOpen() and saLckResourceOpenAsync() functions open a (clus-
ter-wide) lock resource associated with lockResourceName for locking operations.

The saLckResourceOpen() function is a blocking operation.

Completion of the saLckResourceOpenAsync() function is signaled by an invocation
of the associated saLckResourceOpenCallback() callback function, which must have
been supplied when the process invoked the saLckInitialize() call. The
saLckResourceOpenCallback() will be executed only if the
saLckResourceOpenAsync() function returns SA_AIS_OK.

The process supplies the value of invocation when it invokes the
saLckResourceOpenAsync() function, and the Lock Service passes that value of
invocation back to the application when it invokes the corresponding
saLckResourceOpenCallback() function that returns the lock resource handle. The
invocation parameter is a mechanism that enables the process to determine which
call triggered which callback.

If the SA_LCK_RESOURCE_CREATE flag is specified in resourceFlags, and a lock
resource, named by lockResourceName, does not already exist, a lock resource is
created, and a lock resource handle, designated by lockResourceHandle, is returned.
If the SA_LCK_RESOURCE_CREATE flag is not specified in resourceFlags, and a
lock resource, identified by lockResourceName, already exists, a lock resource han-
dle, designated by lockResourceHandle, is returned.

The handle lockResourceHandle is returned synchronously for the
saLckResourceOpen() call, and asynchronously for the saLckResourceOpenAsync()
call. This lock resource handle is used when closing the lock resource, in callback
calls, and in calls to lock, unlock, and purge.

Note that until saLckResourceLock() or saLckLockGrantCallback() is called, no lock
is actually held.

Return Values
SA_AIS_OK - The function completed successfully.
30 SAI-AIS-LCK-B.01.01 Section 3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lckHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saLckInitialize() was incomplete,
since the saLckResourceOpenCallback() callback function is missing. This only
applies to saLckResourceOpenAsync().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - This is returned if SA_LCK_RESOURCE_CREATE is
not set in resourceFlags and no lock resource exists for lockResourceName.

SA_AIS_ERR_BAD_FLAGS - The resourceFlags parameter is invalid.

See Also
SaLckResourceOpenCallbackT, saLckResourceClose(), saLckInitialize()
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.1 31

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.5.2 SaLckResourceOpenCallbackT

Prototype

typedef void (*SaLckResourceOpenCallbackT)(

SaInvocationT invocation,

SaLckResourceHandleT lockResourceHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saLckResourceOpenAsync() function and is used by the Lock Service in
this callback. This invocation parameter allows the process to match the invocation of
that function with this callback.

lockResourceHandle - [in] The lock resource handle, which is assigned by the Lock
Service and passed to the caller. This handle must be used in subsequent requests
to lock, unlock, purge, and close this lock resource.

error - [in] This parameter indicates whether the saLckResourceOpenAsync() func-
tion was successful. The values that can be returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider
of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory).

• SA_AIS_ERR_NOT_EXIST - This is returned if
SA_LCK_RESOURCE_CREATE was not set in resourceFlags of the corre-
sponding saLckResourceOpenAsync() call, and no lock resource existed for
lockResourceName of the corresponding saLckResourceOpenAsync() call.
32 SAI-AIS-LCK-B.01.01 Section 3.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
Description

The Lock Service invokes this callback function when the operation requested by the
invocation of saLckResourceOpenAsync() completes. This callback is invoked in the
context of a thread issuing an saLckDispatch() call on the handle lckHandle, which
was specified in the saLckResourceOpenAsync() call.

If the SA_LCK_RESOURCE_CREATE flag was specified in resourceFlags of the cor-
responding saLckResourceOpenAsync() call, and a lock resource did not exist, a lock
resource for lockResourceName of the saLckResourceOpenAsync() call is created,
and a lock resource handle, designated by lockResourceHandle, is returned.
If the SA_LCK_RESOURCE_CREATE flag was not specified in resourceFlags of the
corresponding saLckResourceOpenAsync() call, and a lock resource for the
lockResourceName of the saLckResourceOpenAsync() call already existed, a lock
resource handle, designated by lockResourceHandle, is returned.

This lock resource handle is used when closing the lock resource, in callback calls,
and in calls to lock, unlock, and purge.

Note that until saLckResourceLock() or saLckLockGrantCallback() is called, no lock
is actually held.

Return Values

None.

See Also

saLckResourceOpenAsync(), saLckDispatch(), saLckResourceLock(),
SaLckLockGrantCallbackT

3.5.3 saLckResourceClose()

Prototype

SaAisErrorT saLckResourceClose(

SaLckResourceHandleT lockResourceHandle

);

Parameters

lockResourceHandle - [in] The handle to the lock resource to be closed. The handle
lockResourceHandle was previously obtained via a call to one of the
saLckResourceOpen() or saLckResourceOpenCallback() functions.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.3 33

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
Description
An invocation of this function causes the association between lockResourceHandle
and the corresponding lock resource to be deleted. The requestor should normally
have released all locks against the lock resource before calling this function; how-
ever, if the requestor holds a lock in PR or EX mode it shall be dropped. If the
requestor has a pending PR or EX mode lock request against the lock resource, the
pending request is dropped. If other processes hold locks in PR or EX mode, their
locks are unaffected, and any pending requests from other processes remain and
may be processed by the Lock Service.

The requestor should not call this function unless it is certain that the requestor no
longer needs to maintain any locks against this lock resource.

This call cancels all pending callbacks that refer directly or indirectly to the handle
lockResourceHandle. Note that because the callback invocation is asynchronous, it is
still possible that some callback calls are processed after this call returns success-
fully.

Once all references to this lock resource have been closed, the Lock Service consid-
ers that the lock resource no longer exists. However, if the implementation supports
orphan locks, and there are orphan locks against this lock resource, then the lock
resource will continue to exist until all of the orphan locks have been purged.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle is invalid, due to
one or both of the reasons below:

• It is corrupted, was not obtained via the saLckResourceOpen() or
saLckResourceOpenCallback() functions, or the corresponding lock resource
has already been closed.

• The handle lckHandle that was passed to the functions saLckResourceOpen() or
saLckResourceOpenAsync() has already been finalized.
34 SAI-AIS-LCK-B.01.01 Section 3.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
See Also
saLckResourceOpen(), saLckResourceOpenAsync(),
SaLckResourceOpenCallbackT

3.5.4 saLckResourceLock()

Prototype

SaAisErrorT saLckResourceLock(

SaLckResourceHandleT lockResourceHandle,

SaLckLockIdT *lockId,

SaLckLockModeT lockMode,

SaLckLockFlagsT lockFlags,

SaLckWaiterSignalT waiterSignal,

SaTimeT timeout,

SaLckLockStatusT *lockStatus

);

Parameters

lockResourceHandle - [in] The handle to the lock resource on which the lock is
wanted. The handle lockResourceHandle was previously obtained via a call to the
saLckResourceOpen() or saLckResourceOpenCallback() functions.

lockId - [out] A pointer to the identifier for the lock that is returned by the Lock Service,
and the invoking process is to use in subsequent calls to unlock. The lockId is only
valid if the return value is SA_AIS_OK and the lockStatus parameter is
SA_LCK_LOCK_GRANTED.

lockMode - [in] The requested lock mode.

lockFlags - [in] Flags that are bitwise ORed together to select multiple options and to
control the behavior of the call.

waiterSignal - [in] User-specified value that will be passed to the
saLckLockWaiterCallback() function of all processes holding locks that block this lock
request.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.4 35

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
timeout - [in] The maximum amount of time within which the lock must be granted. If
the Lock Service cannot grant the lock in the requested mode within this time, the
request is dropped and returned to the caller with an SA_AIS_ERR_TIMEOUT value.

lockStatus - [out] A pointer to the actual status of the lock, as defined by the
SaLckLockStatusT enumeration type in Section 3.3.7 on page 19, that is returned by
the Lock Service. This value is only valid if the return value is SA_AIS_OK.

Description
This function may be used to acquire a lock on a lock resource synchronously. The
lock resource must have already been created via the saLckResourceOpen() or
saLckResourceOpenAsync() functions.

Implementations that support deadlock detection will detect deadlocks and indicate in
the lockStatus field that granting the lock would cause a deadlock. No
saLckLockGrantCallback() is used for this lock request.

If no error occurs, an invocation of saLckResourceLock() returns SA_AIS_OK, and
the actual status of the lock is indicated in the lockStatus out parameter. It is possible
that the lock may not have been granted even if SA_AIS_OK is returned.

The normal case is that the lock will have been granted in the requested mode, which
is indicated by the lockStatus parameter having the value
SA_LCK_LOCK_GRANTED. Other values of the lockStatus parameter indicate con-
ditions in which the lock has not been granted in the requested mode. It is the respon-
sibility of the invoking process to resolve the condition that caused this situation, and
to resubmit the lock request.

After the lock is granted, it is possible for a lock waiter notification to be received for
this lock via the saLckLockWaiterCallback() call if this callback was specified when
the process initialized the Lock Service via saLckInitialize().

The lock may be released either synchronously or asynchronously. In addition, a pro-
cess can mix synchronous and asynchronous requests for different locks.

Return Values
SA_AIS_OK - The lock request completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.
36 SAI-AIS-LCK-B.01.01 Section 3.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle is invalid, due to
one or both of the reasons below:

• It is corrupted, was not obtained via the saLckResourceOpen() or
saLckResourceOpenCallback() functions, or the corresponding lock resource
has already been closed.

• The handle lckHandle that was passed to the functions saLckResourceOpen() or
saLckResourceOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.

SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_BAD_FLAGS - The lockFlags parameter is invalid.

SA_AIS_ERR_NOT_SUPPORTED - An optional feature is specified for use in the
lockFlags parameter but the implementation does not support the optional feature.

See Also
SaLckLockWaiterCallbackT, saLckResourceLockAsync(), saLckResourceUnlock(),
saLckResourceUnlockAsync(), SaLckResourceUnlockCallbackT,
saLckResourceOpen(), SaLckResourceOpenCallbackT
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.4 37

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.5.5 saLckResourceLockAsync()

Prototype

SaAisErrorT SaLckResourceLockAsync(

SaLckResourceHandleT lockResourceHandle,

SaInvocationT invocation,

SaLckLockIdT *lockId,

SaLckLockModeT lockMode,

SaLckLockFlagsT lockFlags,

SaLckWaiterSignalT waiterSignal

);

Parameters

lockResourceHandle - [in] The handle to the lock resource on which the lock is
wanted. The handle lockResourceHandle was previously obtained via a call to the
saLckResourceOpen() or saLckResourceOpenCallback() functions.

invocation - [in] An argument that is passed to the saLckLockGrantCallback() call-
back function when it is invoked for this locking request to identify the asynchronous
lock request being processed by the callback. This allows processes to have multiple
asynchronous lock requests outstanding. Because the asynchronous requests may
not be resolved by the Lock Service in the same order as they were issued by the
process, this value of invocation is returned to the appropriate callback function. Typ-
ically, each such request should use a unique value of invocation to enable the pro-
cesses to identify the lock request for which the callback function is being invoked, as
the callback will need to use the invocation value it receives to index the resource and
lock identification that is part of this lock request.

lockId - [out] A pointer to the identifier for the lock that is returned by the Lock Service,
and the invoking process is to use in subsequent calls to unlock. The lockId is only
valid if the return value is SA_AIS_OK. The lock request is considered pending, until
the saLckLockGrantCallback() function is executed, granting the lock.

lockMode - [in] The requested lock mode.

lockFlags - [in] Flags that are ORed together to select multiple options and to control
the behavior of the call.
38 SAI-AIS-LCK-B.01.01 Section 3.5.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
waiterSignal - [in] User-specified value that will be passed to the
saLckLockWaiterCallback() function of all processes holding locks that block this lock
request.

Description
This function can be used to request asynchronously a lock on a lock resource. The
lock resource must have already been created via a saLckResourceOpen() or a
saLckResourceOpenAsync() call.

The value returned directly from the invocation of this function does not indicate the
status of the lock, rather it indicates whether the Lock Service has accepted the
request for processing or whether it hasn’t.

The actual status of the lock request is indicated through execution of the
saLckLockGrantCallback() callback function, which must have been supplied when
the process invoked the saLckInitialize() call. If saLckResourceLockAsync() returns
SA_AIS_OK, the lockId is valid, and the lock request is considered pending, until the
saLckLockGrantCallback() is executed. Prior to that time, the lock request can be
canceled using either the saLckResourceUnlock() or the
saLckResourceUnlockAsync() function with this lockId. If the
saLckLockGrantCallback() call indicates an error, then, at that time, the lockId is no
longer valid.

It is allowable to use the SA_LCK_LOCK_NO_QUEUE flag with the
saLckResourceLockAsync() function. In this case, if the lock is already held in a
mode that would block this request, saLckResourceLockAsync() will return
SA_AIS_OK, and the saLckLockGrantCallback() will return the value
SA_LCK_LOCK_NO_QUEUE in the lockStatus field.

Return Values
SA_AIS_OK - The lock request completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle is invalid, due to
one or both of the reasons below:
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.5 39

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
• It is corrupted, was not obtained via the saLckResourceOpen() or
saLckResourceOpenCallback() functions, or the corresponding lock resource
has already been closed.

• The handle lckHandle that was passed to the functions saLckResourceOpen() or
saLckResourceOpenAsync() has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saLckInitialize() was incomplete,
since the saLckLockGrantCallback() callback function is missing.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.

SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_BAD_FLAGS - The lockFlags parameter is invalid.

SA_AIS_ERR_NOT_SUPPORTED - An optional feature is specified for use in the
lockFlags parameter but the implementation does not support the optional feature.

See Also
SaLckLockGrantCallbackT, SaLckLockWaiterCallbackT, saLckResourceLock(),
saLckResourceUnlock(), saLckResourceUnlockAsync(),
SaLckResourceUnlockCallbackT, saLckInitialize(), saLckResourceOpen(),
saLckResourceOpenAsync()

3.5.6 SaLckLockGrantCallbackT

Prototype

typedef void (*SaLckLockGrantCallbackT)(

SaInvocationT invocation,

SaLckLockStatusT lockStatus,

SaAisErrorT error

);

Parameters

invocation - [in] The argument that was passed in during the invocation of the
saLckResourceLockAsync() call that established this lock request. The callback func-
40 SAI-AIS-LCK-B.01.01 Section 3.5.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
tion should use this value to determine the resource, lock mode, and lock identifica-
tion for this lock request.

lockStatus - [in] The status of the lock, defined by the SaLckLockStatusT enumera-
tion type in Section 3.3.7 on page 19. This value is only valid if the error parameter is
SA_AIS_OK. It is the responsibility of the invoked process to check this parameter to
determine whether the lock has been granted.

error - [in] The Lock Service supplies one of the following return values as an in
parameter to this function. If the return value is not SA_AIS_OK, then the value of
lockStatus is undefined.

• SA_AIS_OK - The lock request completed successfully. Check lockStatus for
the status of the lock.

• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library
(such as corruption). The library cannot be used anymore.

• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred
before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_INVALID_PARAM - A parameter is invalid.
• SA_AIS_ERR_NO_MEMORY - Either the Lock Service library or the provider

of the service is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other

than memory).
• SA_AIS_ERR_NOT_EXIST - The lockId identifier that was specified in the

saLckResourceLockAsync() call has become invalid prior to the invocation of
this callback, due to the lock request having been canceled in the period
between saLckResourceLockAsync() and the execution of this callback.

Description
This callback function is invoked by the Lock Service when a process requested a
lock via the saLckResourceLockAsync() function. Once the lock request has been
resolved, this callback is executed to inform the process. This callback is invoked in
the context of a thread issuing an saLckDispatch() call on the handle lckHandle,
which was specified in the saLckResourceOpen() or saLckResourceOpenAsync()
call, leading to the handle lockResourceHandle, specified in the corresponding
saLckResourceLockAsync() call. The normal case is that the lock will have been
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.6 41

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
granted in the requested mode. This is indicated via the SA_LCK_LOCK_GRANTED
value being set in the lockStatus parameter.

Implementations that support deadlock detection will detect deadlocks and indicate in
the lockStatus field that granting the lock would cause a deadlock.

Other values possible in the lockStatus parameter indicate possible conditions where
the lock has not been granted in the requested mode. It is the responsibility of the
process to resolve the condition that caused this situation, and to resubmit the lock
request at a later time.

Return Values
None.

See Also
saLckResourceLockAsync(), saLckDispatch(), saLckResourceOpen(),
saLckResourceOpenAsync()

3.5.7 SaLckLockWaiterCallbackT

Prototype

typedef void (*SaLckLockWaiterCallbackT)(

SaLckWaiterSignalT waiterSignal,

SaLckLockIdT lockId,

SaLckLockModeT modeHeld,

SaLckLockModeT modeRequested

);

Parameters

waiterSignal - [in] User-specified value from the saLckResourceLock() or
saLckResourceLockAsync() call that requested this lock. It is up to the user to deter-
mine the meaning of the given value, for instance, priority, or other type of informa-
tion.

lockId - [in] The lock identifier that was returned by the Lock Service to the process
through the saLckResourceLock() or saLckResourceLockAsync() calls.
42 SAI-AIS-LCK-B.01.01 Section 3.5.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
modeHeld - [in] The lock mode held by the process.

modeRequested - [in] The requested lock mode that is being blocked by the pro-
cess’s current lock.

Description
This callback function is invoked by the Lock Service when a process holds a lock
that is blocking another lock request. For example, the process may hold the lock in
PR mode and another process is requesting it in EX mode. The parameters of the
callback function specify the mode in which the process holds the lock and the mode
that is being requested and is blocked.

The saLckLockWaiterCallback() is invoked for every lock request that is blocked by
this process. For example, if three other processes issue lock requests that are
blocked by this process, the lock holder will have this callback executed three times.
Each such lock holder (for example, a number of different processes holding PR
locks against the lock resource) will each be so notified via this callback.

In addition, a single process that holds multiple PR locks against a single lock
resource will have this callback executed against each different lockId, i.e., once for
each PR lock held.

The waiterSignal is specified by a process requesting a lock for delivery to the holder
of the lock blocking that request. It is assumed that the processes contending for a
lock resource will understand and act upon it.

The Lock Service enforces no action to be taken by the process when it executes this
callback. The process must assist in managing its locking interactions. One assumed
action is that the process drops its lock to allow another process to acquire it, but that
is the responsibility of the process to decide.

This callback is invoked in the context of a thread issuing an saLckDispatch() call on
the handle lckHandle, which was specified in the saLckResourceOpen() or
saLckResourceOpenAsync() call, leading to the handle lockResourceHandle, which
was specified in the corresponding saLckResourceLock() or
saLckResourceLockAsync() call to obtain the lockId.

See Also
saLckResourceLock(), saLckResourceLockAsync(), saLckLockGrantCallback(),
saLckDispatch(), saLckResourceOpen(), saLckResourceOpenAsync()
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.7 43

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
3.5.8 saLckResourceUnlock()

Prototype

SaAisErrorT saLckResourceUnlock(

SaLckLockIdT lockId,

SaTimeT timeout

);

Parameters

lockId - [in] The identifier of the lock to be released or of the pending lock request to
be canceled. This identifier was returned by the Lock Service to the process through
a previous saLckResourceLock() or saLckResourceLockAsync() call. The lockId is no
longer valid once the lock has been successfully released.

timeout - [in] The saLckResourceUnlock() invocation is considered to have failed if it
does not complete by the time specified.

Description
An invocation of this function releases synchronously the lock identified by lockId. If
the lockId identifies a pending lock request, then the pending lock request will be can-
celed.

The return value of this function indicates whether the function succeeded or failed.

Return Values
SA_AIS_OK - The unlock request was completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle, which was speci-
fied in the saLckResourceOpen() or saLckResourceOpenAsync() call, leading to the
handle lockResourceHandle, which was specified in the corresponding
44 SAI-AIS-LCK-B.01.01 Section 3.5.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
saLckResourceLock() or saLckResourceLockAsync() call to obtain the lockId has
become invalid due to one or both of the reasons below:

• It is corrupted, or the corresponding lock resource has already been closed.
• The handle lckHandle that was passed to the functions saLckResourceOpen() or

saLckResourceOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.

SA_AIS_ERR_NOT_EXIST - The lockId identifier is invalid, because of one of the
reasons below:

• The lock has already been unlocked.
• It is either corrupted, or it was not obtained via the saLckResourceLock() or

saLckResourceLockAsync() functions.

See Also
saLckResourceLock(), saLckResourceLockAsync(), SaLckLockGrantCallbackT,
saLckResourceUnlockASync()

3.5.9 saLckResourceUnlockAsync()

Prototype

SaAisErrorT saLckResourceUnlockAsync(

SaInvocationT invocation,

SaLckLockIdT lockId

);

Parameters

invocation - [in] An argument that is passed to the saLckResourceUnlockCallback()
callback function when it is invoked for this unlock request to identify the asynchro-
nous unlock request being processed by the callback. This allows processes to have
multiple asynchronous unlock requests outstanding. Because the asynchronous
requests may not be resolved by the Lock Service in the same order as they were
issued by the process, this value of invocation is returned to the appropriate callback
function. Typically, each such request should use a unique value of invocation to
enable the processes to identify the unlock request for which the callback function is
being invoked, as the callback function will need to use the invocation value it
receives to index the resource and lock identification that is part of this unlock
request.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.9 45

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
lockId - [in] The identifier of the lock to be released or of the pending lock request to
be canceled. This identifier was returned by the Lock Service to the process through
a previous saLckResourceLock() or saLckResourceLockAsync() call.

Description
An invocation of this function releases asynchronously the lock identified by lockId. If
the lockId identifies a pending lock request, then the pending lock request will be can-
celed.

The value returned directly from invocation of this function does not indicate the sta-
tus of the lock; it rather indicates whether the request has been accepted for process-
ing by the Lock Service.

The results of a successful unlock submission are returned via execution of the
saLckResourceUnlockCallback() callback function, which must have been supplied
when the process invoked the saLckInitialize() call.

Return Values
SA_AIS_OK - The unlock request was submitted successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle, which was speci-
fied in the saLckResourceOpen() or saLckResourceOpenAsync() call, leading to the
handle lockResourceHandle, which was specified in the corresponding
saLckResourceLock() or saLckResourceLockAsync() call to obtain the lockId has
become invalid due to one or both of the reasons below:

• It is corrupted, or the corresponding lock resource has already been closed.
• The handle lckHandle that was passed to the functions saLckResourceOpen() or

saLckResourceOpenAsync() has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saLckInitialize() was incomplete,
since the saLckResourceUnlockCallback() callback function is missing.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.
46 SAI-AIS-LCK-B.01.01 Section 3.5.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NOT_EXIST - The lockId identifier is invalid, because of one of the
reasons below:

• The lock has already been unlocked.
• It is either corrupted, or it was not obtained via the saLckResourceLock() or

saLckResourceLockAsync() functions.

See Also
SaLckResourceUnlockCallbackT, saLckResourceLock(),
saLckResourceLockAsync(), SaLckLockGrantCallbackT, saLckResourceUnlock(),
saLckInitialize(), saLckResourceOpen(), saLckResourceOpenAsync()

3.5.10 SaLckResourceUnlockCallbackT

Prototype

typedef void (*SaLckResourceUnlockCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] The argument that was passed in during the invocation of the corre-
sponding saLckResourceUnlockAsync() call that established this unlock request.
The callback should use this value to determine the resource and lock identification
for this unlock request.

error - [in] The Lock Service supplies one of the following return values as an in
parameter to this function.

• SA_AIS_OK - The unlock request was completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.10 47

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_NOT_EXIST - The lockId identifier that was specified in
saLckResourceUnlockAsync() has become invalid prior to the invocation of
this callback, due to the lock having already been unlocked in the period
between saLckResourceUnlockAsync() and the execution of this callback.

Description
The Lock Service invokes this callback function when the operation requested by the
invocation of saLckResourceUnlockAsync() to release a lock or cancel a pending
lock request completes. This callback is invoked in the context of a thread issuing an
saLckDispatch() call on the handle lckHandle, which was specified in the
saLckResourceOpen() or saLckResourceOpenAsync() call, leading to the handle
lockResourceHandle, which was specified in the corresponding
saLckResourceLock() or saLckResourceLockAsync() call to obtain the lockId of the
corresponding saLckResourceUnlockAsync() call. If successful, the lock has been
released; otherwise, an error is returned in the error parameter.

Return Values
None.

See Also
saLckResourceUnlockASync(), saLckResourceLock(), saLckResourceLockAsync(),
SaLckLockGrantCallbackT, saLckDispatch(), saLckResourceOpen(),
saLckResourceOpenAsync()

3.5.11 saLckLockPurge()

Prototype

SaAisErrorT saLckLockPurge(

SaLckResourceHandleT lockResourceHandle

);

Parameters

lockResourceHandle - [in] The handle to the lock resource on which one or more
orphaned locks are held. The handle lockResourceHandle was previously obtained
via a call to the saLckResourceOpen() or saLckResourceOpenCallback() functions.
48 SAI-AIS-LCK-B.01.01 Section 3.5.11 AIS Specification

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
Description
Orphaned locks are locks that were acquired with the SA_LCK_LOCK_ORPHAN flag
set and that have not been unlocked properly by the owner process before it called
saLckFinalize() on the handle used to open the associated lock resource, or closed
the associated lock resource, or died.

If a lock request is not granted because an orphan lock still exists, saLckLockPurge()
can be used to purge the existing lock or locks. When invoked, it purges all existing
orphan locks held on the lock resource.

Purging a lock is equivalent to the invocation of the saLckResourceUnlock() (or
saLckResourceUnlockAsync()) and saLckResourceClose() functions by the process
whose lock was stripped and orphaned. If other processes hold the lock in shared
mode, they continue to do so. Queued lock requests that were blocked can be han-
dled in the now-purged lock condition.

Return Values
SA_AIS_OK - The purge request completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle lockResourceHandle is invalid, due to
one or both of the reasons below:

• It is corrupted, was not obtained via the saLckResourceOpen() or
saLckResourceOpenCallback() functions, or the corresponding lock resource
has already been closed.

• The handle lckHandle that was passed to the functions saLckResourceOpen() or
saLckResourceOpenAsync() has already been finalized.

SA_AIS_ERR_NOT_SUPPORTED - This implementation does not support the
optional orphan locks feature.

See Also
saLckResourceLock(), saLckResourceLockAsync(), SaLckLockGrantCallbackT,
saLckResourceUnlock(), saLckResourceUnlockAsync(),
AIS Specification SAI-AIS-LCK-B.01.01 Section 3.5.11 49

Service AvailabilityTM Application Interface Specification
Lock Service

1

5

10

15

20

25

30

35

40
SaLckResourceUnlockCallbackT, saLckResourceOpen(),
SaLckResourceOpenCallbackT, saLckFinalize()
50 SAI-AIS-LCK-B.01.01 Section 3.5.11 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 How to Provide Feedback on the Specification
	1.4 How to Join the Service Availability™ Forum
	1.5 Additional Information
	1.5.1 Member Companies
	1.5.2 Press Materials

	2 Overview
	2.1 Lock Service

	3 SA Lock Service API
	3.1 Lock Service Model
	3.1.1 Lock Resource Name, Lock Resource Handle, Lock Id
	3.1.2 Deadlock
	3.1.3 Lock Modes and Lock Waiter Callback
	3.1.4 Lock Stripping, Process Failure and Orphan Locks
	3.1.5 Optional Lock Service Features

	3.2 Include File and Library Names
	3.3 Type Definitions
	3.3.1 SaLckHandleT
	3.3.2 SaLckLockIdT
	3.3.3 SaLckResourceHandleT
	3.3.4 SaLckCallbacksT
	3.3.5 SaLckResourceOpenFlagsT
	3.3.6 SaLckLockFlagsT
	3.3.7 SaLckLockStatusT
	3.3.8 SaLckLockModeT
	3.3.9 SaLckOptionsT
	3.3.10 SaLckWaiterSignalT

	3.4 Library Life Cycle
	3.4.1 saLckInitialize()
	3.4.2 saLckSelectionObjectGet()
	3.4.3 saLckOptionCheck()
	3.4.4 saLckDispatch()
	3.4.5 saLckFinalize()

	3.5 Lock Resource Operations
	3.5.1 saLckResourceOpen() and saLckResourceOpenAsync()
	3.5.2 SaLckResourceOpenCallbackT
	3.5.3 saLckResourceClose()
	3.5.4 saLckResourceLock()
	3.5.5 saLckResourceLockAsync()
	3.5.6 SaLckLockGrantCallbackT
	3.5.7 SaLckLockWaiterCallbackT
	3.5.8 saLckResourceUnlock()
	3.5.9 saLckResourceUnlockAsync()
	3.5.10 SaLckResourceUnlockCallbackT
	3.5.11 saLckLockPurge()

