
Service AvailabilityTM Forum
Application Interface Specification

Log Service SAI-AIS-LOG-A.02.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-LOG-A.02.01 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-LOG-A.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Log Service
1 Document Introduction . 9
 1.1 Document Purpose . 9
 1.2 AIS Documents Organization . 9
 1.3 History . 9
 1.3.1 New Topics . 9
 1.3.2 Clarifications . 10
 1.3.3 Superseded and Superseding Functions . 11
 1.3.4 Changes in Return Values of API Functions: . 12
 1.3.5 Removed Topics . 12
 1.3.6 Other Changes . 12
 1.4 References . 13
 1.5 How to Provide Feedback on the Specification . 14
 1.6 How to Join the Service Availability™ Forum . 14
 1.7 Additional Information . 14
 1.7.1 Member Companies . 14
 1.7.2 Press Materials . 14

2 Overview . 17
 2.1 Log Service . 17
 2.2 Log Streams . 19
 2.3 Log Stream Handlers . 19

3 SA Log Service API . 21

 3.1 Log Service Model . 21
 3.1.1 Logger . 21
 3.1.2 Log Stream . 21
 3.1.2.1 Alarm, Notification, and System Log Streams . 22
 3.1.2.2 Application Log Stream . 22
 3.1.3 Log Record Properties . 23
 3.1.4 Log Filtering . 23
 3.1.5 Log Record Output Format . 24
 3.1.5.1 Format Tokens . 24
 3.1.5.2 Format Expressions . 30
 3.1.5.3 Default Format Expressions . 31
 3.1.6 Log File Properties . 32
 3.1.6.1 Log File Configurable Attributes . 32
 3.1.6.2 Log File Configuration File . 34
 3.1.6.3 Log File Naming Rules . 35
 3.1.6.4 Configuring the Alarm, Notification, and System Output Destination Files 37
 3.1.6.5 Log File Behavior . 38
 3.1.7 Internationalization . 38
 3.2 Unavailability of the Log Service API on a Non-Member Node . 38
AIS Specification SAI-AIS-LOG-A.02.01 5

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.2.1 A Member Node Leaves or Rejoins the Cluster Membership . 39
 3.2.2 Guidelines for Log Service Implementers . 40
 3.3 Include File and Library Names . 40
 3.4 Type Definitions . 40
 3.4.1 Handles . 40
 3.4.1.1 SaLogHandleT . 40
 3.4.1.2 SaLogStreamHandleT . 40
 3.4.2 Log Types . 41
 3.4.2.1 Log Stream Names . 41
 3.4.2.2 SaLogSeverityT and SaLogSeverityFlagsT . 42
 3.4.2.3 SaLogBufferT . 43
 3.4.2.4 SaLogAckFlagsT . 43
 3.4.2.5 SaLogStreamOpenFlagsT . 43
 3.4.3 Log Service API and Notification Types . 44
 3.4.4 Log Service as Notification Producer . 44
 3.4.4.1 SaLogNtfIdentifiersT . 44
 3.4.4.2 SaLogNtfAttributesT . 44
 3.4.5 Log Record Types . 45
 3.4.5.1 SaLogHeaderTypeT . 45
 3.4.5.2 SaLogNtfLogHeaderT . 45
 3.4.5.3 SaLogGenericLogHeaderT . 47
 3.4.5.4 SaLogHeaderT . 48
 3.4.5.5 SaLogRecordT . 48
 3.4.6 Application Log Types . 50
 3.4.6.1 SaLogFileFullActionT . 50
 3.4.6.2 SaLogFileCreateAttributesT_2 . 50
 3.4.7 SaLogCallbacksT . 51
 3.4.8 SaLogLimitIdT . 52
 3.5 Library Life Cycle . 53
 3.5.1 saLogInitialize() . 53
 3.5.2 saLogSelectionObjectGet() . 55
 3.5.3 saLogDispatch() . 57
 3.5.4 saLogFinalize() . 58
 3.6 Log Service Operations . 60
 3.6.1 saLogStreamOpen_2() and saLogStreamOpenAsync_2() . 60
 3.6.2 SaLogStreamOpenCallbackT . 64
 3.6.3 saLogWriteLog() and saLogWriteLogAsync() . 67
 3.6.4 SaLogWriteLogCallbackT . 70
 3.6.5 SaLogFilterSetCallbackT . 72
 3.6.6 saLogStreamClose() . 73
 3.7 Limit Fetch API . 75
 3.7.1 saLogLimitGet() . 75

4 Log Service UML Information Model . 77
 4.1 DN Format for Log Service UML Classes . 77
 4.2 Log Service UML Classes . 77
6 SAI-AIS-LOG-A.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
5 Log Service Administration API . 79
 5.1 Log Service Administration API Model . 79
 5.1.1 Log Service Administration API Basics . 79
 5.2 Include File and Library Name . 79
 5.3 Type Definitions . 79
 5.3.1 saLogAdminOperationIdT . 80
 5.4 Log Service Administration API . 80
 5.4.1 SA_LOG_ADMIN_CHANGE_FILTER . 80

6 Alarms and Notifications . 83

 6.1 Setting Common Attributes . 83
 6.2 Log Service Notifications . 85
 6.2.1 Log Service Alarms . 86
 6.2.1.1 Capacity Alarm . 86
 6.2.2 Log Service Object Change Notifications . 88
 6.2.2.1 Application Log Stream Create . 88
 6.2.2.2 Application Log Stream Delete . 90
 6.2.3 Log Service Attribute Change Notifications . 92
 6.2.3.1 Log Stream Attribute Change . 92

7 Log Service Management Interface . 95

 7.1 Log Service MIB (SAF-LOG-SVC-MIB) . 95

Index of Definitions . 97
AIS Specification SAI-AIS-LOG-A.02.01 7

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
8 SAI-AIS-LOG-A.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Log Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for use by imple-
mentors of the Application Interface Specification and by application developers who
would use the Application Interface Specification to develop applications that must be
highly available. The AIS is defined in the C programming language, and requires
substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
The first (and only previous release) of the Log Service specification was:

SAI-AIS-LOG-A.01.01

This section presents the changes of the current release, SAI-AIS-LOG-A.02.01, with
respect to the SAI-AIS-LOG-A.01.01 release. Editorial changes are not mentioned
here.

1.3.1 New Topics
• Section 3.1.6.1 introduces the saLogStreamLogFullHaltThreshold attribute for

the halt option of the log file full action.
• Section 3.1.6.4 presents the configuration of the alarm, notification, and system

output destination files.
• Section 3.2 describes the behavior of the Log Service API on a cluster node that

is not in the cluster membership (see [4]).
• Section 3.4.2.2 introduces new flags for the SaLogSeverityFlagsT typedef.
• Section 3.4.6.2 contains the new SaLogFileCreateAttributesT_2 typedef that

supersedes SaLogFileCreateAttributesT. The change was the removal of ’*’ from
AIS Specification SAI-AIS-LOG-A.02.01 Section 1 9

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
the fields logFileName, logFilePathName, and logFileFmt. See also Section
1.3.3.

• Section 3.4.8 describes the SaLogLimitIdT enum, which provides a value that
identifies a limit for a particular implementation of the Log Service. The user can
inquire at runtime the current value of the limit by specifying the corresponding
enum value when invoking the saLogLimitGet() function, which is defined in Sec-
tion Section 3.7.1.

• Section 3.6.1 contains the new functions saLogStreamOpen_2() and
saLogStreamOpenAsync_2() that supersede saLogStreamOpen() and
saLogStreamOpenAsync(). This replacement was necessary because
SaLogFileCreateAttributesT has been superseded, and the logStreamName
parameter is now a pointer. See also Section 1.3.3.

• Chapter 4 presents the Log Service UML information model. This model was pre-
viously part of [1]. Note that this model has changed compared to the previous
version of the Log Service.

• Chapter 5 describes the administration APIs provided for the Log Service.
• Section 6.2.3 introduces the Log Service attribute change notifications.
• Chapter 7 presents the Log Service management interface.

1.3.2 Clarifications
• Section 3.1.5 on the log record output format clarifies that all output is repre-

sented using the US-ASCII character set.
• Section 3.1.5.1 clarifies the meaning of some format tokens (@CM, @Cd, @Cy,

@CY, @Nm, @Nd, @Ny, @NY, @Cb<fs>, and @Ci<fs>).
• Section 3.1.5.2 clarifies that the @Ci<fs> token can only be used in a format

expression that is associated with an application log stream.
• Section 3.1.6 clarifies that the configuration of the alarm, notification, and system

log streams can be changed at runtime.
• Section 3.1.6.1 clarifies that the unit of the fixed log record size is byte.
• Section 3.4.6.2 clarifies that the unit of maxLogRecordSize is byte.
• Section 3.5.3 on the saLogDispatch() function clarifies the meaning of the

SA_AIS_OK return value.
• The description of the saLogFinalize() function (see Section 3.5.4) clarifies that

this function frees all resources allocated by the Log Service for the process in
this association between the process and the Log Service.

• The description of the saLogStreamClose() function (see Section 3.6.6) clarifies
which resources this function frees for the invoking process.

• Section 6.2 clarifies the setting of the notifying object in notifications.
10 SAI-AIS-LOG-A.02.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Superseded and Superseding Functions

The Log Service defines for the version A.02.01 two new functions and a new type
definition to replace a function and a type definition of the version A.01.01 respec-
tively (see next table).

The superseded functions and type definition are no longer supported in version
A.02.01, and no description is provided for them in this document.

Regarding the support of backward compatibility in SA Forum AIS, refer to the Over-
view document ([1]).

Table 1 Superseded and Superseding Functions in Version A.02.01

Functions or Type Definitions of A.01.01 No
Longer Supported in A.02.01

Functions or Type Definitions of A.02.01
Replacing Functions or Type Definitions in
A.01.01

saLogStreamOpen() saLogStreamOpen_2()

saLogStreamOpenAsync() saLogStreamOpenAsync_2()

SaLogFileCreateAttributesT SaLogFileCreateAttributesT_2
AIS Specification SAI-AIS-LOG-A.02.01 Section 1.3.3 11

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
1.3.4 Changes in Return Values of API Functions:

1.3.5 Removed Topics

SA Forum revisited its alarm issuance directives for this release and modified the
conditions that determine when an alarm would be produced. As a consequence, AIS
services shall only generate alarms for situations that require an explicit intervention
by an external agent or operator, provided that the corrective measures to be taken
are well defined. Based on these directives, the alarms generated so far by the AIS
services have been revised, and it was decided to remove the "service impaired”
alarm from the Log Service A.02.01 version.

SA Forum does not mandate that Log Service implementations which also support
the A.01.01 version must generate the "service impaired” alarm for the A.01.01 ver-
sion.

The "service impaired” alarm has also been removed from the Log Service MIB for
the Log Service A.02.01 version.

1.3.6 Other Changes
• Sections 3.1.2.1, 3.1.6, and 3.1.6.3 have changed as the SaLogStreamConfig

class attributes are now writable.

Table 2 Changes in Return Values of API Functions

API Function Return Value Change Type

All API functions except
saLogFinalize() and
SaLogFilterSetCallbackT

SA_AIS_ERR_UNAVAILABLE new

SaLogStreamOpenCallbackT SA_AIS_ERR_VERSION new

SaLogStreamOpenCallbackT,
saLogWriteLog(),
saLogWriteLogAsync(), and
SaLogWriteLogCallbackT

SA_AIS_ERR_NO_RESOURCES extended

SaLogStreamOpenCallbackT SA_AIS_ERR_INVALID_PARAM extended

SaLogStreamOpenCallbackT and
SaLogWriteLogCallbackT

SA_AIS_ERR_BAD_HANDLE
SA_AIS_ERR_INVALID_PARAM

new

SaLogStreamOpenCallbackT SA_AIS_ERR_EXIST clarified

SA_LOG_ADMIN_CHANGE_FILTER
administrative operation function

SA_AIS_ERR_BAD_OPERATION removed
12 SAI-AIS-LOG-A.02.01 Section 1.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The name of the token @Na<fs> for notificationObject, which is shown in a row
of the table Log Record Format Tokens in Section 3.1.5.1 on page 30, has
changed to @No<fs>. As a consequence, the default log record format expres-
sion for the application and system log streams shown in Section 3.1.5.3 has
changed.

• The definition of the log file path in Section 3.1.6.1 and Section 3.4.6.2 has
changed.

• The last attribute in the list contained in Section 3.1.6.1 is new.
• The notificationId field in Section 3.4.5.2 must be set to

SA_NTF_IDENTIFIER_UNUSED if no identifier is provided. In the previous ver-
sion may was used instead of must.

• The SA_LOG_ADMIN_CHANGE_FILTER administrative operation was removed
from the SaLogStreamConfig class (see Section 4.2), as this was a mistake. As
a consequence, Section 5.4.1 now states explicitly that this operation applies to
the SaLogStream runtime UML class and application log streams so repre-
sented.

• Section 6.2.1.1 explains under which conditions the capacity alarm is issued. The
additional text field has changed.

• Section 6.2.2 has changed because now the Log Service object change notifica-
tions only apply to application log streams.

1.4 References
The following documents contain information that is relevant to this specification.

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.03.01

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.02.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.01.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.03.01

[5] Service AvailabilityTM Forum, SA Forum Information Model in XML Metadata
Interchange (XMI) v2.1 format, SAI-XMI-A.02.01

[6] Service AvailabilityTM Forum, Application Interface Specification, Availability
Management Framework, SAI-AIS-AMF-B.02.01

[7] Service AvailabilityTM Forum, Hardware Platform Interface, SAI-HPI-B.02.01
AIS Specification SAI-AIS-LOG-A.02.01 Section 1.4 13

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
[8] CCITT Recommendation X.730 | ISO/IEC 10164-1, Object Management Func-
tion

[9] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
[10] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[11] CCITT Recommendation X.735 | ISO/IEC 10164-5, Log Control Function
[12] CCITT Recommendation X.736 | ISO/IEC 10164-7, Security Alarm Reporting

Function
[13] IETF RFC 3164, The BSD Syslog Protocol

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the Forum’s website
http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
14 SAI-AIS-LOG-A.02.01 Section 1.5 AIS Specification

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-LOG-A.02.01 Section 1.7.2 15

http://www.saforum.org

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
16 SAI-AIS-LOG-A.02.01 Section 1.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Log Service within the Application Interface Specifica-
tion (AIS).

2.1 Log Service
SA Forum specifications distinguish between log and trace services. This specifica-
tion does not support trace services. The distinction can be characterized as follows:

Logging information is a high-level cluster-significant, function-based (as opposed to
implementation-particular) information suited primarily for network or system adminis-
trators, or automated tools to review current and historical logged information to trou-
ble shoot issues such as misconfigurations, network disconnects and unavailable
resources.

Tracing information, on the other hand, is low level product and implementation-par-
ticular information suited primarily for developers or field engineers, often engaged in
debugging implementation specifics such as timing, algorithms, and distributed appli-
cations. An SA Forum Trace Service is on the roadmap, but is not yet defined.

An SA Forum compliant ecosystem assumes the AIS Log Service, or some function-
ally equivalent service is available for use by applications as well as other AIS ser-
vices.

Some SA Forum services, such as the Notification Service (abbreviated as NTF, see
[2]), explicitly expect a log service, such as the SA Forum Log Service, to be avail-
able.

SA Forum Hardware Platform Interface (HPI, see [7]) logging is not integrated with
the SA Forum Log Service in this version of the document. This is left for future study
with the intent of integrating these two in a subsequent version of this document.
AIS Specification SAI-AIS-LOG-A.02.01 Section 2 17

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
The following diagram identifies the main abstractions of the SA Forum Log Service.

FIGURE 1 Log Service Entities

Within the SA Forum Log Service boundary, there are objects internal to the Log Ser-
vice. They are:

• log stream - A log stream is a conceptual flow of log records. There are four dis-
tinct log stream types (alarm, notification, system, and application), which are
explained in the next Section 2.2 and then more extensively in Section 3.1.2.

• log record - A log record is an ordered set of information logged by some process
(see Section 3.1.3).

All grayed objects at the SA Forum Log Service boundary are public interfaces and
are formally defined in this document. Briefly, these public interfaces are:

• Logger API - The logger API is a linkable library used by processes that wish to
send a log record on a particular log stream (see Section 3.6).

• Log File Configuration File - At an output destination of a particular log stream,
there is a publicly readable ‘log file configuration file’ (see Section 3.1.6.2), which
explains the log file (or files) properties associated with that log stream, such as

Alarm
 Log [1]

Drag the side
handles to

change the width
of the text block.

Logger API
Logger AP

I
Logger A

PI

IMM OI
API

Notification
 Log File

Configuration
File[1]

System
 Log [1]

Per application
 Log [0..*]

Notification
 Log [1]

System
 Log File

Configuration
File[1]

Alarm
 Log File

Configuration
File [1]

Per application
 Log File

Configuration
File[0..*]

N
TF

App2
A

pp1

Application
log stream [0..*]

System
log stream [1]

Notification
log stream [1]

Alarm
log stream [1]

Log Viewer
A) read log file
configuration

B) read log file

AIS Log Service

A
B

18 SAI-AIS-LOG-A.02.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
how the log record data is formatted for the associated log file or files (see Sec-
tion 3.1.5).

• IMM Object Implementer API - This is the Information Management Model Ser-
vice (IMM, see [3]) Object Manager interface. It is not intended for consumers of
the Log Service. Rather, it provides access to the Log Service objects as well as
administrative operations associated with those objects. Clients of this interface
would typically be system management applications such as SNMP agents.

The diagram also shows a 3rd party ‘Log Viewer’ that (A) first reads the log file config-
uration file, which allows the viewer to (B) read and understand how the log records
are formatted in the associated log file or files (see Section 3.4.6.1). Such ‘viewer’ or
‘reader’ functionality is outside the scope of the SA Forum Log Service.

2.2 Log Streams
The Log Service enables applications to express and forward log records through
well-known log streams that lead to particular output destinations such as a named
file. A log record format expression explains how the fields of each log record shall be
displayed at an output destination.

Four types of log streams are supported by the Log Service:

• The alarm log stream is for ITU X.733 and ITU X.736 based log records.
• The notification log stream is for ITU X.730 and ITU X.731 based log records.
• The system log stream is for system relevant log records.
• Application log streams are for application-specific log records.

There is exactly one log stream for each of the alarm, notification, and system log
stream types in an SA Forum cluster. However, there can be any number of applica-
tion log streams. The SA Forum Notification Service (NTF, see [2]) is envisioned as
the principal user of the alarm and notification log streams, though other users are
possible.

The SA Forum Log Service may define new log streams or augment existing streams
with new log record types in some future revision of this specification.

2.3 Log Stream Handlers
The SA Forum Log Service also has the concept of log stream handlers, which is
not specified in this release of the document but will be specified in a future release.
AIS Specification SAI-AIS-LOG-A.02.01 Section 2.2 19

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
Roughly, a log stream handler will allow an administrator to copy or redirect ‘matched’
log records traveling through a particular log stream to a distinct output destination
such as a log file, terminal, or another program. Matched log records will then be sub-
ject to a log record format expression that is associated with that log stream handler.
Administrators will be able to configure any number of log stream handlers to a log
stream.
20 SAI-AIS-LOG-A.02.01 Section 2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3 SA Log Service API

3.1 Log Service Model

3.1.1 Logger

A logger is a client of the Log Service that uses the saLogWriteLog() function to intro-
duce a log record into a specific log stream (see Section 3.1.2). A logger gains
access to a log stream by invoking saLogStreamOpen_2() or
saLogStreamOpenAsync_2() and can terminate its relationship with a log stream by
invoking saLogStreamClose().

3.1.2 Log Stream

A log stream is a conceptual flow of log records. Each log stream has a name that is
unique in the cluster. Each log stream leads to an output destination log file or files
(see Section 3.4.6.1). Four distinct types of log streams are supported by the Log
Service:

1. Alarm log stream: the SA Forum Notification Service (abbreviated to NTF, see
[2]) is presumed a client of this Log Service, though this is not mandated. NTF
logs alarm information according to the ITU documents alarm reporting (X.733,
see [10]) and security alarm reporting (X.736, see [12]). Within a cluster, there is
a single, well-known alarm log stream named ’safLgStr=saLogAlarm’, which
leads to an output destination file that only contains these alarm log records.

2. Notification log stream: the SA Forum Notification Service (NTF, see [2]) is pre-
sumed a client of this Log Service, though this is not mandated. NTF optionally
logs notification information according to the ITU documents object management
(X.730, see [8]) and state management (X.731, see [9]). Within a cluster, there is
a single, well-known notification log stream named ‘safLgStr=saLogNotification’,
which leads to an output destination file that only contains these notification log
records.

3. System log stream: the system log stream is used by applications to record
noteworthy system circumstances, particularly those that affect service. This log
can also be used by AIS services as well as the Availability Management Frame-
work to log cluster-wide significant events. The data on this stream is less formal
than alarm or notification log streams. Within a cluster, there is a single, well-
known system log stream named ‘safLgStr=saLogSystem’, which leads to an
output destination file that only contains these system log records.

4. Application log stream: an application log stream can be created and used by
an application that wants certain log records isolated from the system log. Each
application can create its own application log stream or open an existing applica-
AIS Specification SAI-AIS-LOG-A.02.01 Section 3 21

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
tion log stream by invoking saLogStreamOpen_2() or
saLogStreamOpenAsync_2(). Any number of application log streams can exist in
a cluster at one time, and they can dynamically come and go.

Log records on one stream do not mingle with log records on any of the other log
streams.

The transport requirements for these log streams are guaranteed and in-order deliv-
ery from any given logger source to its final output destination.

3.1.2.1 Alarm, Notification, and System Log Streams

The alarm, notification, and system log streams are distinct, well-known cluster-wide
log streams that can neither be created nor destroyed. Each of these three log
streams leads to a stream-specific, mandatory system-defined log file or files (see
Section 3.4.6.1) and also has an associated log file configuration file (see Section
3.1.6.2).

Log file configuration attributes can be configured by administrative means very early
in the lifetime of the cluster or at runtime by using the IMM interface (see [3]). If no
configuration is provided, an implementation-specific default configuration shall be
applied to these log streams.

The alarm, notification, and system log streams are made active when the Log Ser-
vice successfully initializes and is available for service.

3.1.2.2 Application Log Stream

Application loggers can create private application log streams at runtime by invoking
saLogStreamOpen_2() or saLogStreamOpenAsync_2(). The application logger must
specify both a file (Section 3.1.6) and format (Section 3.1.5) configuration. This con-
figuration applies to all log records placed on that log stream by way of
saLogWriteLog(). Any number of application loggers can join an existing application
log stream by invoking saLogStreamOpen_2() or saLogStreamOpenAsync_2() and
by specifying the same log stream and either

• by specifying no other create properties (since the log stream and its properties
already exist), or

• by specifying exactly the same create properties of the already existing log
stream. If create properties are specified, but do not match, it is an error.

Any number of private application log streams can exist in a cluster at any given time,
each one identified by a cluster-wide unique name. The same application can also
have more than one application log stream open at the same time.
22 SAI-AIS-LOG-A.02.01 Section 3.1.2.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
An application log stream is destroyed when all application loggers using that stream
close it by invoking the saLogStreamClose() function. The output destination log file
or files (see Section 3.4.6.1) and log file configuration file (see Section 3.1.6.2) asso-
ciated with the destroyed log stream are closed and persist indefinitely.

If another application log stream is created by invoking saLogStreamOpen_2() or
saLogStreamOpenAsync_2() and specifying the same log stream name and
saLogFilePathName as a previously destroyed log stream, and other
saLogStreamCreateAttributeT values are either the same or different, the Log Ser-
vice (and log readers) can distinguish this new log stream from any predecessors by
inspecting the log file name changes that have been automatically applied by the Log
Service to all completed log files (see Section 3.1.6.2 and Section 3.1.6.3).

3.1.3 Log Record Properties

Log records travel through a log stream toward an output destination. The Log Ser-
vice is not required to interleave log records on a log stream based on log record’s
logTimeStamp (time at which the log is produced). Rather, log records can be inter-
leaved on a log stream on a first-to-arrive basis.

In fact, the Log Service makes no internal decisions based on logTimeStamp values.
The Log Service places no firm requirements regarding clock synchronization in a
distributed system.

3.1.4 Log Filtering

Log filtering means that only matched log records are allowed entry onto a log
stream; all others are discarded. A log filter criterion can only be accessed and con-
figured by administrative means.

Log filtering applies to application and system log records only. Log filtering of alarm
or notification log records is not supported since the SA Forum log philosophy is that
all published alarms and notifications must be logged. Note that the SA Forum Notifi-
cation Service (see [2]) has a concept of non-alarm filtering, but this would happen
prior to and outside the scope of Log Service awareness.

A log filter criterion is based on the severity value (see Section 3.4.2.2 on page 42) of
a system or application log record.

Other filter criteria can be imagined and may be introduced in future revisions of this
document. For example, a filter criterion may qualify that particular nodes, applica-
tions, or service units (see [6]) shall be allowed to log. Such imagined criteria would
be considered in conjunction with the existing severity filter criteria.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.3 23

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Log filtering behavior is experienced by a logger as follows:

• The (*saLogFilterSetCallbackT)() function informs a logger about its current filter
criteria. This allows a logger to avoid the overhead of packaging and invoking
the saLogWriteLog() function for those log records that the Log Service will dis-
card anyway.

• The Log Service itself also reviews introduced log records against the current fil-
ter criteria and discards any that do not match. This is done, regardless of
whether a logger provided an SaLogFilterSetCallbackT function pointer at
saLogInitialize() time or did not.

3.1.5 Log Record Output Format

Log record output formatting rules consist of a well-known set of log record format
tokens that can be ordered into well-formed log record format expressions which
govern the output properties of each log record at an output destination. All output is
represented using the US-ASCII character set.

Each format token maps to a specific field or subfield in a log record. A format token
also implies a specific output display. A format expression is a sequence of these for-
mat tokens which, as a whole, describes the presence, order, and format of how log
record fields are to be displayed.

Log record format expression rules must be formally described since such expres-
sions serve as a public interface of the Log Service. Precise syntax ensures that third
party tools can read and manipulate Log Service output such as log files, since such
log file ‘reader’ tools are outside the scope of this Log Service.

The Log Service provides a means to configure a format expression at each output
destination. A default format expression is applied if no format expression is config-
ured, or a configured format expression is illegal (not well-formed). Once an output
destination is made operational, the associated format expression cannot change for
the lifetime of that output destination. This guarantees that all log records delivered to
a particular output destination are formatted the same way.

3.1.5.1 Format Tokens

This specification defines a set of simple format tokens that are used to both identify
fields or subfields of a log record and to express the desired output form of that field.

Each token type either implicitly or explicitly identifies the number of character spaces
associated with that token’s output. The cumulative effect is that each field in a log
record can be placed at fixed offsets so that all output records at the same output
24 SAI-AIS-LOG-A.02.01 Section 3.1.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
destination are formatted identically. This allows a log reader to easily calculate off-
sets into specific log records within a log file.

The formal representation of a format token is:

<@><C|S|N><letter><field-size>

which breaks down to these parts:

<@ >All token sequences start with the ‘at’ symbol

<C|S|N> The next character indicates if it is:

• C = a common log record field, or
• S = a system or application log record field, or
• N = a notification or alarm field

<letter> A distinct character that maps to a specific field or subfield of a log record.

<field-size> Most token types imply a fixed output field size and cannot be followed by
this field size qualifier. However, some token types optionally allow its output field size
to be specified.

• If allowed and specified by the user, the output will occupy exactly <field-size>
spaces either by adding blanks or truncating a long string.

• If not specified but allowed, the output will use exactly the number of spaces it
takes to express the value. This results in variable field offsets from log record to
log record at the same output destination.

An example token is:

@Sl30

This token is a system or application (S) token for the logSvcUsrName field (the letter
’l’). It will occupy exactly 30 spaces.

The table below shows the complete set of format tokens available for constructing
format expressions. These tokens track to specific fields or subfields of the
SaLogRecordT data type (see Section 3.4.5.5).

• The left column shows each token type syntax supported by the Log Service. The
token types that end with <fs> can optionally be configured with a numeric
<field-size> value.

• The center column describes format rules and semantics.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.5.1 25

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• The right column is an arbitrary example of legal output (‘.’ is used here to make
clear the number spaces that would otherwise appear as blanks. The ‘.’ is not a
Log Service output requirement).

Table 3 Log Record Format Tokens

Token
Type Description Example Output Format

@Cr A 10-digit log record Identifier that the Log
Service generates internally. This unsigned
32-bit numeric assignment starts at 1 and
increments by 1 as log records arrive at the
particular output destination (see Section
3.1.6.5).

‘.......345’

@Ct 18-character hexadecimal representation of
time from logTimeStamp of type SaTimeT in
the SaLogRecordT structure (see Section
3.4.5.5). This time is when a log record was
actually logged.

0x0006670634553455

@Ch 2-digit hour of the day from logTimeStamp of
type SaTimeT. If the common token type
@Ca (for am/pm output) is in a format
expression, the output is formatted for a 12-
hour clock; otherwise, the output is formatted
for a 24-hour clock.

04

@Cn 2-digit minute of the hour from logTimeStamp
of type SaTimeT.

45

@Cs 2-digit second of the minute from
logTimeStamp of type SaTimeT.

08

@Ca am/pm according to a 12-hour clock, from
logTimeStamp of type SaTimeT. See token
type @Ch.

am

@Cm 2-digit month from logTimeStamp of type
SaTimeT.

10
26 SAI-AIS-LOG-A.02.01 Section 3.1.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
@CM The first three letters (the first one capital-
ized) of the implied month in English from
logTimeStamp of type SaTimeT.

Oct

@Cd The first three letters (the first one capital-
ized) of the implied day of the week in
English from logTimeStamp of type SaTimeT.

Mon

@Cy The last two digits of the implied year (since
year 2000) from logTimeStamp of type
SaTimeT.

05

@CY The four digits of the implied year from
logTimeStamp of type SaTimeT.

2005

@Cc 29-spaced notification class identifier from
notificationClassId of type saNtfClassIdT
(see [2]). The vendorid, majorId, and minorId
values are expressed as hexadecimal. Notice
that the ‘NCI’ prefix, brackets, and commas
are implicit features of this output formatting.

NCI[0x000346f1,0x0034,0
x012a]

@Cx A single character that indicates if this log
record’s output has been truncated to remain
within its configured fixed log record size (see
Section 3.1.6.2). The output values are:

• ‘T’ means truncated.
• ‘C’ means complete.

T

@Cb<fs> If this token is used, the body of the log
record from logBuffer of type saLogBufferT is
assumed a printable string (see Section
3.4.2.3). If a \0 is found prior to the <fs>
length, blank characters will be applied for
the remaining characters up to <fs>. This
token can be used in format expressions
associated with any log stream type. This
token can only be used in a format expres-
sion associated with an application log
streams.

“port access denied…”
where <fs>=20

Table 3 Log Record Format Tokens (Continued)

Token
Type Description Example Output Format
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.5.1 27

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
@Ci<fs> If this token is used, the body of the log
record from logBuffer of type saLogBufferT is
output as hexadecimal characters (see Sec-
tion 3.4.2.3). If the logBufSize is less than
<fs>, blank characters will be applied for the
remaining characters up to <fs>.

“706f727420616363657373
2064656e6965642020”
where <fs>=40; (ascii=
“port access denied ”)

@Sl<fs> Logger name from logSvcUsrName of type
saNameT (see Section 3.4.5.3).

‘safSu=xx,safSg=yy,safA
pp=zz...’
where <fs>=30

@Sv 2-character severity identifier that maps to
one of the SA_LOG_SEV_ severity values
(see Section 3.4.2.2). The identifiers are:

• EM for EMERGENCY
• AL for ALARM
• CR for CRITICAL
• ER for ERROR
• WA for WARNING
• NO for NOTIFICATION
• IN for INFO

CR

@Ni 18-character hexadecimal representation of
notification id of type saNtfIdentifierT (see
[2]), a field in the SaLogNtfLogHeaderT struc-
ture (see Section 3.4.5.2).

0x0000000000000043

@Nt 18-character hexadecimal representation of
time from eventTime of type SaTimeT, a field
in the SaLogNtfLogHeaderT structure (see
Section 3.4.5.2). Notice that this time is when
an alarm or notifications occurred, which is
distinct from the time when a log record is
logged (see @Ct).

0x0006670634553455

Table 3 Log Record Format Tokens (Continued)

Token
Type Description Example Output Format
28 SAI-AIS-LOG-A.02.01 Section 3.1.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
@Nh 2-digit hour of the day from eventTime of type
SaTimeT. If the common token type @Na (for
am/pm output) is in a format expression, the
output is formatted for a 12-hour clock; other-
wise, the output is formatted for a 24- hour
clock.

04

@Nn 2-digit minute of the hour from eventTime of
type SaTimeT.

05

@Ns 2-digit second of the minute from eventTime
of type SaTimeT.

47

@Na am/pm according to a 12-hour clock, from
eventTime of type SaTimeT. See token type
@Nh.

pm

@Nm 2-digit month from eventTime of type
SaTimeT.

04

@NM The first three letters (the first one capital-
ized) of the implied month in English from
eventTime of type SaTimeT.

Jan

@Nd The first three letters (the first one capital-
ized) of the implied day of the week in
English from eventTime of type SaTimeT.

Fri

@Ny The last two digits of the implied year (since
year 2000) from eventTime of type SaTimeT.

11

@NY The four digits of the implied year from
eventTime of type SaTimeT.

2011

Table 3 Log Record Format Tokens (Continued)

Token
Type Description Example Output Format
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.5.1 29

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
There are distinct but parallel time-related tokens for both common (C) and alarm and
notification (N) record fields, because the time when an alarm or notification is pub-
lished and the time when that alarm or notification is logged are different times.

Also notice that all output is printable text, so that some amount of human inspection
of log record output is possible without the aid of a log reader program.

3.1.5.2 Format Expressions

These format token types are sequenced to form log record format expressions that
are subject to these rules.

1. It is an error to use a particular token type in a format expression that is incom-
patible with the log stream that the expression is associated with. This means:

• Only @C and @S tokens can be used in a format expression that is associ-
ated with an application or system log stream.

• Only @C and @N tokens can be used in a format expression that is associ-
ated with a notification or alarm log stream.

• The @Ci token can only be used in a format expression that is associated
with an application log stream, that is, it may not be used in a format expres-
sion associated with the three persistent log streams, notification, alarm,
and system.

2. If a <field-size> is allowed and expressed for a particular token type:

@Ne<fs> <field-size> hexadecimal expression for
event type from type saNtfEventTypeT (see
[2]), a field in the SaLogNtfLogHeaderT struc-
ture (see Section 3.4.5.2). The hex expres-
sion makes it easier for a human reader to
identify the previously ORed parts of it.

‘0x3002’
where <fs>=6 (which corre-
sponds to
SA_NTF_ATTRIBUTE_REMOVED).

@No<fs> notificationObject of type SaNameT, a field in
the SaLogNtfLogHeaderT structure (see Sec-
tion 3.4.5.2).

‘safSu=xx,safSg=yy,safA
pp=zz........’
where <fs>=35

@Ng<fs> notifyingObject of type SaNameT, a field in
the SaLogNtfLogHeaderT structure (see Sec-
tion 3.4.5.2).

‘safSu=xx,safSg=yy,safA
pp=zz........’
where <fs>=35

Table 3 Log Record Format Tokens (Continued)

Token
Type Description Example Output Format
30 SAI-AIS-LOG-A.02.01 Section 3.1.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• All character output is left-aligned within its <field-size>. If the output is too
large, the tail of the character output is truncated.

• All digit or hex output is right-aligned within its <field-size>. If the output is
too large, the most significant digits or hex positions are truncated.

3. It is an error to reference the same token type more than once per format expres-
sion.

4. Literal characters placed in a format expression are output as is, in place (see
Section 3.1.5.3). The exception is the @ character, which is reserved. It cannot
be used as a literal. No escape sequence is defined.

5. For token types that format the identified field to a printable string (such as @Cb),
any non-printable characters are output as underbar (“_”). Some other substitute
character may be defined as an implementation option.

The Log Service shall also place termination character(s) at the final character posi-
tion(s) of each output log record. The actual character or characters used are imple-
mentation-specific, but the intention is to match ‘carriage return line feed’ semantics
(different operating systems have their preferences). These characters are included
in the fixed size total of each log record (see Section 3.1.6.2).

3.1.5.3 Default Format Expressions

If a log record format expression is not explicitly configured at an output destination,
the Log Service will use a default format expression.

The default log record format expression for the application and system log streams
are:

@Cr @Ch:@Cn:@Cs @Cm/@Cd/@CY @Sv @Sl “@Cb”

This produces a formatted output like:

........33 04:35:45 05/22/2005 3 safSu=xx,safSg=yy,safApp=zz
“port access denied”

Notice in the example that the literal characters [:, ,/,”] placed in the format
expression appear in the formatted output in the corresponding places. Also notice
that the token types for logSvcUsrName (@Sl) and logBuffer (@Cb) fields are not
qualified by a <field-size> value, so the field sizes for those tokens will be different for
each log record in the log file.

The default log record format expression for the notification and alarm log streams
are:
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.5.3 31

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
@Cr @Ct @Nt @Ne5 @No30 @Ng30 “@Cb”

This produces a formatted output like:

...4563419 0x0006670634553455 0x0006670634553455 ...76
safSu=xx,safSg=yy,safApp=zz...safSu=xx,safSg=yy,safApp=zz... “port
access denied”

3.1.6 Log File Properties

Each alarm, notification, or system log stream leads to its respective output files,
where either a supplied log file configuration or a default log file configuration is
applied. For these three cases, a configuration can be supplied by using the IMM ser-
vice interface (see [3]) available very early in the lifetime of the Log Service and can
also be changed at runtime. If a log file configuration is not supplied, the Log Service
shall use a default configuration. If a file configuration is supplied, but has errors, the
Log Service shall use a default configuration.

The actual values of a default configuration are implementation-specific as long as
the default profile is legal, as outlined in Section 3.1.6.2.

For an application log stream, however, log file properties are configured by the log-
ger when it creates a new application log stream by invoking the saLogOpenStream()
function. In this case, the configuration supplied must be correct for the stream to be
created (see Section 3.6.1). There is no concept of a default set of log file properties.

From an external point of view, log stream log file properties can be learned in one of
two ways:

• by way of IMM (see [3]), where current application log stream properties are
identified in runtime and configuration objects, or

• by subscribing to the 'log stream created’ object change notification (see Section
6.2.2), which contains the data points necessary to know the name and location
of the <filename>.cfg file (see Section 3.1.6.2), which explains the pertinent con-
figuration information necessary to ‘read’ the corresponding log file.

Once an output destination of an application log stream is made operational, the
associated file configuration cannot change for the life of that output destination.
However, the alarm, notification, and system output destination configurations can be
changed at any time during the life of these log streams (see Section 3.1.6.5).

3.1.6.1 Log File Configurable Attributes

The log file configurable attributes are:
32 SAI-AIS-LOG-A.02.01 Section 3.1.6 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• log file path: this standard relative POSIX pathname specifies the subdirectory
(relative to an implementation defined root directory) into which the log file (or
files) shall be placed. For each of the notification, alarm, and system log
streams, this pathname value cannot be changed (reconfigured). This means all
log files created by each of these three log streams shall be located at a known
place. The value of the saLogStreamPathName attribute for each of the notifica-
tion, alarm, and system SaLogStreamConfig classes explains this location.

• log file name: this name is used to create (at least) two files.
• <filename>.cfg, which contains the format expression and key configuration

information associated with the log output files, and
• <filename>_<createtime>.log, which houses the logging information so for-

matted starting at <createtime> time.
• maximum log file size: this attribute specifies the maximum size in bytes to

which a log file may grow. Zero means there is no predefined limit. Internally, the
Log Service is aware of the current log file size (in bytes) so that it is aware
when this maximum log file size is reached.

• fixed log record size: it indicates the fixed log record size in bytes (after the for-
matting rules have been applied) that can be written to this file. Log record out-
put smaller than this size are padded with blank characters. Log record output
larger than this size is truncated at the fixed log record size. This size includes
Log Service termination characters, as described in Section 3.1.5.2.

• high availability flag: this attribute indicates whether the log file must always be
available and implies file replication and persistency. The implementation can
achieve replication in any desired fashion (replication, RAID storage, NAS/SAN,
etc.) so long as it is accessible from the same pathname from any node in the
cluster. Persistency means that the log file must exist across cluster reboots
(that is, all nodes go down, then come back, such that for some period of time
there is no cluster). High availability is always TRUE for the alarm and notifica-
tion log files.

• log file full action: this action specifies the desired Log Service behavior when
the maximum log size of a file is reached. The options are:
• wrap – Once the maximum log file size has been reached, the oldest log

records are deleted as needed to allow for new log records to be added.
• halt – The log is full. No more log records are allowed in this file. For this

action, the saLogStreamLogFullHaltThreshold attribute in each of the
SaLogStreamConfig class instances (for alarm, notification, and system log
streams) can be configured to a percent-full threshold value or left alone to
assume its default value. Configuration of this threshold value for Application
Log Streams is left as an implementation matter. A 'capacity alarm' notification
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.6.1 33

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
(see Section 6.2.1.1) shall be generated by the Log Service for both of the two
different cases:
• when the log file size is greater than the saLogStreamLogFullHaltThreshold

value and
• when the log file is now full. No more log records are allowed in this file

• rotation – When the current log file is full, a new log file is created (with
<createtime>) to which future log records are now written. For this action, the
following attribute must also be configured.
• max number of files: it specifies the maximum number of files allowed in

the rotation. If the maximum number is reached, the oldest file is removed,
and another file is then created.

• log file format: explains the log record format expression (see Section 3.1.5.2)
that shall be applied to format log records before they are written to the output
destination file.

3.1.6.2 Log File Configuration File

When an output destination is specified with a log <filename>, several files are cre-
ated, and certain naming conventions are expected.

<filename>.cfg - The Log Service creates this log file configuration file prior to the log
stream becoming operational. This file contains the following key log file properties:

• The version of the Log Service that generated this file.
• The log record format expression applied to the output (see Section 3.1.5.2).
• The maximum log file size configured.
• The fixed size of each log record in the file.
• Log file full action.

The syntax of how these values appear in the <filename>.cfg must be formally
described as it is a public interface of the Log Service. This specification allows any
SA Forum standards based log file reader to parse the content and understand how
to read the corresponding log files. The following BNF explains this syntax:
34 SAI-AIS-LOG-A.02.01 Section 3.1.6.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
LogFileCfg : <LogVerExp> <FmatExp> <CfgExp>
LogVerExp : LOG_SVC_VERSION: <Version>
FmatExp : FORMAT: <LogRecFmatExp>
CfgExp : MAX_FILE_SIZE: <number>
 FIXED_LOG_REC_SIZE: <number>
 LOG_FULL_ACTION: <Action>
Action : WRAP

| HALT
| ROTATE <NumFilesToRotate>

Version : <ReleaseCode>.<MajorVers>.<MinorVers>
ReleaseCode : <character>
MajorVers : <number>
MinorVers : <number>
NumFilesToRotate : <number>
LogRecFmatExp : <see Section 3.1.5>
number : [0…9]+

An example of a legal <filename>.cfg file is:

LOG_SVC_VERSION: B.2.1
FORMAT:@Cr @Ch:@Cn:@Cs @Cm/@Cd/@CY @Sv @Sl “@Cb”
MAX_FILE_SIZE: 8000000
FIXED_LOG_REC_SIZE: 100
LOG_FULL_ACTION: ROTATE 4

This particular example <filename>.cfg file uses the default system and application
log record format expression, which is described in Section 3.1.5.3.

When all the log file or files associated with this output destination are closed, and the
last log file is closed (for reasons for closure, see Section 3.1.6.3), the Log Service
changes the configuration file name to:

<filename>_<closetime>.cfg

so that a log reader can know that this configuration file is no longer active and that
the configuration specified is associated with one or more log files with the same
<filename> prefix and qualifying <closetime> suffix.

3.1.6.3 Log File Naming Rules

The content of a log file (or files) conforms to the configuration expressed in the
<filename>.cfg file.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.6.3 35

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Two notable moments exist in the lifetime of a log file (or files) and correspond to a
name change of the log file.

1. When a log file is created or is in use, the log file has the file name:

<filename>_<createtime>.log

2. When a log file is closed, the log file has the file name:

<filename>_<createtime>_<closetime>.log

A log file can close for one of these reasons:

• An application log stream is closed by its last user.
• The last application log stream user exits (which is an implicit log stream close).
• A log file has reached maximum capacity and a log file full action (see Section

3.4.6.1) is undertaken, specifically HALT
(SA_LOG_FILE_FULL_ACTION_HALT) or ROTATE
(SA_LOG_FILE_FULL_ACTION_ROTATE).

• The configuration of the alarm, notification, or system output destination has
been changed (see Section 3.1.6.5).

A closed log file does not imply a closed log stream. First, the constant log streams
(notification, alarm, and system) are always available. Second, in future versions of
this specification, several independent output destinations may be associated with
the same log stream, as suggested by the log stream handler concept (see Section
2.3).

The log file naming rules for the various log full actions is now considered.

If an application log stream is closed, or if the log file full action is either ROTATE or
HALT, and the log file has reached the size given by MAX_FILE_SIZE, the file is
given its file closed name.

In the case of ROTATE, a new file is created with a <createtime> that is the same as
the <closetime> of the just-finished log file. This makes the ordered creation of these
files simple to identify.

In the case of WRAP (SA_LOG_FILE_FULL_ACTION_WRAP), there is only ever a
single file that is never finished, and so its name is never augmented with a
<closetime>. The exception is when this file is associated with an application log
stream and the log stream is closed or when this file is associated with the alarm,
36 SAI-AIS-LOG-A.02.01 Section 3.1.6.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
notification, or system log stream and the configuration of the file has changed (see
Section 3.1.6.5).

The format of <createtime> and <closetime> is:

yyyymmdd__hhmmss

This order allows for easy lexicographical sorting by date and time of any group of
files.

Thus, a completed ROTATE log file might read:

myLogFile_20050712_102316__20050713_030854.log

3.1.6.4 Configuring the Alarm, Notification, and System Output Destination Files

The configuration of the alarm, notification, and system output destination files can be
changed while the system is running, as reflected by the writable attributes of the
SaLogStreamConfig configuration object class (see Section 4.2). However, the con-
sequences of making such configuration changes causes the values in the corre-
sponding <filename>.cfg file (see Section 3.1.6.2) to be stale, as this .cfg file no
longer reflects the configuration the Log Service is using to format and write log
records to the associated output destination log file.

To handle this configuration change, the Log Service shall behave as follows:

• Close the log file for the affected alarm, notification, or system Log Stream and
apply the proper log file naming rules for a closed log file (see Section 3.1.6.3).

• Change the name of the corresponding <filename>.cfg file (see Section 3.1.6.2)
which maintains the association between the now closed .log and this .cfg file.

• Create a new alarm, notification, or system log file and apply the proper log file
naming rules (see Section 3.1.6.3).

• Create the associated <filename>.cfg file. The content of this file reflects the new
output destination file configuration currently used by the Log Service for this log
stream's output destination file.

This sequence shall be treated as atomic. That is, log records in and around this con-
figuration change must be properly placed in the old or new .log file according to
which configuration applies at the time the log record was formatted and written.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.1.6.4 37

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.1.6.5 Log File Behavior

A log record must be completely written to the log file before a reader is granted read
access to that log record. A file reader cannot be blocked from accessing a file to
which is currently being written.

Log records are written to a file in the order in which they arrive at the output destina-
tion (as opposed to the order of its timestamp). Third party reader tools can use the
timestamp value of each log record if the temporal sequence is desired.

All log records are given an ascending 32-bit record-id value per distinct output desti-
nation (in this case, a log file) that is assigned in the order in which the log record
arrived at the particular output destination.

It is left as an implementation matter as to if, how, or when log files can be deleted,
moved, compacted, archived, or otherwise modified in a running system while the log
stream is active, and how these activities are coordinated with the Log Service. Log
Service operations to cover such cases may be introduced in future revisions of this
document.

3.1.7 Internationalization

Internationalization refers to a means by which the text associated with a log record
is formatted and presented in the preferred language of choice to a human reader.
The SA Forum Notification Service data type saNtfClassIdT (see [2]) provides the
principal data points that allow for a catalog lookup of the substitute values necessary
to achieve a specific language presentation.

Though the Log Service provides the data points to support Internationalization, the
actual method for achieving it is postponed to some future Log Service release.

3.2 Unavailability of the Log Service API on a Non-Member Node
The Log Service does not provide service to processes on cluster nodes that are not
in the cluster membership (see [4]).

The following subsection describes the behavior of the Log Service under various
conditions that cause the Log Service to be unavailable on a node. Section 3.2.2 con-
tains recommendations to Log Service implementers for dealing with a temporary
unavailability of providing service.
38 SAI-AIS-LOG-A.02.01 Section 3.1.6.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.2.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [4]) or is being administra-
tively evicted from the cluster membership, the Log Service behaves as follows
towards processes residing on that node and using or attempting to use the service:

⇒ Calls to saLogInitialize() will fail with SA_AIS_ERR_UNAVAILABLE.
⇒ All Log Service APIs that are invoked by the process and that operate on handles

already acquired by the process will fail with SA_AIS_ERR_UNAVAILABLE with
the following exceptions:
♦ Assuming handle logStreamHandle has already been acquired: the

saLogWriteLogAsync() function may return SA_AIS_OK or
SA_AIS_ERR_UNAVAILABLE, depending on the service implementation. If it
returns SA_AIS_OK, the callback SaLogWriteLogCallbackT will be called and
will also return SA_AIS_ERR_UNAVAILABLE in the error parameter; other-
wise, the callback will not be called.

♦ Assuming handle logHandle has already been acquired:
• The saLogStreamOpenAsync_2() function may return SA_AIS_OK or

SA_AIS_ERR_UNAVAILABLE, depending on the service implementation. If
it returns SA_AIS_OK, the callback SaLogStreamOpenCallbackT will be
called and will also return SA_AIS_ERR_UNAVAILABLE in the error param-
eter; otherwise, the callback will not be called.

• The saLogFinalize() function is used to free the library handles and all
resources associated with these handles.

⇒ Any outstanding callbacks SaLogStreamOpenCallbackT and
SaLogWriteLogCallbackT will return SA_AIS_ERR_UNAVAILABLE in the error
parameter. The callback SaLogFilterSetCallbackT will not be called.

If the node rejoins the cluster membership, processes executing on the node will be
able to reinitialize new library handles and use the entire set of Log Service APIs that
operate on these new handles; however, invocation of APIs that operate on handles
acquired by any process before the node left the membership will continue to fail with
SA_AIS_ERR_UNAVAILABLE (or with the special treatment described above for
asynchronous calls) with the exception of saLogFinalize(), which is used to free the
library handles and all resources associated with these handles. Hence, it is recom-
mended for the processes to finalize the library handles as soon as the processes
detect that the node left the membership.

When the node leaves the membership, the Log Service executing on the remaining
nodes of the cluster behaves as if all processes that were using the Log Service on
the leaving node had been terminated. In particular, if the removal of a log stream is
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.2.1 39

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
pending because one or more processes on the leaving node had the log stream
open, the log stream may be removed now.

3.2.2 Guidelines for Log Service Implementers

The implementation of the Log Service must leverage the SA Forum Cluster Member-
ship Service (see [4]) to determine the membership status of a node for the case
explained in Section 3.2.1 before returning SA_AIS_ERR_UNAVAILABLE. If the
Cluster Membership Service considers a node as a member of the cluster but the Log
Service experiences difficulty in providing service to its clients because of transport,
communication, or other issues, it must respond with SA_AIS_ERR_TRY_AGAIN.

3.3 Include File and Library Names
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Log Service API:

#include <saLog.h>

To use the Log Service API, an application must be bound with the following library:

libSaLog.so

3.4 Type Definitions
The Log Service uses the types described in the following sections.

3.4.1 Handles

3.4.1.1 SaLogHandleT

typedef SaUint64T SaLogHandleT;

This type is used for the handle that is supplied by the Log Service to a process dur-
ing initialization of the Log Service and that is used by the process when it invokes
functions of the Log Service API.

3.4.1.2 SaLogStreamHandleT

typedef SaUint64T SaLogStreamHandleT;

This type is used for the handle associated with a particular log stream.
40 SAI-AIS-LOG-A.02.01 Section 3.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.2 Log Types

3.4.2.1 Log Stream Names

The following log stream name constants map to the three well-known log streams.

#define SA_LOG_STREAM_SYSTEM “safLgStr=saLogSystem"

#define SA_LOG_STREAM_NOTIFICATION “safLgStr=saLogNotification"

#define SA_LOG_STREAM_ALARM “safLgStr=saLogAlarm"

These log stream name constant values have the following interpretation:

• SA_LOG_STREAM_ALARM - This log stream name is used by the SA Forum
Notification Service (see [2]) to open the alarm log stream, which tracks to the
ITU specifications alarm reporting (X.733, see [10]) and security alarm report-
ing (X.736, see [12]). There is one alarm log stream in a cluster.

• SA_LOG_STREAM_NOTIFICATION - This log stream name is used by the
SA Forum Notification Service (see [2]) to open the notification log stream,
which tracks to the ITU specifications object management (X.730, see [8]) and
state management (X.731, see [9]). There is one notification log stream in a
cluster.

• SA_LOG_STREAM_SYSTEM - This log stream name is used by applications
to open the system log stream to log circumstances that are system relevant,
but less formal than alarm or notification logging. These log records are note-
worthy or supplementary to a reasonable view of (historic) circumstances of
the cluster. There is one system log stream in a cluster.

Application log stream names are user-defined and must be cluster-wide unique. As
such, no application log stream constant names are identified in this specification.
Any number of application log streams can coexist in a cluster.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.2 41

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.2.2 SaLogSeverityT and SaLogSeverityFlagsT

The SaLogSeverityT and SaLogSeverityFlagsT types are used to express severity in
the context of applications and system log records and log streams.

#define SA_LOG_SEV_EMERGENCY 0

#define SA_LOG_SEV_ALERT 1

#define SA_LOG_SEV_CRITICAL 2

#define SA_LOG_SEV_ERROR 3

#define SA_LOG_SEV_WARNING 4

#define SA_LOG_SEV_NOTICE 5

#define SA_LOG_SEV_INFO 6

typedef SaUint16T SaLogSeverityT;

#define SA_LOG_SEV_FLAG_EMERGENCY 0x0001

#define SA_LOG_SEV_FLAG_ALERT 0x0002

#define SA_LOG_SEV_FLAG_CRITICAL 0x0004

#define SA_LOG_SEV_FLAG_ERROR 0x0008

#define SA_LOG_SEV_FLAG_WARNING 0x0010

#define SA_LOG_SEV_FLAG_NOTICE 0x0020

#define SA_LOG_SEV_FLAG_INFO 0x0040

typedef SaUint16T SaLogSeverityFlagsT;

The SaLogSeverityT type is used to specify the severity level of a particular system
or application log record (see Section 3.4.5.3) when saLogWriteLog() or
saLogWriteLogAsync() are invoked (see Section 3.6.3).

The SaLogSeverityFlagsT type is a bitmap used in the SaLogFilterSetCallbackT call-
back (see Section 3.6.5). In this case, each SA_LOG_SEV_ value identifies a bit
position in the SaLogSeverityFlagsT bitmap to allow (bit is 1) or disallow (bit is 0) log
records of a particular severity on to the associated system or application log stream.

These severity levels and flags have the following interpretation (see [13]):

• EMERGENCY - the system is unusable
• ALERT - action must be taken immediately
42 SAI-AIS-LOG-A.02.01 Section 3.4.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• CRITICAL - critical conditions
• ERROR - error conditions
• WARNING - warning conditions
• NOTICE - normal but significant condition
• INFO - informational messages

3.4.2.3 SaLogBufferT

typedef struct {

SaSizeT logBufSize;

SaUint8T *logBuf;

} SaLogBufferT;

A data structure of this type contains the body of the log record and is provided when
invoking the saLogWriteLog() or the saLogWriteLogAsync() functions. The Log Ser-
vice does not interpret or parse the contents of the area to which logBuf points,
except as implied by either the @Cb or @Ci format tokens (see Section 3.1.5.1)
when used in a format expression (see Section 3.1.5.2).

3.4.2.4 SaLogAckFlagsT

The SaLogAckFlagsT type is used in the saLogWriteLogAsync() call. A parameter of
the type SaLogAckFlagsT indicates the kind of the required acknowledgment:

#define SA_LOG_RECORD_WRITE_ACK 0x1

typedef SaUint32T SaLogAckFlagsT;

SA_LOG_RECORD_WRITE_ACK - Indicates that the calling logger requires an
acknowledgment to confirm whether the log record could be written to the destination
output log file associated with the log stream. If SA_LOG_RECORD_WRITE_ACK is
not set, the calling logger does not require an acknowledgment.

3.4.2.5 SaLogStreamOpenFlagsT

The following values specify the open attributes used in the saLogStreamOpen_2()
and saLogStreamOpenAsync_2() functions when opening an application log stream.

#define SA_LOG_STREAM_CREATE 0x1

typedef SaUint8T SaLogStreamOpenFlagsT;

A value or parameter of the type SaLogStreamOpenFlagsT is zero or the following
value:
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.2.3 43

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• SA_LOG_STREAM_CREATE - This flag requests the creation of an application
log stream if the identified log stream does not already exist.

3.4.3 Log Service API and Notification Types

The Log Service API interface uses the SA Forum Notification Service (see [2]) data
types SaLogNtfLogHeaderT (see Section 3.4.5.2) and SaLogGenericLogHeaderT
(see Section 3.4.5.3) as part of their definition. To resolve these data types, the
saLog.h file simply includes the SA Forum Notification Service (see [2]) header file,
as follows:

#include <saNtf.h>

3.4.4 Log Service as Notification Producer

The Log Service is also a producer of notifications (see Chapter 5). The values
placed in certain fields within notifications are assigned by the Log Service.

3.4.4.1 SaLogNtfIdentifiersT

The Log Service defines a set of notification identifiers, which are scoped to the Log
Service only.

typedef enum {

SA_LOG_NTF_LOGFILE_PERCENT_FULL= 1 /* used in capacity alarm */

} SaLogNtfIdentifiersT;

3.4.4.2 SaLogNtfAttributesT

The object change notifications allow a list of attributes to be delivered. The Log Ser-
vice notifications that have such a list are:

• log stream create
• log stream destroy

typedef enum {

SA_LOG_NTF_ATTR_LOG_STREAM_NAME = 1,

SA_LOG_NTF_ATTR_LOGFILE_NAME = 2,

SA_LOG_NTF_ATTR_LOGFILE_PATH_NAME= 3

} SaLogNtfAttributesT;
44 SAI-AIS-LOG-A.02.01 Section 3.4.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.5 Log Record Types

3.4.5.1 SaLogHeaderTypeT

typedef enum {

SA_LOG_NTF_HEADER = 1,

SA_LOG_GENERIC_HEADER = 2

} SaLogHeaderTypeT;

The values of the SaLogHeaderTypeT have the following interpretations:

• SA_LOG_NTF_HEADER - The log record header structure used for
saLogWriteLog() or saLogWriteLogAsync() functions is SaLogNtfLogHeaderT,
which is suitable for the alarm or notification log streams.

• SA_LOG_GENERIC_HEADER - The log record header structure used for
saLogWriteLog() or saLogWriteLogAsync() is SaLogGenericLogHeaderT,
which is suitable for the system or any application log stream.

3.4.5.2 SaLogNtfLogHeaderT

typedef struct {

SaNtfIdentifierT notificationId;

SaNtfEventTypeT eventType;

SaNameT *notificationObject;

SaNameT *notifyingObject;

SaNtfClassIdT *notificationClassId;

SaTimeT eventTime;

} SaLogNtfLogHeaderT;

A structure of this type contains the fields specific to a notification or alarm log
record header. It must be populated by the logger when saLogWriteLog() or
saLogWriteLogAsync() is invoked. The fields have the following interpretation:

• notificationId (defined in saNtf.h, see [2]) - This field is a cluster-wide unique
identifier value provided to the Log Service by a Notification Service client.
This field must be set to SA_NTF_IDENTIFIER_UNUSED (see [2]) if no identi-
fier is provided. The Log Service does not police this value for uniqueness.

• eventType (defined in saNtf.h, see [2]) - This field reflects the event type of the
notification. This field must be set.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.5 45

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• notificationObject - A non-NULL pointer to the name of the logical entity (iden-
tified by its full LDAP name) about which the notification is generated.

• notifyingObject - A non-NULL pointer to the name of the logical entity (identi-
fied by its full LDAP name) that is sending the notification. This field must be
set.

• notificationClassId - A pointer to an SaNtfClassIdT structure (defined in
saNtf.h, see [2]) that uniquely identifies the kind of situation that caused the
notification. This field is optional.

• eventTime - This field contains the time at which an event is detected. This
time may not be the same time at which the event was reported or the notifica-
tion was logged. This field must be set.
46 SAI-AIS-LOG-A.02.01 Section 3.4.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.5.3 SaLogGenericLogHeaderT

typedef struct {

SaNtfClassIdT *notificationClassId;

const SaNameT *logSvcUsrName;

SaLogSeverityT logSeverity;

} SaLogGenericLogHeaderT;

A structure of this type contains the fields that go into a log record header and whose
destination is either the system or an application specific log stream. The fields have
the following interpretation:

• notificationClassId (defined in saNtf.h, see [2]) - A pointer to a structure of type
SaNtfClassIdT which is used for internationalization. This field is optional and
may be set to NULL. The Log Service itself just passes this value through to
the output destination. Future versions of this specification will address inter-
nationalization issues (see Section 3.1.7).

• logSvcUsrName - A pointer to the LDAP name used by the logger to identify
itself. This name will typically identify a component or service unit, provided the
user is a component under the control of the Availability Management Frame-
work (see [6]). This argument only needs to be specified on a per-log-record
basis in the saLogWriteLog() or saLogWriteLogAsync() API when the logger
wants to override the default user name maintained by the Log Service on
behalf of a logger. The default user name is fetched by the Log Service library
from the SA_AMF_COMPONENT_NAME environment variable by using a
POSIX getenv() subroutine. This mechanism avoids cross-library dependen-
cies. If this argument is not specified when invoking saLogWriteLog() or
saLogWriteLogAsync(), and the environment variable is not set, it is an error.

• logSeverity - This field must be set to a single severity level value for this log
record. The various severity levels supported by the Log Service are defined in
Section 3.4.2.2.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.5.3 47

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.5.4 SaLogHeaderT

typedef union {

SaLogNtfLogHeaderT ntfHdr;

SaLogGenericLogHeaderT genericHdr;

} SaLogHeaderT;

The SaLogHeaderT type contains log record header information that is specific to the
log stream for which the log record is destined. If the log record is destined for either
the notification or alarm log streams, the ntfHdr structure must be properly populated
(refer to Section 3.4.5.2). If the log record is destined for either the system or an appli-
cation log stream, genericHdr must be properly populated (refer to Section 3.4.5.3).

3.4.5.5 SaLogRecordT

The following type describes the contents of a log record. This data structure wraps
data structures that have been described earlier.

typedef struct {

SaTimeT logTimeStamp;

SaLogHeaderTypeT logHdrType;

SaLogHeaderT logHeader;

SaLogBufferT *logBuffer;

} SaLogRecordT;

The fields in this data structure have the following interpretation:

• logTimeStamp - This field contains the time at which the log is produced. If the
timestamp cannot be provided by the user, the constant
SA_TIME_UNKNOWN shall be specified instead, which means the Log Ser-
vice needs to supply the timestamp.

• logHdrType - This field must be set. It indicates the log record header type that
is populated in the SaLogHeaderT union (see Section 3.4.5.4) of the next
parameter, logHeader.

• logHeader - For details on how to populate this field based on the logHdrType
field, refer to Section 3.4.5.4.

• logBuffer - This field is a pointer to a buffer containing the body of the log
record, which the Log Service treats as a single opaque data unit. The
logBuffer pointer may be NULL indicating that there is no body. The Log Ser-
vice transfers the log body as a part of the log record reliably through the log
48 SAI-AIS-LOG-A.02.01 Section 3.4.5.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
stream to its final output destination where this data unit is subject to either the
@Cb or @Ci format tokens (see Section 3.1.5.1), both of which result in only
printable character output.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.5.5 49

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4.6 Application Log Types

This section describes additional data-structures used by application loggers only.

3.4.6.1 SaLogFileFullActionT

typedef enum {

SA_LOG_FILE_FULL_ACTION_WRAP = 1,

SA_LOG_FILE_FULL_ACTION_HALT = 2,

SA_LOG_FILE_FULL_ACTION_ROTATE = 3

} SaLogFileFullActionT;

This type specifies the Log Service behavior when the maximum log size of a file is
reached. This policy is specified when opening a new application log stream. These
policies are as follows:

SA_LOG_FILE_FULL_ACTION_WRAP - Once the maximum log file size has been
reached, the oldest log records are deleted as needed to allow for new log records.

SA_LOG_FILE_FULL_ACTION_HALT - The log file is full. No more log records are
allowed in this log file.

SA_LOG_FILE_FULL_ACTION_ROTATE - When the current log file is full, a new log
file is created (with <createtime>) to which future log records are now written.

3.4.6.2 SaLogFileCreateAttributesT_2

typedef struct {

SaStringT logFileName;

SaStringT logFilePathName;

SaUint64T maxLogFileSize;

SaUint32T maxLogRecordSize;

SaBoolT haProperty;

SaLogFileFullActionT logFileFullAction;

SaUint16T maxFilesRotated;

SaStringT logFileFmt;

} SaLogFileCreateAttributesT_2;

This type contains the log file creation information that needs to be supplied when
creating a new application log stream. The fields are interpreted as follows:
50 SAI-AIS-LOG-A.02.01 Section 3.4.6 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• logFileName - A pointer to the POSIX log file name to be associated with an
application specific log stream. A value must be set.

• logFilePathName - A pointer to a relative POSIX pathname that qualifies the
subdirectory (relative to an implementation defined directory) where the log file
resides. References to the parent directory ("..") cannot be included in
logFilePathName. Subdirectories included in logFilePathName will be auto-
matically created by the Log Service. A NULL pointer is equivalent to the string
with a single dot ("."), which refers to the implementation defined directory
itself.

• maxLogFileSize - The maximum size in bytes to which a log file may grow. A
value of zero indicates no predefined limit. If the specified limit is exceeded,
the logFileFullAction action (see below) is invoked. A value must be set.

• maxLogRecordSize - The maximum log record size in bytes that can be writ-
ten to this file. Log records larger than this size shall be truncated. A value
must be set.

• haProperty - Indicates if the log file must always be available and implies file
replication and persistency (see Section 3.1.6.1). A value must be set.

• logFileFullAction - Explains the Log Service behavior when a file’s maximum
log size in bytes is reached. For details, refer to Section 3.4.6.1. A value must
be set.

• maxFilesRotated - Indicates the number of files maintained at a time if the
logFileFullAction policy is chosen as
SA_LOG_FILE_FULL_ACTION_ROTATE. If the logFileFullAction policy is not
SA_LOG_FILE_FULL_ACTION_ROTATE, this field is ignored by the Log Ser-
vice.

• logFileFmt - A pointer to a memory area containing a log record format expres-
sion specified by the logger. If this field is NULL, the Log Service uses the
default format expression for the target log stream type (see Section 3.1.5.3).

3.4.7 SaLogCallbacksT

The SaLogCallbacksT structure is defined as follows:
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.4.7 51

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
typedef struct {

SaLogFilterSetCallbackT saLogFilterSetCallback;

SaLogStreamOpenCallbackT saLogStreamOpenCallback;

SaLogWriteLogCallbackT saLogWriteLogCallback;

} SaLogCallbacksT;

A structure of the SaLogCallbacksT type (called a callbacks structure) is used to
specify the callback functions that the Log Service will invoke at well-defined
moments.

3.4.8 SaLogLimitIdT

The SaLogLimitIdT enum provides a value that identifies a limit for a given implemen-
tation of the Log Service. Note that the Log Service specification does not define a
configuration for this limit, which is usually predefined by the implementation.

The user can retrieve at runtime the current value of this limit by specifying the identi-
fier of the limit (the enum value of the type SaLogLimitIdT, defined below) when invok-
ing the saLogLimitGet() function (see Section 3.7.1 on page 75).

The limit value is returned in a parameter of a generic type (SaLimitValueT type,
defined in [1]). As the only limit defined in this specification is of type SaUint64T, the
uint64Value field of SaLimitValueT must be used for further access.

typedef enum {

SA_LOG_MAX_NUM_CLUSTER_APP_LOG_STREAMS_ID = 1

} SaLogLimitIdT;

The only value of the SaLogLimitIdT enumeration type has the following interpreta-
tion:

• SA_LOG_MAX_NUM_CLUSTER_APP_LOG_STREAMS_ID - This enum can
be used to retrieve the maximum number of cluster-wide application log streams
that may be created in the cluster.
52 SAI-AIS-LOG-A.02.01 Section 3.4.8 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.5 Library Life Cycle

3.5.1 saLogInitialize()

Prototype

SaAisErrorT saLogInitialize(

SaLogHandleT *logHandle,

const SaLogCallbacksT *logCallbacks,

SaVersionT *version

);

Parameters

logHandle - [out] A pointer to the handle which designates this particular initialization
of the Log Service, and which is to be returned by the Log Service. The
SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

logCallbacks - [in] If logCallbacks is set to NULL, no callback is registered; If
logCallbacks is not set to NULL, it is a pointer to an SaLogCallbacksT structure which
contains the callback functions of the process that the Log Service may invoke. Only
non-NULL callback functions in this structure will be registered. The
SaLogCallbacksT type is defined in Section 3.4.7 on page 51.

version - [in/out] As an input parameter, version is a pointer to a structure containing
the required Log Service version. In this case, minorVersion is ignored and should be
set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Log Service. The SaVersionT type is defined in [1].

Description

This function initializes the Log Service for the invoking process and registers the var-
ious callback functions. This function must be invoked prior to the invocation of any
other Log Service functionality. The handle pointed to by logHandle is returned by the
Log Service as the reference to this association between the process and the Log
Service. The process uses this handle in subsequent communication with the Log
Service.

If the implementation supports the specified releaseCode and majorVersion,
SA_AIS_OK is returned. In this case, the structure pointed to by the version parame-
ter is set by this function to:
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.5 53

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can

support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can sup-
port for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can sup-
port for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
54 SAI-AIS-LOG-A.02.01 Section 3.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the version
parameter points is not compatible with the version of the Log Service implementa-
tion.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogSelectionObjectGet(), saLogDispatch(), saLogFinalize()

3.5.2 saLogSelectionObjectGet()

Prototype

SaAisErrorT saLogSelectionObjectGet(

SaLogHandleT logHandle,

SaSelectionObjectT *selectionObject

);

Parameters

logHandle - [in] The handle which was obtained by a previous invocation of the
saLogInitialize() function and which designates this particular initialization of the Log
Service. The SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

selectionObject - [out] A pointer to the operating system handle that the process can
use to detect pending callbacks. The SaSelectionObjectT type is defined in [1].

Description

This function returns the operating system handle, selectionObject, associated with
the handle logHandle. The invoking process can use the operating system handle to
detect pending callbacks, instead of repeatedly invoking saLogDispatch() for this pur-
pose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.5.2 55

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
The operating system handle returned by saLogSelectionObjectGet() is valid until
saLogFinalize() is invoked on the same handle logHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogInitialize(), saLogDispatch(), saLogFinalize()
56 SAI-AIS-LOG-A.02.01 Section 3.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.5.3 saLogDispatch()

Prototype

SaAisErrorT saLogDispatch(

SaLogHandleT logHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

logHandle - [in] The handle which was obtained by a previous invocation of the
saLogInitialize() function and which designates this particular initialization of the Log
Service. The SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saLogDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle logHandle in the way specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle logHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.5.3 57

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogInitialize(), saLogFinalize()

3.5.4 saLogFinalize()

Prototype

SaAisErrorT saLogFinalize(

SaLogHandleT logHandle

);

Parameters

logHandle - [in] The handle which was obtained by a previous invocation of the
saLogInitialize() function and which designates this particular initialization of the Log
Service. The SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

Description

The saLogFinalize() function closes the association represented by the logHandle
parameter between the invoking process and the Log Service. The process must
have invoked saLogInitialize() before it invokes this function. A process must invoke
this function once for each handle acquired by invoking saLogInitialize().

If the saLogFinalize() function completes successfully, it releases all resources
acquired when saLogInitialize() was called. Moreover, it closes all log streams that
are still open for the particular handle. Furthermore, it cancels all pending
saLogStreamOpenCallbackT callbacks related to the particular handle. Note that
because the callback invocation is asynchronous, it is still possible that some call-
back calls are processed after this call returns successfully.

If a process terminates, the Log Service implicitly finalizes all instances of the Log
Service that are associated with the process, as described in the preceding para-
graph.

After saLogFinalize() completes successfully, the handle logHandle and the selection
object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.
58 SAI-AIS-LOG-A.02.01 Section 3.5.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saLogInitialize(), saLogStreamClose(), saLogSelectionObjectGet(),
saLogStreamOpenCallbackT
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.5.4 59

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.6 Log Service Operations

3.6.1 saLogStreamOpen_2() and saLogStreamOpenAsync_2()

Prototype

SaAisErrorT saLogStreamOpen_2(

SaLogHandleT logHandle,

const SaNameT *logStreamName,

const SaLogFileCreateAttributesT_2 *logFileCreateAttributes,

SaLogStreamOpenFlagsT logStreamOpenFlags,

SaTimeT timeout,

SaLogStreamHandleT *logStreamHandle

);

SaAisErrorT saLogStreamOpenAsync_2(

SaLogHandleT logHandle,

const SaNameT *logStreamName,

const SaLogFileCreateAttributesT_2 *logFileCreateAttributes,

SaLogStreamOpenFlagsT logStreamOpenFlags,

SaInvocationT invocation

);

Parameters

logHandle - [in] The handle which was obtained by a previous invocation of the
saLogInitialize() function and which designates this particular initialization of the Log
Service. The SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

logStreamName - [in] This parameter points to the DN name of the log stream to
open. This name may be one of the well-known log stream names (see Section
3.4.2.1), or it may be a user-defined cluster-wide unique application log stream name.
The SaNameT type is defined in [1].

logFileCreateAttributes - [in] A pointer to the SaLogFileCreateAttributesT_2 structure
(as defined in Section 3.4.6.2 on page 50) that describes the attributes associated
60 SAI-AIS-LOG-A.02.01 Section 3.6 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
with an application log stream only. If one of the well-known log streams is being
opened, this pointer must be NULL. Other considerations are as follows:

• If the user intends only to open an existing application log stream by supplying
the same log stream name, this value must be NULL.

• If the user intends to open and create an application log stream that does not yet
exist, an SaLogFileCreateAttributesT_2 structure must be populated and its
pointer passed in logFileCreateAttributes.

• If the user intends to open a (possibly) existing application log stream, but still
specify creation attribute values, the provided values must be identical to those
values provided by the initial logger that successfully created the application log
stream.

logStreamOpenFlags - [in] The value of this parameter is either zero or
SA_LOG_STREAM_CREATE, as defined in the SaLogStreamOpenFlagsT type in
Section 3.4.2.5 on page 43. The SA_LOG_STREAM_CREATE value may only be set
when opening an application log stream. If one of the well-known log streams is being
opened, this value must not be set. Other considerations are as follows:

• If the user intends only to open an existing application log stream by supplying
the same log stream name, this value may not be set.

• If the user intends to open and create an application log stream that does not yet
exist, the SA_LOG_STREAM_CREATE flag must be set.

• If the user intends to open a (possibly) existing application log stream by provid-
ing an identical set of values in the structure to which the logFileCreateAttributes
parameter points, the SA_LOG_STREAM_CREATE flag must also be set.

timeout - [in] The saLogStreamOpen_2() invocation is considered to have failed if it
does not complete by the time specified. A log stream may still be created in such a
case, as the outcome is non-deterministic. The SaTimeT type is defined in [1].

invocation - [in] This parameter allows the invoking logger to match this invocation of
saLogStreamOpenAsync_2() with the corresponding
(*SaLogStreamOpenCallbackT)() callback call. The SaInvocationT type is defined in
[1].

logStreamHandle - [out] A pointer to the log stream handle, allocated in the address
space of the invoking process. If the log stream is opened successfully, the Log Ser-
vice stores in the memory area to which logStreamHandle points the handle that the
logger uses to access the correct log stream in subsequent invocations of the func-
tions of the Log Service Operations APIs. The SaLogStreamHandleT type is defined
in Section 3.4.1.2 on page 40.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.1 61

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Description

The saLogStreamOpen_2() and saLogStreamOpenAsync_2() functions open a log
stream. If the log stream is an application log stream and the named application log
stream does not exist, the structure to which logFileCreateAttributes points must be
populated and the SA_LOG_STREAM_CREATE flag must be set in the
logStreamOpenFlags parameter.

For the three well-known log streams, the returned log stream handle refers to the
existing alarm, notification, or system log streams, which are created when the Log
Service is initialized in the cluster. These log streams persist over the lifetime of the
Log Service in the cluster.

An invocation of saLogStreamOpen_2() is blocking. If the log stream is successfully
opened, a new log stream handle is returned upon completion. A log stream can be
opened multiple times from within the same process or by different processes.

Completion of the saLogStreamOpenAsync_2() function is signaled by an invocation
of the associated SaLogStreamOpenCallbackT callback function, which must have
been supplied when the process invoked the saLogInitialize() call. The process sup-
plies the value of invocation when it invokes the saLogStreamOpenAsync_2() func-
tion, and the Log Service gives that value of invocation back to the application when it
invokes the corresponding SaLogStreamOpenCallbackT function. The invocation
parameter is a mechanism that enables the process to determine which call triggered
which callback.

Application log streams have a default log record format expression associated with
them as described in Section 3.1.5.3. If this format expression is not wanted, a differ-
ent format may be specified when creating the log stream by using the syntax
described in Section 3.1.5. After a format expression is associated with a log stream,
it cannot be changed over the lifetime of the log stream.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout specified by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
62 SAI-AIS-LOG-A.02.01 Section 3.6.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saLogInitialize() to initialize the Log
Service was incomplete, since the saLogStreamOpenCallbackT callback function is
missing. This applies only to the saLogStreamOpenAsync_2() function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned for each of the following cases:

• An application log stream is identified, and the SA_LOG_STREAM_CREATE flag
is set in logStreamOpenFlags, but the logFileCreateAttributes parameter is
NULL.

• An application log stream is identified, and the SA_LOG_STREAM_CREATE flag
is not set in logStreamOpenFlags, but the logFileCreateAttributes parameter is
not NULL.

• One of the well-known log stream names is identified and one or both of the fol-
lowing cases occur:
• The SA_LOG_STREAM_CREATE flag is set.
• The logFileCreateAttributes is not NULL.

• An application log stream is identified, and a format expression has been pro-
vided, but the format expression is not well formed (see Section 3.1.5.2).

• The logStreamName parameter does not point to a DN, or the type of its first
RDN is not safLgStr.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). In particular, this value is returned if the maximum number of application
log streams allowed has been reached, as reflected by the
SA_LOG_MAX_NUM_CLUSTER_APP_LOG_STREAMS_ID enum (see Section
3.4.8).

SA_AIS_ERR_NOT_EXIST - The SA_LOG_STREAM_CREATE flag is not set, the
logFileCreateAttributes is NULL, and the application log stream designated by the
name pointed to by logStreamName does not exist.

SA_AIS_ERR_EXIST - The SA_LOG_STREAM_CREATE flag is set in
logStreamOpenFlags, the application log stream designated by the name pointed to
by logStreamName already exists, and the values in the structure to which
logFileCreateAttributes points do not match the values used to originally open this
application log stream.

SA_AIS_ERR_BAD_FLAGS - The logStreamOpenFlags parameter is invalid.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.1 63

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Log Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogStreamClose(), saLogStreamOpenCallbackT, saLogInitialize()

3.6.2 SaLogStreamOpenCallbackT

Prototype

typedef void (*SaLogStreamOpenCallbackT)(

SaInvocationT invocation,

SaLogStreamHandleT logStreamHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saLogStreamOpenAsync_2() function and is used by the Log Service in
this callback. This invocation parameter allows the process to match the invocation of
that function with this callback. The SaInvocationT type is defined in [1].

logStreamHandle - [in] The handle that designates the log stream if error is
SA_AIS_OK. The SaLogStreamHandleT type is defined in Section 3.4.1.2 on page
40.

error - [in] This parameter indicates whether the saLogStreamOpenAsync_2() func-
tion was successful. The SaAisErrorT type is defined in [1]. The values that can be
returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.
64 SAI-AIS-LOG-A.02.01 Section 3.6.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is
corrupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particu-
lar, this error is returned for each of the following cases:
• An application log stream is identified, and the

SA_LOG_STREAM_CREATE flag is set in logStreamOpenFlags, but the
logFileCreateAttributes parameter is NULL.

• An application log stream is identified, and the
SA_LOG_STREAM_CREATE flag is not set in logStreamOpenFlags, but
the logFileCreateAttributes parameter is not NULL.

• One of the well-known log stream names is identified and one or both of the
following cases occur:
• The SA_LOG_STREAM_CREATE flag is set.
• The logFileCreateAttributes is not NULL.

• An application log stream is identified, and a format expression has been
provided, but the format expression is not well formed (see Section 3.1.5.2).

• The logStreamName parameter does not point to a DN, or the type of its
first RDN is not safLgStr.

• SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the provider
of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory). In particular, this value is returned if the maximum number of
application log streams allowed has been reached, as reflected by the
SA_LOG_MAX_NUM_CLUSTER_APP_LOG_STREAMS_ID enum (see Sec-
tion 3.4.8).

• SA_AIS_ERR_NOT_EXIST - The SA_LOG_STREAM_CREATE flag is not
set, the logFileCreateAttributes is NULL, and the application log stream desig-
nated by the name pointed to by logStreamName does not exist.

• SA_AIS_ERR_EXIST - The SA_LOG_STREAM_CREATE flag is set in
logStreamOpenFlags, the application log stream designated by the name
pointed to by logStreamName already exists, and the values in the structure to
which logFileCreateAttributes points do not match the values used to originally
open this application log stream.

• SA_AIS_ERR_BAD_FLAGS - The logStreamOpenFlags parameter is invalid.
• SA_AIS_ERR_VERSION - The invoked function is not supported in the ver-

sion specified in the call to initialize this instance of the Log Service library.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.2 65

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-
able on this cluster node because it is not a member node.

Description

The Log Service calls this callback function when the operation requested by the
invocation of saLogStreamOpenAsync_2() completes.

This callback is invoked in the context of a thread calling saLogDispatch() on the han-
dle logHandle that was specified in the saLogStreamOpenAsync_2() call.

If this call completes successfully, the reference to the opened or created and opened
log stream is returned in logStreamHandle; otherwise, an error is returned in the error
parameter.

Return Values

None

See Also

saLogStreamOpenAsync_2(), saLogDispatch(), saLogInitialize()
66 SAI-AIS-LOG-A.02.01 Section 3.6.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.6.3 saLogWriteLog() and saLogWriteLogAsync()

Prototype

SaAisErrorT saLogWriteLog(

SaLogStreamHandleT logStreamHandle,

SaTimeT timeout,

const SaLogRecordT *logRecord

);

SaAisErrorT saLogWriteLogAsync(

SaLogStreamHandleT logStreamHandle,

SaInvocationT invocation,

SaLogAckFlagsT ackFlags,

const SaLogRecordT *logRecord

);

Parameters

logStreamHandle - [in] The handle that designates the destination log stream for this
log record. The handle logStreamHandle must have been obtained previously by the
invocation of saLogStreamOpen_2() or saLogStreamOpenAsync_2(). The
SaLogStreamHandleT type is defined in Section 3.4.1.2 on page 40.

timeout - [in] The saLogWriteLog() invocation is considered to have failed if it does
not complete by the time specified. A log record may be still written to the log stream.
The SaTimeT type is defined in [1].

ackFlags - [in] The kind of the required acknowledgment. This field must be set to
zero or to SA_LOG_RECORD_WRITE_ACK. In the latter case, the caller requires to
be acknowledged whether the log record can be logged. If set to 0, no such acknowl-
edgement is desired. The SaLogAckFlagsT type is defined in Section 3.4.2.4 on page
43.

logRecord - [in] A non-NULL pointer to a structure of type SaLogRecordT describing
the contents of the log record. The various fields of this type are described in Section
3.4.5.5 on page 48, which gives a detailed overview of how the log record needs to
be populated, including which fields are required and which are optional.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.3 67

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
invocation - [in] This parameter associates this invocation of saLogWriteLogAsync()
with a corresponding invocation of the SaLogWriteLogCallbackT function. This
parameter is ignored if ackFlags is set to zero, meaning that the
SaLogWriteLogCallbackT function is not called, and the caller is not informed
whether an error occurred. The SaInvocationT type is defined in [1].

Description

These API functions are used to log a record to which logRecord points to a stream
specified by the logStreamHandle.

An invocation of saLogWriteLog() is blocking. The log record is written to the log file
associated with the stream designated by logStreamHandle upon successful comple-
tion.

An invocation of saLogWriteLogAsync() is non-blocking. Completion of the
saLogWriteLogAsync() signifying that a log record has been written to the log file
associated with the stream designated by logStreamHandle is optionally signaled by
an invocation of the SaLogWriteLogCallbackT callback function if the flag
SA_LOG_RECORD_WRITE_ACK is set in the ackFlags.

Writing a log record to a log file is an atomic operation, so that concurrent writes must
be properly handled.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout specified by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logStreamHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained with the saLogStreamOpen_2() or
saLogStreamOpenCallback() functions, or the corresponding log stream has
already been closed.

• The handle logHandle that was passed to the saLogStreamOpen_2() or
saLogStreamOpenAsync_2() functions has already been finalized.
68 SAI-AIS-LOG-A.02.01 Section 3.6.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_INIT - The previous invocation of saLogInitialize() to initialize the Log
Service was incomplete, since the SaLogWriteLogCallbackT callback function is
missing. This applies only to the saLogWriteLogAsync() function if
SA_LOG_RECORD_WRITE_ACK flag is set in the ackFlags.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned for each of the following cases:

• The log record type designated by logHdrType in the SaLogRecordT structure to
which logRecord points does not correspond to the type of log stream implied by
logStreamHandle.

• The logSvcUsrName (see Section 3.4.5.3) is not provided and the
SA_AMF_COMPONENT_NAME environment variable is not properly set.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). In particular, this value is returned if the output destination log file associ-
ated with the stream designated by logStreamHandle has reached maximum capac-
ity, and the logFileFullAction policy is SA_LOG_FILE_FULL_ACTION_HALT.

SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

SaLogWriteLogCallbackT, saLogStreamOpen_2(), saLogStreamOpenAsync_2(),
saLogStreamOpenCallbackT, saLogInitialize()
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.3 69

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.6.4 SaLogWriteLogCallbackT

Prototype

typedef void (*SaLogWriteLogCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter associates an invocation of saLogWriteLogAsync()
with a corresponding invocation of the SaLogWriteLogCallbackT function. The
SaInvocationT type is defined in [1].

error - [in] This parameter indicates whether the saLogWriteLogAsync() function was
successful. The SaAisErrorT type is defined in [1]. The values that can be returned
are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle logStreamHandle is invalid, due to
one or both of the reasons below:
• It is corrupted, was not obtained with the saLogStreamOpen_2() or

saLogStreamOpenCallback() functions, or the corresponding log stream
has already been closed.

• The handle logHandle that was passed to the saLogStreamOpen_2() or
saLogStreamOpenAsync_2() functions has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particu-
lar, this error is returned for each of the following cases:
• The log record type designated by logHdrType in the SaLogRecordT struc-

ture to which logRecord points does not correspond to the type of log
stream implied by logStreamHandle.
70 SAI-AIS-LOG-A.02.01 Section 3.6.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• The logSvcUsrName (see Section 3.4.5.3) is not provided and the
SA_AMF_COMPONENT_NAME environment variable is not properly set.

• SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Ser-
vice provider is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory). In particular, this value is returned if the output destination log
file associated with the stream designated by logStreamHandle has reached
maximum capacity, and the logFileFullAction policy is
SA_LOG_FILE_FULL_ACTION_HALT.

• SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.
• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-

able on this cluster node because it is not a member node.

Description

The Log Service calls this callback function when the operation requested by the
invocation of saLogWriteLogAsync() completes successfully or fails, provided a
request for receiving such an acknowledgement was indicated by setting the
SA_LOG_RECORD_WRITE_ACK flag in the ackFlags field when the
saLogWriteLogAsync() function was invoked.

This callback is invoked in the context of a thread calling saLogDispatch() on the han-
dle logHandle that was specified in the corresponding saLogWriteLogAsync() call.

If successful, the log record is written to the destination log file associated with the log
stream designated by logStreamHandle in the invocation of the corresponding
saLogWriteLogAsync() function.

Return Values

None

See Also

saLogWriteLogAsync(), saLogDispatch(), saLogInitialize()
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.4 71

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.6.5 SaLogFilterSetCallbackT

Prototype

typedef void (*SaLogFilterSetCallbackT)(

SaLogStreamHandleT logStreamHandle,

SaLogSeverityFlagsT logSeverity

);

Parameters

logStreamHandle - [in] The handle that designates either the well-known system log
stream or one of the application log streams. This handle must have been obtained
previously by the invocation of saLogStreamOpen_2() or
saLogStreamOpenAsync_2(). The SaLogStreamHandleT type is defined in Section
3.4.1.2 on page 40.

logSeverity - [in] This parameter specifies which log records are allowed to be for-
warded from a logger source. It is a bitmap that describes the severity levels at which
logging is enabled, that is, only log records with severity levels enabled in the
logSeverity bitmap will be forwarded to the Log Service. The SaLogSeverityFlagsT
type is defined in Section 3.4.2.2 on page 42.

Description

The Log Service invokes this callback to request the process to log at only the levels
indicated in the bitmap designated by logSeverity for the log stream associated with
the logStreamHandle. Only the system and application log streams use logSeverity.
By default, log records with all severity levels are allowed and the Log Service does
not filter any log records based on the severity level.

After this function is invoked, loggers should not produce log records with severities
that are disabled. However, if a logger does produce such log records, or this logger
did not provide this callback function, the Log Service always monitors the severity
levels of the log records introduced by way of saLogWriteLog() or
saLogWriteLogAsync() and will discard any log records whose severity level is dis-
abled.

This callback may be invoked as a consequence of an administrative operation to set
a particular log stream at desired severity levels or as a matter of initial configuration,
which causes a preconfigured logSeverity to be pushed to the affected processes
that are linked with the Log Service library. This callback can be invoked at any time
72 SAI-AIS-LOG-A.02.01 Section 3.6.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
after a successful completion of saLogStreamOpen_2() or of the
(*SaLogStreamOpenCallbackT)() callback.

The most recent logSeverity is the one that is honored, that is, the logSeverity deliv-
ered by the last invocation of this callback displaces the logSeverity delivered in the
previous callback.

Return Values

None

See Also

saLogWriteLog(), saLogWriteLogAsync(), saLogStreamOpen_2(),
saLogStreamOpenAsync_2(), SaLogFilterSetCallbackT

3.6.6 saLogStreamClose()

Prototype

SaAisErrorT saLogStreamClose(

SaLogStreamHandleT logStreamHandle

);

Parameters

logStreamHandle - [in] The handle that designates the log stream that needs to be
closed. The handle logStreamHandle must have been obtained previously by the
invocation of saLogStreamOpen_2() or saLogStreamOpenAsync_2(). The
SaLogStreamHandleT type is defined in Section 3.4.1.2 on page 40.

Description

The invocation of this API function closes the log stream which is designated by
logStreamHandle and which was opened by an earlier invocation of
saLogStreamOpen_2() or saLogStreamOpenAsync_2().

After this invocation, the handle logStreamHandle is no longer valid.

This call frees all resources allocated for this process by the Log Service on the log
stream identified by the handle logStreamHandle.

This call cancels all pending callbacks that refer directly or indirectly to the handle
logStreamHandle. Note that as the callback invocation is asynchronous, it is still pos-
sible that some callback calls are processed after this call returns successfully.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.6.6 73

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
If the invocation of the saLogStreamClose() function completes successfully, and the
log stream is an application log stream, and no other process has that application log
stream open, the Log Service behaves as follows.

• The log stream is deleted.
• The log file associated with that application log stream is closed and renamed

with a <closetime> that indicates when the last user of the log stream designated
by logStreamHandle closed the stream (see Section 3.1.6.5).

• The log file configuration file (see Section 3.1.6.2) associated with the deleted log
stream is closed and persists indefinitely.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logStreamHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained with the saLogStreamOpen_2() or
saLogStreamOpenAsync_2() functions, or the corresponding log stream has
already been closed.

• The handle logHandle that was passed to the saLogStreamOpen_2() or
saLogStreamOpenAsync_2() functions has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogStreamOpen_2(), saLogStreamOpenAsync_2(), SaLogWriteLogCallbackT,
SaLogFilterSetCallbackT
74 SAI-AIS-LOG-A.02.01 Section 3.6.6 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.7 Limit Fetch API

3.7.1 saLogLimitGet()

Prototype

SaAisErrorT saLogLimitGet(

SaLogHandleT logHandle,

SaLogLimitIdT limitId,

SaLimitValueT *limitValue

);

Parameters

logHandle - [in] The handle which was obtained by a previous invocation of the
saLogInitialize() function and which designates this particular initialization of the Log
Service. The SaLogHandleT type is defined in Section 3.4.1.1 on page 40.

limitId - [in] The Log Service limit whose implementation-specific value needs to be
queried. The limits are defined in the SaLogLimitIdT type in Section 3.4.8 on page 52.

limitValue - [out] Pointer to the actual value of the limit specified in limitId. For details
regarding this type, refer to the SA Forum Overview document ([1]).

Description

This function enables a user application to obtain the current implementation-specific
value of a Log Service limit. The limitId parameter represents the limit to be queried.
When this function completes successfully, it returns the current value of the specified
limit in the memory area pointed to by limitValue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.
AIS Specification SAI-AIS-LOG-A.02.01 Section 3.7 75

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. This error is
returned due to one or both of the following reasons:

• The limitId parameter contains an invalid value.
• The limitValue pointer is NULL.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Log Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saLogInitialize()
76 SAI-AIS-LOG-A.02.01 Section 3.7.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
4 Log Service UML Information Model
The Log Service information model is described in UML and has been organized in a
UML class diagram.

The Log Service UML model is implemented by the SA Forum IMM Service [3]. For
details on this implementation, refer to the SA Forum Overview document ([1]).

The Log Service UML class diagram has two classes, which show the contained
attributes and the administrative operations (if any) applicable on these classes.

4.1 DN Format for Log Service UML Classes

4.2 Log Service UML Classes
The two classes of the Log Service UML model are:

• SaLogStream —This is a runtime object class that exposes various runtime
attributes associated with each application log stream in the cluster.

• SaLogStreamConfig —This is a configuration object class. There are always
three and only three of these classes in a cluster, which correspond to the alarm,
notification, and system log streams. This class allows the administrator to
change configuration properties for any of these three log streams in a running
system.

FIGURE 2 shows these classes. A description of each attribute of these classes may
be found in the XMI file (see [5]). For additional details, refer to the SA Forum Over-
view document ([1]).

Table 4 DN Formats for Objects of Log Service Classes

Object Class DN Formats for Objects of the Class

SaLogStream “safLgStr=…,”

SaLogStreamConfig “safLgStrCfg=…,”
AIS Specification SAI-AIS-LOG-A.02.01 Section 4 77

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
FIGURE 2 Log Service UML Classes
78 SAI-AIS-LOG-A.02.01 Section 4.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
5 Log Service Administration API

5.1 Log Service Administration API Model

5.1.1 Log Service Administration API Basics

This section describes the administrative API functions that the IMM Service exposes
on behalf of the Log Service to a system administrator. These API functions are
described using a ‘C’ API syntax. The main clients of this administrative API are sys-
tem management applications such as SNMP agents that typically convert system
administration commands (invoked from a management station) to the correct admin-
istrative API sequence to yield the desired result that is expected upon execution of
the system administration command.

The Log Service administrative API functions are applicable to the entities that are
controlled by the Log Service such as the log stream object.

These API functions will be exposed by the IMM Service Object Management library.
Only synchronous versions of these API are documented in this version. Support for
asynchronous versions will be added later on an as-needed basis based on use
cases and requirements.

5.2 Include File and Library Name
The appropriate IMM Service header file and the Log Service header file must be
included in the source of an application using the Log Service administration API. For
the name of the IMM Service header file, see [3].

5.3 Type Definitions
The specification of Log Service Administration API requires the following types, in
addition to the ones already described.
AIS Specification SAI-AIS-LOG-A.02.01 Section 5 79

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
5.3.1 saLogAdminOperationIdT

typedef enum {

SA_LOG_ADMIN_CHANGE_FILTER = 1

} saLogAdminOperationIdT;

5.4 Log Service Administration API
As explained above, the administrative API shall be exposed by the IMM (see [3])
Service library. The IMM Service API saImmOmAdminOperationInvoke() or
saImmOmAdminOperationInvokeAsync() shall be invoked with the appropriate
operationId (see Section 5.3.1) and objectName to execute a particular administrative
operation. In the following section, the administrative APIs are described with the
assumption that the SA Forum Log Service is an object implementer for the adminis-
trative operations that will be initiated as a consequence of invoking the
saImmOmAdminOperationInvoke() or the saImmOmAdminOperationInvokeAsync()
functions with the appropriate operationId (see Section 5.3.1) on the log stream
object designated by the name to which objectName points.

The API syntax for the administrative APIs shall use only the corresponding enumer-
ation value for the operationId (see Section 5.3.1) for administrative operations on
Log Service’s log stream objects designated by the name to which objectName
points, leading to the possible return values.

The return values explained in the section below shall be passed in the
operationReturnValue parameter that is provided by the invoker of the
saImmOmAdminOperationInvoke() or the saImmOmAdminOperationInvokeAsync()
function to obtain return codes from the object implementer (Log Service in this
case).

5.4.1 SA_LOG_ADMIN_CHANGE_FILTER

Parameters

operationId - [in] = SA_LOG_ADMIN_CHANGE_FILTER

objectName - [in] Pointer to the LDAP name of the application log stream object
whose severity filter value is to be changed. The initial RDN type must be “safLgStr’.
For the SA Forum naming conventions and rules, see [1].
80 SAI-AIS-LOG-A.02.01 Section 5.3.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
params - [in] NULL-terminated array of pointers to parameter descriptors. The param-
eter descriptor corresponds here to the severity filter bitmask value to apply to this log
stream.

Description

This administrative operation is only valid on SaLogStream runtime objects which
only ever represent application log streams.

This administrative operation changes the value of the severity filter used on this
application log stream (see Section 3.4.2.2). The effect is that only log records of the
allowed severities are permitted on to the given log stream.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The logical entity identified by the name to which
objectName points does not exist in the configuration repository.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
since the provided value is identical to the current value of this log stream severity fil-
ter.

See Also

SaLogFilterSetCallbackT
AIS Specification SAI-AIS-LOG-A.02.01 Section 5.4.1 81

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
82 SAI-AIS-LOG-A.02.01 Section 5.4.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6 Alarms and Notifications
The Log Service produces certain alarms and notifications to convey important infor-
mation regarding

• its own operational and functional state and
• the operational and functional state of the objects under its control

to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The recommended vehicle to be used for producing alarms and notifications is the
Notification Service of the Service AvailabilityTM Forum (abbreviated to NTF, see [2]),
and hence the various notifications are partitioned into categories as described in this
service.

In some cases, this specification uses the term “Unspecified” for values of attributes.
This means that the SA Forum has no specific recommendation on the setting, and
the vendor may set these attributes to whatever makes sense in the vendor’s context.
Such values are generally optional from the CCITT Recommendation X.733 perspec-
tive (see [10]).

6.1 Setting Common Attributes

The tables presented in Section 6.2 refer to attributes defined in [2]. The following list
provides recommendations regarding how to populate these attributes.

• Correlation ids - They are supplied to correlate two notifications that have been
generated because of a related cause. This attribute is optional; however, in
case of alarms that are generated to clear certain conditions, that is, produced
with a perceived severity of SA_NTF_SEVERITY_CLEARED, the correlation id
shall be populated by the application with the notification id that was generated
by the Notification Service when invoking the saNtfNotificationSend() API during
the production of the actual alarm.

• Event time - The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value in which case the timestamp is provided by the
Notification Service.
AIS Specification SAI-AIS-LOG-A.02.01 Section 6 83

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• NCI id - The notification class identifier is an attribute of type SaNtfClassIdT. The
vendorId portion of the SaNtfClassIdT data structure must be set to
SA_NTF_VENDOR_ID_SAF always. The majorId and minorId will vary based
on the specific SA Forum service and the particular notification. Every SA Forum
service shall have a majorId as described in the enumeration SaServicesT (see
[1]).

• Notification id - This attribute is obtained from the Notification Service when a
notification is generated, and hence need not be populated by an application.

• Notifying object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and contain at least the safApp
RDN value portion of the DN set to the specified standard RDN value of the SA
Forum AIS service generating the notification, which in this case is
“safApp=safLogService". For details on the SA Forum AIS naming convention,
refer to the SA Forum Overview document ([1]).
84 SAI-AIS-LOG-A.02.01 Section 6.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6.2 Log Service Notifications
The following sections describe a set of notifications that a Log Service implementa-
tion shall produce.

The notifying object must be set to the DN "safApp=safLogService" for the Log Ser-
vice.

The value of the majorId field in the notification class identifier (SaNtfClassIdT) must
be set to SA_SVC_LOG (as defined in the SaServicesT enum in [1]) in all notifica-
tions generated by the Log Service.

The minorId field within the notification class identifier (SaNtfClassIdT) is set distinctly
for each individual notification as described below. This field is range-bound, and the
used ranges are:

• Alarms: (0x01–0x64)
• State change notifications: (0x65–0xC8)
• Object change notifications: (0xC9–0x12C)
• Attribute change notifications: (0x12D–0x190)
AIS Specification SAI-AIS-LOG-A.02.01 Section 6.2 85

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6.2.1 Log Service Alarms

6.2.1.1 Capacity Alarm

Description

This alarm is issued for both of these two different cases:

• when the 'log file full action' is halt, and the log file size is greater than the
saLogStreamLogFullHaltThreshold value (see Section 3.1.6.1) and

• when the log file is now full. No more log records are allowed in this file.

The capacity alarm threshold can be configured for the alarm, notification, and sys-
tem log streams by default or by setting the saLogStreamLogFullHaltThreshold
attribute in the corresponding SaLogStreamConfig configuration object class instance
when the attribute saLogStreamLogFullAction is set to 'halt'. The configuration of the
application log stream alarm threshold value and its default value are currently imple-
mentation-specific.

Clearing Method

1) Manual after taking appropriate administrative action or

2) issue an implementation-specific optional alarm with severity
SA_NTF_SEVERITY_CLEARED to indicate that the log file is now below the config-
ured capacity threshold value.
86 SAI-AIS-LOG-A.02.01 Section 6.2.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Table 5 Log Service Capacity Alarm

NTF Attribute Name Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory "safApp=safLogService"

Notification Class
Identifier

NTF-internal minorId = 0x02

Additional Text Optional “<filename> has reached full capacity.”

Additional Informa-
tion

Optional Unspecified

Probable Cause Mandatory Application value from enum
SaNtfProbableCauseT in [2].

Specific Problems Optional Unspecified

Perceived Severity Mandatory Application value from enum SaNtfSeverityT
in [2].

Trend Indication Optional SA_NTF_TREND_MORE_SEVERE for all
alarms after the first alarm.

Threshold Informa-
tion

Optional Field values of SaNtfThresholdInformationT,
as defined in [2]:
thresholdId =
SA_LOG_NTF_LOGFILE_PERCENT_FULL
thresholdValueType =
SA_NTF_VALUE_UINT32
thresholdValue = <configured percent value>
thresholdHysteresis = <optional>
observedValue = <observed percent value>

Monitored
Attributes

Optional Unspecified

Proposed Repair
Actions

Optional Unspecified
AIS Specification SAI-AIS-LOG-A.02.01 Section 6.2.1.1 87

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6.2.2 Log Service Object Change Notifications

6.2.2.1 Application Log Stream Create

Description

This object change notification announces the creation of an application log stream. It
also identifies the location of the application log stream’s associated log and configu-
ration files so they can be found and read.

This notification alerts an administrator that log records are now being stored and are
available for inspection. It also allows an administrator to be aware that this applica-
tion log stream is operational so that, if so desired, the stream’s severity bitmask can
be adjusted with the SA_LOG_CHANGE_SEVERITY administrative operation.
88 SAI-AIS-LOG-A.02.01 Section 6.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
.

Table 6 Application Log Stream Creation Notification

NTF Attribute Name Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_CREATION

Notification Object Mandatory LDAP DN of the application log stream (as
specified in Section 4.1) that has been cre-
ated.

Notification Class
Identifier

NTF-internal minorId = 0xc9.

Additional Text Optional “Application log stream <log stream name>
created”

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION

Attribute List Optional [0].attributeId =
SA_LOG_NTF_ATTR_LOG_STREAM_NAME
[0].attributeType =
SA_NTF_VALUE_STRING
[0].attributeValue = <stream name>
[1].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_NAME
[1].attributeType =
SA_NTF_VALUE_STRING
[1].attributeValue = <logfile name>
[2].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_PATH_NAME
[2].attributeType =
SA_NTF_VALUE_STRING
[2].attributeValue = <pathname>
AIS Specification SAI-AIS-LOG-A.02.01 Section 6.2.2.1 89

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6.2.2.2 Application Log Stream Delete

Description

This object change notification announces the deletion of an application log stream. It
also identifies the location of the application log stream’s associated log and configu-
ration files so they can be found and read.

This notification alerts an administrator that the log file associated with this applica-
tion log stream is no longer active and perhaps cleanup or archiving chores should
commence.
90 SAI-AIS-LOG-A.02.01 Section 6.2.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Table 7 Application Log Stream Deletion Notification

NTF Attribute Name Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_DELETION

Notification Object Mandatory LDAP DN of the application log stream (as
specified in Section 4.1) that has been cre-
ated.

Notification Class
Identifier

NTF-internal minorId = 0xca.

Additional Text Optional “Application log stream <log stream name>
deleted”

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION

Attribute List Optional [0].attributeId =
SA_LOG_NTF_ATTR_LOG_STREAM_NAME
[0].attributeType =
SA_NTF_VALUE_STRING
[0].attributeValue = <stream name>
[1].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_NAME
[1].attributeType =
SA_NTF_VALUE_STRING
[1].attributeValue = <logfile name>
[2].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_PATH_NAME
[2].attributeType =
SA_NTF_VALUE_STRING
[2].attributeValue = <pathname>
AIS Specification SAI-AIS-LOG-A.02.01 Section 6.2.2.2 91

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
6.2.3 Log Service Attribute Change Notifications

6.2.3.1 Log Stream Attribute Change

Description

This notification is generated when one or more class attributes associated with a
SaLogStreamConfig class has changed. There is one SaLogStreamConfig class for
each of three persistent log streams: notification, alarm, and system.

The consequences of a configuration change is that the Log Service shall close the
current <filename>.cfg file (and rename it to <filename>_<closetime>.cfg) and the
current <filename>_<opentime>.log file (and rename it to
<filename>_<createtime>_<closetime>.log) and open up new .cfg and .log files as
formally described in Section 3.1.6.2 and in Section 3.1.6.3.

This notification alerts an administrator that these file changes have occurred and
that the now closed file or files are available for compacting, archiving, or any other
implementation specific action.

Only the ‘old’ (now closed) log file name and the ‘new’ (now open) log file name
attribute change is actually reported. This is enough information for an administrator
to find and manage the relevant files, given:

• the log file configuration file naming rules (see Section 3.1.6.2) and the log file
naming rules (see Section 3.1.6.3), and

• the log file pathname attribute for each of the three persistent log streams cannot
change (see Section 3.1.6.1) so the location of the relevant files is known.
92 SAI-AIS-LOG-A.02.01 Section 6.2.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Table 8 Log Stream Attribute Change

NTF Attribute
Name

Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_ATTRIBUTE_CHANGED

Notification Object Mandatory LDAP DN of one of the persistent log
streams.

Notification Class
Identifier

NTF-internal minorId = 0x12d.

Additional Text Optional Filename for log stream <log stream name>
has changed.

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION

Changed Attribute
List

Mandatory [0].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_NAME
[0].attributeType = SA_NTF_VALUE_STRING
[0].oldAttributePresent = SA_TRUE
[0].oldAttributeValue =
<filename>_<createtime>_<closetime>.log
[0].newAttributeValue =
<filename>_<createtime>.log
AIS Specification SAI-AIS-LOG-A.02.01 Section 6.2.3.1 93

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
94 SAI-AIS-LOG-A.02.01 Section 6.2.3.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
7 Log Service Management Interface
Currently, an SNMP MIB interface is defined for the Log Service. Other management
access methods to the Log Service may be added in future versions of this specifica-
tion.

7.1 Log Service MIB (SAF-LOG-SVC-MIB)
The Log Service MIB contains the single read-only table saLogStreamTable, which
enumerates the attributes of all log streams that currently exist in the cluster. This
includes the required and persistent alarm, notification, and system log streams as
well as any number of application log streams that currently exist. This table mimics
the UML object classes SaLogStream and SaLogStreamConfig, as described in Sec-
tion 4.2 in terms of the objects contained in the table.

Additionally, the Log Service MIB also defines SNMP traps that correspond to the var-
ious notifications for the service defined in Chapter 6 of this specification.

For a detailed description of the various objects of this MIB, refer to the
SAF-LOG-SVC-MIB as can be downloaded from
http://www.saforum.org/specification/download/get_spec.
AIS Specification SAI-AIS-LOG-A.02.01 Section 7 95

http://www.saforum.org/specification/download/get_spec

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
96 SAI-AIS-LOG-A.02.01 Section 7.1 AISSpecification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
Index of Definitions
A
alarm log stream 21
application log stream 21

B
buffer see log buffer

C
configuration files see log file configuration files

D
default format expression 31
destination see output destination

E
expressions see format expressions

F
files see log files
filtering see log filtering
fixed log record size 33
format expressions 24, 30
format tokens 24
formatting rules 24
full action see log file full action

H
ha property see high availability property
halt option 33
header see log record header
high availability property 33

I
internationalization 38

L
log buffer 48
log file configurable attributes 32
log file configuration files 34
log file format 34
log file full action 33
log file name 33
log file naming rules 35
log file path 33
log file properties 32
log file size 33
log files

see also log records; log streams
definition 22
configurable attributes 32
configuration files 34
format 34
full action

definition 33
halt option 33
rotation option 34
wrap option 33

maximum size 33

name 33
naming rules 35
path 33
properties 32
size 33

log filtering 23
log record header 45
log record timestamp 23
log records

see also log files; log streams
definition 21
default format expressions 31
fixed size 33
format expressions 24, 30
formatting rules 24
header 45
log buffer 48
severity level 42
timestamp 23
tokens 24

log stream handler 19
log streams

see also log files; log records
definition 21
alarm log stream 21
application log stream 21
filtering 23
handler 19
high availability property 33
maximum number of output files 34
notification log stream 21
output destination 21
system log stream 21

logger 21

M
max number of output files 34
maximum log file size 33

N
notification log stream 21

O
output destination 21

R
record header see log record header
rotation option 34
rules see formatting rules

S
severity level 42
system log stream 21

T
timestamp see log record timestamp
tokens see format tokens

W
wrap option 33
AIS Specification SAI-AIS-LOG-A.02.01 Section 97

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
98 SAI-AIS-LOG-A.02.01 Section AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Superseded and Superseding Functions
	1.3.4 Changes in Return Values of API Functions:
	1.3.5 Removed Topics
	1.3.6 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Log Service
	2.2 Log Streams
	2.3 Log Stream Handlers

	3 SA Log Service API
	3.1 Log Service Model
	3.1.1 Logger
	3.1.2 Log Stream
	3.1.2.1 Alarm, Notification, and System Log Streams
	3.1.2.2 Application Log Stream

	3.1.3 Log Record Properties
	3.1.4 Log Filtering
	3.1.5 Log Record Output Format
	3.1.5.1 Format Tokens
	3.1.5.2 Format Expressions
	3.1.5.3 Default Format Expressions

	3.1.6 Log File Properties
	3.1.6.1 Log File Configurable Attributes
	3.1.6.2 Log File Configuration File
	3.1.6.3 Log File Naming Rules
	3.1.6.4 Configuring the Alarm, Notification, and System Output Destination Files
	3.1.6.5 Log File Behavior

	3.1.7 Internationalization

	3.2 Unavailability of the Log Service API on a Non-Member Node
	3.2.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.2.2 Guidelines for Log Service Implementers

	3.3 Include File and Library Names
	3.4 Type Definitions
	3.4.1 Handles
	3.4.1.1 SaLogHandleT
	3.4.1.2 SaLogStreamHandleT

	3.4.2 Log Types
	3.4.2.1 Log Stream Names
	3.4.2.2 SaLogSeverityT and SaLogSeverityFlagsT
	3.4.2.3 SaLogBufferT
	3.4.2.4 SaLogAckFlagsT
	3.4.2.5 SaLogStreamOpenFlagsT

	3.4.3 Log Service API and Notification Types
	3.4.4 Log Service as Notification Producer
	3.4.4.1 SaLogNtfIdentifiersT
	3.4.4.2 SaLogNtfAttributesT

	3.4.5 Log Record Types
	3.4.5.1 SaLogHeaderTypeT
	3.4.5.2 SaLogNtfLogHeaderT
	3.4.5.3 SaLogGenericLogHeaderT
	3.4.5.4 SaLogHeaderT
	3.4.5.5 SaLogRecordT

	3.4.6 Application Log Types
	3.4.6.1 SaLogFileFullActionT
	3.4.6.2 SaLogFileCreateAttributesT_2

	3.4.7 SaLogCallbacksT
	3.4.8 SaLogLimitIdT

	3.5 Library Life Cycle
	3.5.1 saLogInitialize()
	3.5.2 saLogSelectionObjectGet()
	3.5.3 saLogDispatch()
	3.5.4 saLogFinalize()

	3.6 Log Service Operations
	3.6.1 saLogStreamOpen_2() and saLogStreamOpenAsync_2()
	3.6.2 SaLogStreamOpenCallbackT
	3.6.3 saLogWriteLog() and saLogWriteLogAsync()
	3.6.4 SaLogWriteLogCallbackT
	3.6.5 SaLogFilterSetCallbackT
	3.6.6 saLogStreamClose()

	3.7 Limit Fetch API
	3.7.1 saLogLimitGet()

	4 Log Service UML Information Model
	4.1 DN Format for Log Service UML Classes
	4.2 Log Service UML Classes

	5 Log Service Administration API
	5.1 Log Service Administration API Model
	5.1.1 Log Service Administration API Basics

	5.2 Include File and Library Name
	5.3 Type Definitions
	5.3.1 saLogAdminOperationIdT

	5.4 Log Service Administration API
	5.4.1 SA_LOG_ADMIN_CHANGE_FILTER

	6 Alarms and Notifications
	6.1 Setting Common Attributes
	6.2 Log Service Notifications
	6.2.1 Log Service Alarms
	6.2.1.1 Capacity Alarm

	6.2.2 Log Service Object Change Notifications
	6.2.2.1 Application Log Stream Create
	6.2.2.2 Application Log Stream Delete

	6.2.3 Log Service Attribute Change Notifications
	6.2.3.1 Log Stream Attribute Change

	7 Log Service Management Interface
	7.1 Log Service MIB (SAF-LOG-SVC-MIB)

	Index of Definitions

