
Service AvailabilityTM Forum
Application Interface Specification

Message Service SAI-AIS-MSG-B.03.01

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-MSG-B.03.01 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-MSG-B.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Message Service
1 Document Introduction . 9
 1.1 Document Purpose . 9
 1.2 AIS Documents Organization . 9
 1.3 History . 9
 1.3.1 New Topics . 9
 1.3.2 Clarifications . 10
 1.3.3 Changes in Return Values of API Functions: . 11
 1.3.4 Removed Topics . 11
 1.3.5 Other Changes . 12
 1.4 References . 12
 1.5 How to Provide Feedback on the Specification . 12
 1.6 How to Join the Service Availability™ Forum . 13
 1.7 Additional Information . 13
 1.7.1 Member Companies . 13
 1.7.2 Press Materials . 13

2 Overview . 15

 2.1 Message Service . 15

3 SA Message Service API . 17
 3.1 Message Service Model . 17
 3.1.1 Messages and Message Queues . 17
 3.1.2 Message Queue Groups . 17
 3.1.3 Properties of Message Queues . 19
 3.1.3.1 Nonpersistent and Persistent Message Queues . 19
 3.1.3.2 Message Preservation Property of a Queue . 19
 3.1.4 Associating Processes with Message Queues . 20
 3.1.5 Message Delivery Properties . 20
 3.2 Unavailability of the Message Service API on a Non-Member Node 21
 3.2.1 A Member Node Leaves or Rejoins the Cluster Membership . 21
 3.2.2 Guidelines for Message Service Implementers . 22
 3.3 Include File and Library Name . 23
 3.4 Type Definitions . 23
 3.4.1 Handles . 23
 3.4.1.1 SaMsgHandleT . 23
 3.4.1.2 SaMsgQueueHandleT . 23
 3.4.2 SaMsgSenderIdT . 23
 3.4.3 SaMsgCallbacksT . 24
 3.4.4 SaMsgAckFlagsT . 24
 3.4.5 Message Queue Creation Flags and Creation Attributes . 24
 3.4.5.1 SaMsgQueueCreationFlagsT . 25
AIS Specification SAI-AIS-MSG-B.03.01 5

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.4.5.2 SaMsgQueueCreationAttributesT . 25
 3.4.6 SaMsgQueueOpenFlagsT . 25
 3.4.7 Message Priority . 26
 3.4.8 Message Queue Usage and Status . 26
 3.4.8.1 SaMsgQueueUsageT . 27
 3.4.8.2 SaMsgQueueStatusT . 27
 3.4.9 SaMsgQueueGroupPolicyT . 28
 3.4.10 Types for Tracking Message Queue Group Changes . 28
 3.4.10.1 SaMsgQueueGroupChangesT . 28
 3.4.10.2 SaMsgQueueGroupMemberT . 29
 3.4.10.3 SaMsgQueueGroupNotificationT . 29
 3.4.10.4 SaMsgQueueGroupNotificationBufferT . 30
 3.4.11 SaMsgMessageT . 30
 3.4.12 Critical Capacity of Message Queues and Message Queue Groups 31
 3.4.12.1 saMsgMessageCapacityStatusT . 32
 3.4.12.2 SaMsgQueueThresholdsT . 32
 3.4.12.3 saMsgStateT . 33
 3.4.13 SaMsgLimitIdT . 34
 3.5 Library Life Cycle . 36
 3.5.1 saMsgInitialize() . 36
 3.5.2 saMsgSelectionObjectGet() . 38
 3.5.3 saMsgDispatch() . 40
 3.5.4 saMsgFinalize() . 41
 3.6 Message Queue Operations . 42
 3.6.1 saMsgQueueOpen() and saMsgQueueOpenAsync() . 42
 3.6.2 SaMsgQueueOpenCallbackT . 47
 3.6.3 saMsgQueueClose() . 49
 3.6.4 saMsgQueueStatusGet() . 51
 3.6.5 saMsgQueueRetentionTimeSet() . 52
 3.6.6 saMsgQueueUnlink() . 54
 3.7 Management of Message Queue Groups . 56
 3.7.1 saMsgQueueGroupCreate() . 56
 3.7.2 saMsgQueueGroupInsert() . 58
 3.7.3 saMsgQueueGroupRemove() . 59
 3.7.4 saMsgQueueGroupDelete() . 61
 3.7.5 saMsgQueueGroupTrack() . 62
 3.7.6 SaMsgQueueGroupTrackCallbackT . 65
 3.7.7 saMsgQueueGroupTrackStop() . 67
 3.7.8 saMsgQueueGroupNotificationFree() . 69
 3.8 Message Send and Receive Operations . 70
 3.8.1 saMsgMessageSend() and saMsgMessageSendAsync() . 70
 3.8.2 SaMsgMessageDeliveredCallbackT . 74
 3.8.3 saMsgMessageGet() . 77
 3.8.4 saMsgMessageDataFree() . 80
 3.8.5 SaMsgMessageReceivedCallbackT . 81
 3.8.6 saMsgMessageCancel() . 82
6 SAI-AIS-MSG-B.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.9 Request-Reply Operations . 84
 3.9.1 saMsgMessageSendReceive() . 84
 3.9.2 saMsgMessageReply() and saMsgMessageReplyAsync() . 88
 3.10 Set and Get Critical Capacity Thresholds Operations . 92
 3.10.1 saMsgQueueCapacityThresholdsSet() . 92
 3.10.2 saMsgQueueCapacityThresholdsGet() . 94
 3.11 Retrieve Metadata Size and Limit Fetch Operations . 95
 3.11.1 saMsgMetadataSizeGet() . 95
 3.11.2 saMsgLimitGet() . 97

4 Message Service Information Model . 99
 4.1 DN Format for the Message Service UML Classes . 99
 4.2 Message Service UML Classes . 99

5 Message Service Administration API . 101

6 Alarms and Notifications . 103
 6.1 Setting Common Attributes . 103
 6.2 Message Service Notifications . 104
 6.2.1 Message Service Alarms . 104
 6.2.2 Message Service State Change Notifications . 105
 6.2.2.1 Message Queue Capacity Reached . 105
 6.2.2.2 Message Queue Capacity Available . 106
 6.2.2.3 Message Queue Group Capacity Reached . 107
 6.2.2.4 Message Queue Group Capacity Available . 108

7 Message Service Management Interface . 109

 7.1 Message Service MIB (SAF-MSG-SVC-MIB) . 109

Index of Definitions . 111
AIS Specification SAI-AIS-MSG-B.03.01 7

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
8 SAI-AIS-MSG-B.03.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Message Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for use by imple-
menters of the Application Interface Specification and by application developers who
would use the Application Interface Specification to develop applications that must be
highly available. The AIS is defined in the C programming language, and requires
substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
Previous releases of the Message Service specification:

(1) SAI-AIS-MSG-A.01.01
(2) SAI-AIS-MSG-B.01.01
(3) SAI-AIS-MSG-B.02.01

This section presents the changes of the current release, SAI-AIS-MSG-B.03.01, with
respect to the SAI-AIS-MSG-B.02.01 release. Editorial changes are not mentioned
here.

1.3.1 New Topics
• Section 3.1.1 introduces the notion of message metadata. This implies clarifica-

tions in Section 3.4.5.2 and Section 3.4.8.1.
• Section 3.2 describes the behavior of the Message Service API on a cluster node

that is not in the cluster membership (see [4]).
• Section 3.4.12.2 introduces the SaMsgQueueThresholdsT type, which is used to

set and retrieve critical capacity thresholds for the priority areas of a message
queue.
AIS Specification SAI-AIS-MSG-B.03.01 Section 1 9

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• Section 3.4.13 describes the SaMsgLimitIdT enum, which provides a set of val-
ues that identify limits for a particular implementation of the Message Service.

• Section 3.10 describes the set and get capacity thresholds operations.
• Section 3.11 describes functions to retrieve implementation-specific values (mes-

sage metadata size and a particular implementation limit).
• Chapter 4 presents the Message Service UML Information Model. The Message

Service UML classes (see FIGURE 1 on page 100) were previously contained in
[1]. Two new attributes have been added and the constraints of some attributes
have changed.

• Chapter 5 states that no administration APIs are provided for the Message Ser-
vice.

• Chapter 7 presents the Message Service Management Interface.

1.3.2 Clarifications
• See also Section 1.3.1 and Section 1.3.3.
• Section 3.1.3.2 clarifies that an application must not expect that the Message

Service preserves messages in case of node failures.
• Section 3.5.3 on the saMsgDispatch() function clarifies the meaning of the

SA_AIS_OK return value.
• The description of the saMsgFinalize() function (see Section 3.5.4) clarifies that

this function frees all resources allocated by the Message Service for the pro-
cess in this association between the process and the Message Service.

• The description of the saMsgQueueClose() function (see Section 3.6.3) clarifies
which resources this function frees for the invoking process.

• The return values subsection of Section 3.7.5 on the saMsgQueueGroupTrack()
function clarifies when the SA_AIS_ERR_INIT is returned.

• Section 6.2 clarifies the setting of the notifying object in notifications.
10 SAI-AIS-MSG-B.03.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Changes in Return Values of API Functions:

1.3.4 Removed Topics

SA Forum revisited its alarm issuance directives for this release and modified the
conditions that determine when an alarm would be produced. As a consequence, AIS
services shall only generate alarms for situations that require an explicit intervention
by an external agent or operator, provided that the corrective measures to be taken
are well defined. Based on these directives, the alarms generated so far by the AIS
services have been revised, and it was decided to remove the "service impaired”
alarm from the Message Service B.03.01 version.

SA Forum does not mandate that Message Service implementations which also sup-
port the B.02.01 version must generate the "service impaired” alarm for the B.02.01
version.

The "service impaired” alarm has also been removed from the Message Service MIB
for the Message Service B.03.01 version.

Table 1 Changes in Return Values of API Functions

API Function Return Value Change
Type

All API functions except saMsgFinalize()
and SaMsgMessageReceivedCallbackT

SA_AIS_ERR_UNAVAILABLE new

saMsgQueueOpen(),
saMsgQueueOpenAsync(),
SaMsgQueueOpenCallbackT,
saMsgMessageSend(),
saMsgMessageSendAsync(),
SaMsgMessageDeliveredCallbackT,
saMsgMessageSendReceive(),
saMsgMessageReplyAsync(), and
saMsgMessageReplyAsync()

SA_AIS_ERR_TOO_BIG new

saMsgQueueOpen(),
saMsgQueueOpenAsync(), and
SaMsgQueueOpenCallbackT

SA_AIS_ERR_NO_RESOURCES extended

SaMsgQueueGroupTrackCallbackT SA_AIS_ERR_INVALID_PARAM clarified

saMsgMessageSend() and
saMsgMessageSendAsync()

SA_AIS_ERR_NO_MEMORY
SA_AIS_ERR_NO_RESOURCES

extended
AIS Specification SAI-AIS-MSG-B.03.01 Section 1.3.3 11

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.5 Other Changes
• Section 3.1.1 and Section 3.1.2 state now that message queues and message

queue groups respectively cannot be configured statically. Only a dynamic con-
figuration is provided.

• The attribute saMsgQueueGroupMemberName has been added to the runtime
object class SaMsgQueueGroup (refer to FIGURE 1 in Section 4.2). This
attribute was missing in the SAI-AIS-MSG-B.02.01 version of the Message Ser-
vice.

1.4 References
The following documents contain information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.03.01

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.02.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.01.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.03.01

[5] Service AvailabilityTM Forum, SA Forum Information Model in XML Metadata
Interchange (XMI) v2.1 format, SAI-XMI-A.02.01

[6] Service AvailabilityTM Forum, Application Interface Specification, Availability
Management Framework, SAI-AIS-AMF-B.02.01

[7] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

References to these documents are made by placing the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.
12 SAI-AIS-MSG-B.03.01 Section 1.3.5 AIS Specification

http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the Forum’s website
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-MSG-B.03.01 Section 1.6 13

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
14 SAI-AIS-MSG-B.03.01 Section 1.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2 Overview
This specification defines the Message Service within the Application Interface Spec-
ification (AIS).

2.1 Message Service
The Message Service specifies a buffered message-passing system based on the
concept of a message queue for processes on the same or on different nodes1. Mes-
sages are written to message queues and read from them. A single message queue
permits a multipoint-to-point communication. Message queues are persistent or non-
persistent. The Message Service must preserve messages that have not yet been
consumed when the message queue is closed.

Processes sending messages to a message queue are unaware that the process
which was originally processing these messages, has been replaced by another pro-
cess acting as a standby in case the original process fails or switches over.

Message queues can be grouped together to form message queue groups. Message
queue groups permit multipoint-to-multipoint communication. They are identified by
logical names, so that a process is unaware of the number of message queues and of
the physical location of the message queues to which it is communicating. The
sender addresses message queue groups by using the same mechanisms that it
uses to address single message queues. The message queue groups can be used to
distribute messages among message queues pertaining to the message queue
group. Regardless of the number of message queues to which messages are distrib-
uted, the message queue group remains accessible under the same name.

Message queue groups can be used to maintain transparency of the sender process
to faults in the receiver processes, represented by the message queues in the mes-
sage queue groups. The sender process communicates with the message queue
group. If a receiver process fails, the sender process continues to communicate with
the message queue group and is unaware of the fault, because it continues to obtain
service from the other receiver processes.

With message queues, the Message Service uses the model of n senders to 1
receiver whereas with message queue groups, the Message Service uses the model
of m senders to n receivers.

1. The term “node” unless otherwise qualified is used in this document in the sense of a “member node”, as
defined in the Cluster Membership Service specification (see [4]).
AIS Specification SAI-AIS-MSG-B.03.01 Section 2 15

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Overview
16 SAI-AIS-MSG-B.03.01 Section 2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3 SA Message Service API

3.1 Message Service Model

3.1.1 Messages and Message Queues

A message consists of message data plus associated metadata.
The message data consists of a byte array of a certain size. The contents of the
message data are opaque to the Message Service.
The message metadata comprises a standard portion and an implementation-
specific portion. The standard metadata portion of a message covers its type, ver-
sion, priority, data size, variable-length sender name (rounded up to the next multi-
ple of 8 bytes), and sender name length. These terms are explained in Section 3.4.11
on page 30.
The implementation-specific metadata portion has a fixed size for any message.
The term message size denotes the sum of the size of the message data (rounded
up to the next multiple of 8 bytes) and the size of the message metadata.

A message queue is a software abstraction for buffering messages. A message
queue consists of a collection of separate data areas that are used to store messages
of different priorities. These data areas are called the priority areas of the message
queue. Each priority area holds messages of the same priority. The priority areas of a
message queue have individual sizes.

A message queue is global to a cluster and is identified by a unique name in the
name space of all message queues.

Message queues can be dynamically created and deleted.

3.1.2 Message Queue Groups

A message queue group is a collection of message queues that are addressed as a
single entity. A message queue can be a member of more than one message queue
group. If a message queue is removed from the cluster, the message queue is auto-
matically removed from all message queue groups of which it is a member.

A message queue group is global to a cluster and is identified by a unique name.
Message queues and message queue groups have distinct name spaces.

Message queue groups can be dynamically created and deleted.

Messages sent to a message queue group are directed to one or more of its member
message queues. In a unicast message queue group, each message is sent to only
AIS Specification SAI-AIS-MSG-B.03.01 Section 3 17

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
one of the message queues in the group. In a multicast message queue group, a
message can be sent to more than one message queue in the group. Hence, more
than one process can receive the message.

An implementation can support several different unicast and multicast policies
described below. The Equal Load Distribution is mandatory.

In the unicast and multicast policies given below, a local member is a message
queue that is opened by a process residing on the same node as the sending pro-
cess. In contrast, a remote member is a message queue that is opened by a process
not residing on the same node as the sending process.

• Equal Load Distribution (unicast)

The message is sent to a single member. The members are addressed
one-by-one in a round-robin fashion. If an error occurs when sending to a
member, it is implementation-dependent whether the error is returned imme-
diately or whether the Message Service selects the next member in turn and
for how many members this procedure is repeated. This policy is mandatory.

• Local Equal Load Distribution (unicast)

The message is sent to a single member. The local member message queues
are addressed one-by-one in a round-robin fashion. If no local member exists,
the behavior is the same as for the equal load distribution policy. If an error
occurs when sending to a member, it is implementation-dependent whether
the error is immediately returned or whether the Message Service selects the
next member in turn and for how many members this procedure is repeated.

• Local Best Queue (unicast)

The message is sent to a single member. The local member message queue
with the largest amount of available space is selected. If several members ful-
fill this condition, they are addressed one-by-one in a round-robin fashion. If
no local member exists, a remote member or a member that is not opened by
any process is selected according to the equal load distribution policy. If an
error occurs when sending to a member, it is implementation-dependent
whether the error is returned immediately or whether the Message Service
selects the next member in turn and for how many members this procedure is
repeated.

• Broadcast (multicast)
18 SAI-AIS-MSG-B.03.01 Section 3.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
The message is sent to all members of the message queue group that have
sufficient space to hold the message.

3.1.3 Properties of Message Queues

3.1.3.1 Nonpersistent and Persistent Message Queues

A message queue can be defined as nonpersistent, meaning that the Message Ser-
vice removes the message queue automatically from the cluster-wide name space if
no process has opened this message queue for a configurable amount of time, called
the retention time. The retention time starts each time when the corresponding mes-
sage queue is closed.

A persistent message queue is like a nonpersistent message queue with an infinite
retention time. A persistent message queue can be removed only by an explicit call to
the saMsgQueueUnlink() function.

If no process has the message queue opened when saMsgQueueUnlink() is called,
the Message Service removes the message queue immediately, even if it is persis-
tent; otherwise, the Message Service removes the message queue when it is closed.

3.1.3.2 Message Preservation Property of a Queue

If a persistent message queue or a message queue with nonzero retention time is
closed, the Message Service must preserve all messages in the message queue
which have not yet been consumed.

In node switch-over situations, the Message Service must preserve messages in a
message queue which have not yet been consumed. For example, assume a service
unit (for details, refer to [6]) containing a component cx that retrieves messages from
a message queue Q for the service assigned to this service unit. Assume further that
this service switches over to another service unit which is located on another node
and which contains the component cy that works as standby for cx's service. If cy
reopens the queue Q and does not specify that it wants existing messages to be
deleted, the Message Service must preserve the messages that were not retrieved by
cx when cx closed Q as well as the messages that arrived at Q after cx closed it and
before cy reopened it.

If message queues are implemented as node-local resources, an application must
not expect that the Message Service preserves messages in case of node failures.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.1.3 19

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.1.4 Associating Processes with Message Queues

Messages are sent and received by processes. The Message Service is a coopera-
tive model where any process may write to any message queue or message queue
group.

A process can retrieve (receive) messages from a message queue. For this purpose,
a process can open a message queue, obtain a handle to it, and receive messages
from it. While a process has a message queue open, the message queue cannot be
opened again by the same process or by any other process.

If a process terminates abnormally, the Message Service automatically closes all of
its open message queues.

3.1.5 Message Delivery Properties
• Priority - When a process receives a message from a message queue by

invoking saMsgMessageGet(), the process receives messages in a higher pri-
ority area before it receives messages in a lower priority area. The process
receives messages of the same priority from a sending process in the order in
which that process sent them. It might not receive messages of different priori-
ties from a sending process in the same order in which that process sent them.

• Integrity of messages - The Message Service guarantees that messages
sent by a process to a message queue are neither altered nor duplicated. Only
complete messages are stored in a message queue.

• At-most-once delivery - The Message Service guarantees that a message
sent to a message queue is delivered at most once to that message queue. A
message sent to a unicast message queue group is delivered at most once to
one of the member message queues. A message sent to a multicast message
queue group is delivered at most once to each of the selected member mes-
sage queues.

• Delivery guarantees - If a process sends a message to a message queue or
to a unicast message queue group, and the space in the destination message
queue is not enough to hold the entire message, the error code
SA_AIS_ERR_QUEUE_FULL is returned, assuming that the process
requested an acknowledgment for its send operation. It is expected that for
correctly constructed sending calls, an implementation returns errors other
than SA_AIS_ERR_QUEUE_FULL only under exceptional and extremely rare
conditions. For instance, it is not acceptable to drop packets due to a network
that is momentarily congested. Therefore, the Message Service does not
define a return value such as communication error for the sending API calls
but only a SA_AIS_ERR_TIMEOUT timeout error.
If a process sends a message to a multicast message queue group and
20 SAI-AIS-MSG-B.03.01 Section 3.1.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
requests an acknowledgment, SA_AIS_OK is returned if the message can be
sent successfully to at least one member of the message queue group.

• Acknowledgment - A process sending messages can request the Message
Service to notify the process whether the sending was successful. A process
can ask for an acknowledgment that the sent message has been stored in the
destination message queue (refer to send operations in Section 3.8.1) or that
the reply to a sending process has been received by the sending process
(refer to request/reply operations in Section 3.9).

• Persistence of messages - Messages are kept in message queues. A mes-
sage never expires in a message queue. When a message is retrieved suc-
cessfully from a message queue by invoking saMsgMessageGet(), the
message is removed from the message queue. The physical representation of
a message queue may reside on disk, on a cluster file system, on global
shared memory, on shared memory of each node with or without replication,
and so on. However, the choice of persistence can have negative effects on
the performance of the Message Service. Therefore, this specification does
not require that the physical representation of a message queue be durably
stored to survive node failures or shutting down the entire cluster.
See also Section 3.1.3.2.

3.2 Unavailability of the Message Service API on a Non-Member Node
The Message Service does not provide service to processes on cluster nodes that
are not in the cluster membership (see [4]).

The following subsection describes the behavior of the Message Service under vari-
ous conditions that cause the Message Service to be unavailable on a node. Section
3.2.2 contains recommendations to Message Service implementers for dealing with a
temporary unavailability of providing service.

3.2.1 A Member Node Leaves or Rejoins the Cluster Membership

If the cluster node has left the cluster membership (see [4]) or is being administra-
tively evicted from the cluster membership, the Message Service behaves as follows
towards processes residing on that node and using or attempting to use the service:

⇒ Calls to saMsgInitialize() will fail with SA_AIS_ERR_UNAVAILABLE.
⇒ All Message Service APIs that are invoked by the process and that operate on

handles already acquired by the process will fail with
SA_AIS_ERR_UNAVAILABLE with the following exceptions, assuming that the
handle msgHandle has already been acquired:
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.2 21

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• The functions saMsgQueueOpenAsync() and saMsgQueueGroupTrack()
(assuming that the latter function requires a callback) may return SA_AIS_OK
or SA_AIS_ERR_UNAVAILABLE, depending on the service implementation. If
they return SA_AIS_OK, the callbacks SaMsgQueueOpenCallbackT and
SaMsgQueueGroupTrackCallbackT respectively will be called and will also
return SA_AIS_ERR_UNAVAILABLE in the error parameter; otherwise, the
callbacks will not be called.

• If the saMsgMessageSendAsync() and saMsgMessageReplyAsync() API
functions require an acknowledgment, they may return SA_AIS_OK or
SA_AIS_ERR_UNAVAILABLE, depending on the service implementation. If
they return SA_AIS_OK, SaMsgMessageDeliveredCallbackT will be called
and will also return SA_AIS_ERR_UNAVAILABLE in the error parameter; oth-
erwise, SaMsgMessageDeliveredCallbackT will not be called.

• The saMsgFinalize() function, which is used to free the library handles and all
resources associated with these handles.

⇒ Any outstanding callbacks SaMsgQueueOpenCallbackT,
SaMsgQueueGroupTrackCallbackT, and SaMsgMessageDeliveredCallbackT will
return SA_AIS_ERR_UNAVAILABLE in the error parameter.

⇒ The callback SaMsgMessageReceivedCallbackT will not be called.

If the node rejoins the cluster membership, processes executing on the node will be
able to reinitialize new library handles and use the entire set of Message Service
APIs that operate on these new handles; however, invocation of APIs that operate on
handles acquired by any process before the node left the membership will continue to
fail with SA_AIS_ERR_UNAVAILABLE (or with the special treatment described above
for asynchronous calls) with the exception of saMsgFinalize(), which is used to free
the library handles and all resources associated with these handles. Hence, it is rec-
ommended for the processes to finalize the library handles as soon as the processes
detect that the node left the membership.

When the node leaves the membership, the Message Service executing on the
remaining nodes of the cluster behaves as if all processes that were using the Mes-
sage Service on the leaving node had been terminated. In particular, if an
saMsgQueueUnlink() operation is pending because one or more processes on the
leaving node had the message queue open, the unlink operation can proceed now.

3.2.2 Guidelines for Message Service Implementers

The implementation of the Message Service must leverage the SA Forum Cluster
Membership Service (see [4]) to determine the membership status of a node for the
case explained in Section 3.2.1 before returning SA_AIS_ERR_UNAVAILABLE. If the
Cluster Membership Service considers a node as a member of the cluster but the
22 SAI-AIS-MSG-B.03.01 Section 3.2.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Message Service experiences difficulty in providing service to its clients because of
transport, communication, or other issues, it must respond with
SA_AIS_ERR_TRY_AGAIN.

3.3 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Message Service API:

#include <saMsg.h>

To use the Message Service API, an application must be bound with the following
library:

libSaMsg.so

3.4 Type Definitions
The Message Service uses the types described in the following sections.

3.4.1 Handles

3.4.1.1 SaMsgHandleT

typedef SaUint64T SaMsgHandleT;

This type is used for the handle that is supplied by the Message Service to a process
during initialization of the Message Service library and that is used by the process
when it invokes functions of the Message Service API.

3.4.1.2 SaMsgQueueHandleT

typedef SaUint64T SaMsgQueueHandleT;

This type is used for the handle to a message queue.

3.4.2 SaMsgSenderIdT

typedef SaUint64T SaMsgSenderIdT;

This type is used internally by the Message Service to identify the thread that called
saMsgMessageSendReceive(); it must not be changed by the invoking thread.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.3 23

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.3 SaMsgCallbacksT

The SaMsgCallbacksT structure is defined as follows:

typedef struct {

SaMsgQueueOpenCallbackT saMsgQueueOpenCallback;

SaMsgQueueGroupTrackCallbackT saMsgQueueGroupTrackCallback;

SaMsgMessageDeliveredCallbackT saMsgMessageDeliveredCallback;

SaMsgMessageReceivedCallbackT saMsgMessageReceivedCallback;

} SaMsgCallbacksT;

A structure of the SaMsgCallbacksT type (called a callbacks structure) is used to
specify the callback functions that the Message Service may invoke.

3.4.4 SaMsgAckFlagsT

The SaMsgAckFlagsT type is used in the saMsgMessageSendAsync() and
saMsgMessageReplyAsync() calls. A parameter of the type SaMsgAckFlagsT indi-
cates the kind of the required acknowledgment and can be set to either zero or
SA_MSG_MESSAGE_DELIVERED_ACK:

#define SA_MSG_MESSAGE_DELIVERED_ACK 0x1

typedef SaUint32T SaMsgAckFlagsT;

SA_MSG_MESSAGE_DELIVERED_ACK - This flag indicates that the caller requires
an acknowledgment to confirm that the message has been stored in the destination
message queue or reply buffer (see Section 3.8.2 on page 74). If the space in the
destination message queue or reply buffer is not enough for the entire message, the
Message Service returns SA_AIS_ERR_QUEUE_FULL in case of a message queue
and SA_AIS_ERR_NO_SPACE in case of a reply buffer.
If SA_MSG_MESSAGE_DELIVERED_ACK is not set, the caller does not require an
acknowledgment.

3.4.5 Message Queue Creation Flags and Creation Attributes

This section defines the creation flags and the creation attributes of a message
queue used in the saMsgQueueOpen() or saMsgQueueOpenAsync() calls.
24 SAI-AIS-MSG-B.03.01 Section 3.4.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.5.1 SaMsgQueueCreationFlagsT

#define SA_MSG_QUEUE_PERSISTENT 0x1

typedef SaUint32T SaMsgQueueCreationFlagsT;

SA_MSG_QUEUE_PERSISTENT - If this flag is set, the message queue is persis-
tent, that is, it can be removed only by an explicit call to saMsgQueueUnlink(). If the
SA_MSG_QUEUE_PERSISTENT flag is not set, the message queue is nonpersis-
tent, meaning that the Message Service removes the message queue automatically if
it is not opened by a process after the message queue is closed and before the reten-
tion time of the message queue elapses.

3.4.5.2 SaMsgQueueCreationAttributesT

typedef struct {

SaMsgQueueCreationFlagsT creationFlags;

SaSizeT size[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

SaTimeT retentionTime;

} SaMsgQueueCreationAttributesT;

The fields of the SaMsgQueueCreationAttributesT type have the following interpreta-
tion:

• creationFlags - Zero or SA_MSG_QUEUE_PERSISTENT. Refer also to
retentionTime below.

• size - The size in bytes of the priority area of the message queue to contain
messages with the specified priority. Both message data and message meta-
data consume space in the priority area. For the meaning of
SA_MSG_MESSAGE_LOWEST_PRIORITY, refer to Section 3.4.7 on page
26. The size of the implementation-specific message metadata can be
obtained by invoking the saMsgMetadataSizeGet() function (see Section
3.11.1 on page 95).

• retentionTime - The time duration after a process closes the message queue
until the Message Service removes the message queue. This parameter
applies only to nonpersistent message queues.

3.4.6 SaMsgQueueOpenFlagsT

The following values specify the open attributes used in the saMsgQueueOpen() or
saMsgQueueOpenAsync() calls.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.5.1 25

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
#define SA_MSG_QUEUE_CREATE 0x1

#define SA_MSG_QUEUE_RECEIVE_CALLBACK 0x2

#define SA_MSG_QUEUE_EMPTY 0x4

typedef SaUint32T SaMsgQueueOpenFlagsT;

A value of the SaMsgQueueOpenFlagsT type is zero or the bitwise OR of one or
more of the flags in the following list:

• SA_MSG_QUEUE_CREATE - This flag requests the Message Service to cre-
ate a message queue if the message queue does not exist.

• SA_MSG_QUEUE_RECEIVE_CALLBACK - This flag requests the Message
Service to notify the process about the arrival of messages by invoking the
saMsgMessageReceivedCallback() callback call. The message can be
retrieved by invoking saMsgMessageGet(). If this flag is not set, the callback
function for the arrival of messages is not called, but the process can still
invoke the saMsgMessageGet() call to receive messages.

• SA_MSG_QUEUE_EMPTY - This flag requests the Message Service to delete
existing messages when opening a message queue. If the flag is not set, the
Message Service must preserve existing messages when opening the mes-
sage queue. However, the Message Service cannot guarantee that messages
will be preserved in a fail-over situation.

3.4.7 Message Priority

Messages can have a priority between SA_MSG_MESSAGE_LOWEST_PRIORITY
and SA_MSG_MESSAGE_HIGHEST_PRIORITY.

#define SA_MSG_MESSAGE_HIGHEST_PRIORITY 0

#define SA_MSG_MESSAGE_LOWEST_PRIORITY 3

3.4.8 Message Queue Usage and Status

This section defines the types SaMsgQueueUsageT and SaMsgQueueStatusT,
which are used to obtain information about a message queue.
26 SAI-AIS-MSG-B.03.01 Section 3.4.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.8.1 SaMsgQueueUsageT

typedef struct {

SaSizeT queueSize;

SaSizeT queueUsed;

SaUint32T numberOfMessages;

} SaMsgQueueUsageT;

The fields of the SaMsgQueueUsageT type are valid for a given priority area of a
message queue. They have the following interpretation:

• queueSize - The size in bytes of the priority area. This size is specified when
the corresponding queue is created. This space is used to hold messages of a
particular priority and is consumed by both message data and message meta-
data.

• queueUsed - The current number of bytes in the priority area occupied by
messages of a particular priority. This number includes both message data
and message metadata.

• numberOfMessages - The current number of messages in the priority area.

3.4.8.2 SaMsgQueueStatusT

typedef struct {

SaMsgQueueCreationFlagsT creationFlags;

SaTimeT retentionTime;

SaTimeT closeTime;

SaMsgQueueUsageT
saMsgQueueUsage[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

} SaMsgQueueStatusT;

The fields of the SaMsgQueueStatusT type have the following interpretation:

• creationFlags - Zero or SA_MSG_QUEUE_PERSISTENT, which was defined
in Section 3.4.5 on page 24.

• retentionTime - The time duration after a process closes the message queue
until the Message Service removes it. This field applies only to nonpersistent
message queues.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.8.1 27

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• closeTime - The absolute time when the message queue was last closed. This
field contains zero if the message queue is currently open for a process.

• saMsgQueueUsage - An array containing the message queue usage data for
each priority area of the message queue.

3.4.9 SaMsgQueueGroupPolicyT

typedef enum {

SA_MSG_QUEUE_GROUP_ROUND_ROBIN = 1,

SA_MSG_QUEUE_GROUP_LOCAL_ROUND_ROBIN = 2,

SA_MSG_QUEUE_GROUP_LOCAL_BEST_QUEUE = 3,

SA_MSG_QUEUE_GROUP_BROADCAST = 4

} SaMsgQueueGroupPolicyT;

The only mandatory message queue group policy in this version is
SA_MSG_QUEUE_GROUP_ROUND_ROBIN. For the description of message
queue group policies, refer to Section 3.1.2 on page 17.

3.4.10 Types for Tracking Message Queue Group Changes

This section defines the types needed for tracking message queue group changes.

3.4.10.1 SaMsgQueueGroupChangesT

typedef enum {

SA_MSG_QUEUE_GROUP_NO_CHANGE = 1,

SA_MSG_QUEUE_GROUP_ADDED = 2,

SA_MSG_QUEUE_GROUP_REMOVED = 3,

SA_MSG_QUEUE_GROUP_STATE_CHANGED = 4

} SaMsgQueueGroupChangesT;

The values of the SaMsgQueueGroupChangesT enumeration type have the following
interpretation:

• SA_MSG_QUEUE_GROUP_NO_CHANGE - This value is used when the
trackFlags parameter of the saMsgQueueGroupTrack() function (as defined in
Section 3.7.5) is either

• SA_TRACK_CURRENT or
• SA_TRACK_CHANGES and
28 SAI-AIS-MSG-B.03.01 Section 3.4.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• the message queue was already a member of the message queue
group in the previous saMsgQueueGroupTrackCallback() callback call,

• and it has not been removed from the message queue group.
• SA_MSG_QUEUE_GROUP_ADDED - The message queue has been added

to the message queue group since the last callback.
• SA_MSG_QUEUE_GROUP_REMOVED - The message queue has been

removed from the message queue group since the last callback.
• SA_MSG_QUEUE_GROUP_STATE_CHANGED - This value is reserved for

future use.

3.4.10.2 SaMsgQueueGroupMemberT

typedef struct {

SaNameT queueName;

} SaMsgQueueGroupMemberT;

The field queueName is the name of a message queue in the message queue group.

3.4.10.3 SaMsgQueueGroupNotificationT

typedef struct {

SaMsgQueueGroupMemberT member;

SaMsgQueueGroupChangesT change;

} SaMsgQueueGroupNotificationT;

The fields of the SaMsgQueueGroupNotificationT type have the following interpreta-
tion:

• member - Information about a message queue group member.
• change - The type of change since the last callback.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.10.2 29

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.10.4 SaMsgQueueGroupNotificationBufferT

typedef struct {

SaUint32T numberOfItems;

SaMsgQueueGroupNotificationT *notification;

SaMsgQueueGroupPolicyT queueGroupPolicy;

} SaMsgQueueGroupNotificationBufferT;

The fields of the SaMsgQueueGroupNotificationBufferT type have the following inter-
pretation:

• numberOfItems - Number of elements in the array to which notification points.
Each element in this array is of type SaMsgQueueGroupNotificationT.

• notification - Pointer to the notification array.
• queueGroupPolicy - The load distribution policy of the message queue group.

3.4.11 SaMsgMessageT

This type describes a message to be used for sending and receiving.

typedef struct {

SaUint32T type;

SaUint32T version;

SaSizeT size;

SaNameT *senderName;

void *data;

SaUint8T priority;

} SaMsgMessageT;

The fields of the SaMsgMessageT type have the following interpretation:

• type - Message type that is specified by a process when it sends a message.
• version - Version of the message. This field is used to distinguish different ver-

sions of messages with the same message type. It is the responsibility of the
application program to set version and to ensure that the application program
can handle messages with appropriate different versions.

• size - Size of the message data in bytes, which is set by a process when it
sends a message and by the Message Service when it receives a message.
30 SAI-AIS-MSG-B.03.01 Section 3.4.10.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• senderName - A pointer to a name that identifies the sender of the message. It
can be provided by a process sending the message. If the process sending the
message is part of a component under the control of the Availability Manage-
ment Framework, this field should contain the name of that component (in
future, it is expected that in such cases it shall be mandatory to pass the LDAP
DN of a component); otherwise, any octet string (including zeros) may be used
as the sender name. If the sending process does not provide the sender
name, but a receiving process expects it, the Message Service sets
senderName->length to zero when the message is retrieved.

• data - A pointer to an area containing the message data. The message data is
provided by a process when it sends a message. The Message Service
passes the message data to a process when the process retrieves the mes-
sage.

• priority - Priority of the message. This field is set by a process when it sends a
message. For the possible values of this field, refer to Section 3.4.7 on page
26.

3.4.12 Critical Capacity of Message Queues and Message Queue Groups

The Message Service defines the states of a message queue or a message queue
group that need to be notified to a system administrator in form of a state change
notification. For details on notifications, refer to Chapter 6 and [2].

For semantic clarity and flexibility regarding when such notifications are generated,
the concept of a critical capacity per priority area within a message queue is intro-
duced.

The critical capacity of a priority area consists of a pair of values, one for the
high-water capacity threshold and the other for the low-water capacity threshold. The
status of a priority area changes to critical if the usage of the priority area exceeds the
high-water capacity threshold value. The status of a priority area changes to non-
critical if the status of a priority area is already critical and the usage falls below the
low-water capacity threshold value.
The high-water and low-water capacity thresholds must be lesser than or equal to the
priority area size.

The user can set the critical capacity of the priority areas of a queue by invoking the
saMsgQueueCapacityThresholdsSet() function. If not set by the
saMsgQueueCapacityThresholdsSet() function, the low-water and the high-water
capacity thresholds of a priority area are identical to the corresponding priority area
size.

The user can retrieve the critical capacity of a queue by invoking the
saMsgQueueCapacityThresholdsGet() function.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.12 31

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.12.1 saMsgMessageCapacityStatusT

The following enumeration contain values representing the various states of a mes-
sage queue or a message queue group that need to be notified to a system adminis-
trator in form of a state change notification.

typedef enum {

SA_MSG_QUEUE_CAPACITY_REACHED = 1,

SA_MSG_QUEUE_CAPACITY_AVAILABLE = 2,

SA_MSG_QUEUE_GROUP_CAPACITY_REACHED = 3,

SA_MSG_QUEUE_GROUP_CAPACITY_AVAILABLE = 4

} SaMsgMessageCapacityStatusT;

The values of the SaMsgMessageCapacityStatusT enumeration type have the follow-
ing interpretation:

• SA_MSG_QUEUE_CAPACITY_REACHED - All priority areas of a message
queue are at critical capacity, and this condition is potentially affecting the capa-
bility of the message queue to accept new messages in any of its priority areas.

• SA_MSG_QUEUE_CAPACITY_AVAILABLE - At least one priority area in the
message queue is no longer filled up to its critical capacity and is available to
again accept new messages after having recovered from a preceding
SA_MSG_QUEUE_CAPACITY_REACHED condition.

• SA_MSG_QUEUE_GROUP_CAPACITY_REACHED - All priority areas of all the
message queues within a message queue group are filled up to their critical
capacities, and this fact is potentially affecting the capability of the message
queue group to accept new messages.

• SA_MSG_QUEUE_GROUP_CAPACITY_AVAILABLE - At least one priority area
in one message queue within the queue group is no longer filled up to its critical
capacity and is available to again accept new messages after having recovered
from a previous SA_MSG_QUEUE_GROUP_CAPACITY_REACHED condition.

3.4.12.2 SaMsgQueueThresholdsT

typedef struct {

SaSizeT capacityReached[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

SaSizeT capacityAvailable[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

} SaMsgQueueThresholdsT;
32 SAI-AIS-MSG-B.03.01 Section 3.4.12.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
This type is used to set and to retrieve critical capacity thresholds for the priority
areas of a message queue. The values set for each priority area i must fulfill the fol-
lowing relationships:

0 <= capacityAvailable[i] <= capacityReached[i] <= size[i],

where size represents the array containing the sizes of the priority areas as specified
at creation time, and capacityReached and capacityAvailable are arrays that contain
for each priority area the high-water capacity threshold and the low-water capacity
threshold respectively.

3.4.12.3 saMsgStateT

The following enum holds all the message queue state types. Currently, only one
such state is defined:

typedef enum {

SA_MSG_DEST_CAPACITY_STATUS = 1

} SaMsgStateT;
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.12.3 33

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.4.13 SaMsgLimitIdT

The SaMsgLimitIdT enum provides a set of values that identify limits for a given
implementation of the Message Service. Note that the Message Service specification
does not define a configuration for these limits, which are usually predefined by the
implementation.

The user can retrieve at runtime the current value of a particular limit by specifying
the identifier of the limit (one of the enum values of the type SaMsgLimitIdT, defined
below) when invoking the saMsgLimitGet() function (see Section 3.11.2 on page 97).

The limit value is returned in a parameter of a generic type (SaLimitValueT type,
defined in [1]). As all limits defined in this specification are of type SaUint64T, the
uint64Value field of SaLimitValueT must be used for further access.

typedef enum {

SA_MSG_MAX_PRIORITY_AREA_SIZE_ID = 1,

SA_MSG_MAX_QUEUE_SIZE_ID = 2,

SA_MSG_MAX_NUM_QUEUES_ID = 3,

SA_MSG_MAX_NUM_QUEUE_GROUPS_ID = 4,

SA_MSG_MAX_NUM_QUEUES_PER_GROUP_ID = 5,

SA_MSG_MAX_MESSAGE_SIZE_ID = 6,

SA_MSG_MAX_REPLY_SIZE_ID = 7

} SaMsgLimitIdT;

The values of the SaMsgLimitIdT enumeration type have the following interpretation:

• SA_MSG_MAX_PRIORITY_AREA_SIZE_ID - This enum can be used to retrieve
the maximum size in bytes of a single priority area of a message queue.

• SA_MSG_MAX_QUEUE_SIZE_ID - This enum can be used to retrieve the maxi-
mum cumulative size in bytes of all priority areas of a message queue. This
value can be smaller, equal, or larger than the number of priority areas multiplied
by SA_MSG_MAX_PRIORITY_AREA_SIZE_ID.

• SA_MSG_MAX_NUM_QUEUES_ID - This enum can be used to retrieve the
cluster-wide maximum number of queues that can exist at the same time.

• SA_MSG_MAX_NUM_QUEUE_GROUPS_ID - This enum can be used to
retrieve the cluster-wide maximum number of queue groups that can exist at the
same time.
34 SAI-AIS-MSG-B.03.01 Section 3.4.13 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• SA_MSG_MAX_NUM_QUEUES_PER_GROUP_ID - This enum can be used to
retrieve the maximum number of message queue members in any message
queue group.

• SA_MSG_MAX_MESSAGE_SIZE_ID - This enum can be used to retrieve the
maximum message size in bytes of a message sent by invoking any of the func-
tions saMsgMessageSend(), saMsgMessageSendAsync(), or
saMsgMessageSendReceive(). If this size is exceeded when sending a mes-
sage, the value SA_AIS_ERR_TOO_BIG is returned by:
• saMsgMessageSend(),
• saMsgMessageSendReceive(), and
• either saMsgMessageSendAsync() or saMsgMessageDeliveredCallback().

• SA_MSG_MAX_REPLY_SIZE_ID - This enum can be used to retrieve the maxi-
mum message size in bytes of a reply message sent by invoking any of the func-
tions saMsgMessageReply() or saMsgMessageReplyAsync(). If this size is
exceeded when sending a reply message, the value SA_AIS_ERR_TOO_BIG is
returned by:
• saMsgMessageReply() and
• either saMsgMessageReplyAsync() or saMsgMessageDeliveredCallback().
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.4.13 35

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.5 Library Life Cycle
General remark: If a library call of the Message Service does not complete because
the process exited, or because a timeout indicated by SA_AIS_ERR_TIMEOUT is
returned to the process, it is unspecified whether the corresponding function suc-
ceeded or whether it did not.

3.5.1 saMsgInitialize()

Prototype

SaAisErrorT saMsgInitialize(

SaMsgHandleT *msgHandle,

const SaMsgCallbacksT *msgCallbacks,

SaVersionT *version

);

Parameters

msgHandle - [out] A pointer to the handle which designates this particular initialization
of the Message Service, and which is to be returned by the Message Service. The
SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

msgCallbacks - [in] - If msgCallbacks is set to NULL, no callback is registered; If
msgCallbacks is not set to NULL, it is a pointer to an SaMsgCallbacksT structure
which contains the callback functions of the process that the Message Service may
invoke. Only non-NULL callback functions in this structure will be registered. The
SaMsgCallbacksT type is defined in Section 3.4.3 on page 24.

version - [in/out] As an input parameter, version is a pointer to a structure containing
the required Message Service version. In this case, minorVersion is ignored and
should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Message Service. The SaVersionT type is defined in [1].

Description

This function initializes the Message Service for the invoking process and registers
the various callback functions. This function must be invoked prior to the invocation of
any other Message Service functionality. The handle pointed to by msgHandle is
returned by the Message Service as the reference to this association between the
36 SAI-AIS-MSG-B.03.01 Section 3.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
process and the Message Service. The process uses this handle in subsequent com-
munication with the Message Service.

If the implementation supports the specified releaseCode and majorVersion,
SA_AIS_OK is returned. In this case, the structure pointed to by the version parame-
ter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can

support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can sup-
port for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can sup-
port for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.5.1 37

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the version
parameter points is not compatible with the version of the Message Service imple-
mentation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgSelectionObjectGet(), saMsgDispatch(), saMsgFinalize()

3.5.2 saMsgSelectionObjectGet()

Prototype

SaAisErrorT saMsgSelectionObjectGet(

SaMsgHandleT msgHandle,

SaSelectionObjectT *selectionObject

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is defined in
[1].
38 SAI-AIS-MSG-B.03.01 Section 3.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Description

This function returns the operating system handle associated with the handle
msgHandle. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking the saMsgDispatch() function for
this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The operating system handle returned by saMsgSelectionObjectGet() is valid until
saMsgFinalize() is invoked on the same handle msgHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory).

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgInitialize(), saMsgDispatch(), saMsgFinalize()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.5.2 39

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.5.3 saMsgDispatch()

Prototype

SaAisErrorT saMsgDispatch(

 SaMsgHandleT msgHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saMsgDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the
SaDispatchFlagsT enumeration type, which is described in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle msgHandle in the way specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle msgHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.
40 SAI-AIS-MSG-B.03.01 Section 3.5.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgInitialize(), saMsgSelectionObjectGet(), saMsgFinalize()

3.5.4 saMsgFinalize()

Prototype

SaAisErrorT saMsgFinalize(

SaMsgHandleT msgHandle

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

Description

The saMsgFinalize() function closes the association represented by the msgHandle
parameter between the invoking process and the Message Service. The process
must have invoked saMsgInitialize() before it invokes this function. A process must
invoke this function once for each handle it acquired by invoking saMsgInitialize().

If the saMsgFinalize() function completes successfully, it releases all resources
acquired when saMsgInitialize() was called and closes all message queues that are
open for the particular handle. Moreover, it stops any tracking associated with the
particular handle and frees all resources allocated for it, including the memory allo-
cated for the process in the saMsgQueueGroupTrack() function if it has not yet been
freed by saMsgQueueGroupNotificationFree(). The saMsgFinalize() function also
frees the memory that is allocated by saMsgMessageSendReceive() or
saMsgMessageGet() if it has not yet been freed by saMsgMessageDataFree().
This call also cancels all pending callbacks related to the particular handle. Note that
because the callback invocation is asynchronous, it is still possible that some call-
back calls are processed after this call returns successfully.

If a process terminates, the Message Service implicitly finalizes all instances of the
Message Service that are associated with the process, as described in the preceding
paragraph.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.5.4 41

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
After saMsgFinalize() completes successfully, the handle msgHandle and the selec-
tion object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saMsgInitialize(), saMsgQueueClose(), saMsgQueueGroupTrack(),
saMsgQueueGroupNotificationFree(), saMsgMessageGet(),
saMsgMessageSendReceive(), saMsgMessageDataFree(),
saMsgSelectionObjectGet(), SaMsgQueueOpenCallbackT,
SaMsgQueueGroupTrackCallbackT, SaMsgMessageDeliveredCallbackT

3.6 Message Queue Operations

In the following description, when it is said that a process is receiving from the
destination message queue, it also includes the case of a process receiving from a
message queue that is a member of a destination message queue group.

3.6.1 saMsgQueueOpen() and saMsgQueueOpenAsync()

The saMsgQueueOpen() and saMsgQueueOpenAsync() functions create and open a
new message queue or open an existing message queue. The saMsgQueueOpen()
function is a synchronous blocking operation that returns a new message queue han-
dle. The saMsgQueueOpenAsync() function is an asynchronous operation; the corre-
sponding saMsgQueueOpenCallback() returns the new message queue handle to
the invoking process.

When opening a message queue, a process can specify how it will receive mes-
sages:
42 SAI-AIS-MSG-B.03.01 Section 3.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• Arrival notified by a callback - The process can wait for an indication of a
message arrival by specifying the operating system handle associated with the
callback in operating system calls like poll() or select(). After being notified, the
process can invoke saMsgDispatch(), which in turn calls
saMsgMessageReceivedCallback(). In the callback, or after its completion, the
process can invoke saMsgMessageGet() to receive the message.

• With a blocking call - The process does not use the operating system handle.
It calls instead saMsgMessageGet() directly. The call will complete success-
fully if a message can be retrieved from the message queue within a specified
time limit.

Prototype

SaAisErrorT saMsgQueueOpen(

SaMsgHandleT msgHandle,

const SaNameT *queueName,

const SaMsgQueueCreationAttributesT *creationAttributes,

SaMsgQueueOpenFlagsT openFlags,

SaTimeT timeout,

SaMsgQueueHandleT *queueHandle

);

SaAisErrorT saMsgQueueOpenAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaNameT *queueName,

const SaMsgQueueCreationAttributesT *creationAttributes,

SaMsgQueueOpenFlagsT openFlags

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.1 43

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
invocation - [in] The invoking process supplies the invocation parameter, and the
Message Service uses invocation when it invokes the corresponding
saMsgQueueOpenCallback() function to enable the invoking process to associate the
callback with the appropriate invocation of saMsgQueueOpenAsync(). The
SaInvocationT type is defined in [1].

queueName - [in] A pointer to the name of the message queue to be opened. The
SaNameT type is defined in [1].

creationAttributes - [in] A pointer to the creation attributes of a message queue. The
SaMsgQueueCreationAttributesT type is defined in Section 3.4.5.2 on page 25.

If the user intends only to open an existing message queue, creationAttributes must
be set to NULL and the SA_MSG_QUEUE_CREATE flag in openFlags must not be
set.
If the user intends to open a message queue or create and open a message queue if
it does not exist, creationAttributes must point to a structure containing the attributes
for the message queue, and the SA_MSG_QUEUE_CREATE flag in openFlags must
be set. If the message queue exists, it is not re-created, and the call only succeeds if
the creation attributes match the ones used at creation time, excluding
creationAttributes->retentionTime, which is ignored, as it may be independently mod-
ified by invoking the saMsgQueueRetentionTimeSet() function. The fields of the
SaMsgQueueCreationAttributesT structure must be set as follows:

• creationFlags - The creationFlags field must be set to zero or to
SA_MSG_QUEUE_PERSISTENT.

• size - The array containing the size in bytes of each priority area of the mes-
sage queue.

• retentionTime - The time duration after a process closed the message queue
until it is removed by the Message Service. The retentionTime applies only to
nonpersistent message queues.

openFlags - [in] This parameter is evaluated at open time, and it is the bitwise OR of
the SA_MSG_QUEUE_CREATE, SA_MSG_QUEUE_RECEIVE_CALLBACK, and
SA_MSG_QUEUE_EMPTY flags, as defined for the SaMsgQueueOpenFlagsT type
in Section 3.4.6 on page 25.

timeout - [in] The saMsgQueueOpen() invocation is considered to have failed if it
does not complete within the duration specified. The SaTimeT type is defined in [1].

queueHandle - [out] A pointer to the handle assigned by the Message Service to the
message queue. The invoking process must allocate space for the handle before it
44 SAI-AIS-MSG-B.03.01 Section 3.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
invokes the saMsgQueueOpen() function. The SaMsgQueueHandleT type is defined
in Section 3.4.1.2 on page 23.

Description

The saMsgQueueOpen() and saMsgQueueOpenAsync() functions open a message
queue. If the message queue does not exist, and the SA_MSG_QUEUE_CREATE
flag is set in the openFlags parameter, the message queue is created first.

After successful completion of the invocation of saMsgQueueOpen(), which is a
blocking call, the Message Service returns a message queue handle to the message
queue in the queueHandle parameter.

For saMsgQueueOpenAsync(), the Message Service returns a message queue han-
dle when it invokes the saMsgQueueOpenCallback() function, which must have been
supplied when the process called saMsgInitialize(). The process invoking
saMsgQueueOpenAsync() sets the invocation parameter and the Message Service
uses it in the corresponding callback call.

Both for the saMsgQueueOpen() and saMsgQueueOpenAsync() functions, if the
message queue open flag SA_MSG_QUEUE_RECEIVE_CALLBACK is specified,
the saMsgMessageReceivedCallback() callback function must have been supplied
when invoking saMsgInitialize() previously.

The open operation is needed to receive messages from the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - One or more callback functions were not supplied when invok-
ing saMsgInitialize() to initialize the Message Service. These callback functions can
be either saMsgMessageReceivedCallback(), if the message queue open flag
SA_MSG_QUEUE_RECEIVE_CALLBACK is specified, or
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.1 45

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
saMsgQueueOpenCallback(). The latter case only applies to
saMsgQueueOpenAsync().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if one of the cases below apply:

• The SA_MSG_QUEUE_CREATE flag is not set, and creationAttributes is not
NULL.

• The SA_MSG_QUEUE_CREATE flag is set, and creationAttributes is NULL.
• The SA_MSG_QUEUE_CREATE flag is set, and the name to which queueName

points is not a DN, or the type of its first RDN is not safMq.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory). In particular, this value is returned if this invocation attempts to create a
new message queue, and the maximum number of message queues supported by
the implementation is already reached. Refer to the enum
SA_MSG_MAX_NUM_QUEUES_ID, defined in Section 3.4.13 on page 34.

SA_AIS_ERR_TOO_BIG - This value is returned if this invocation attempts to create
a new message queue, and one or both of the following conditions are met:

• The size of one or more of the priority areas exceeds the maximum size of a pri-
ority area supported by the implementation. Refer to the enum
SA_MSG_MAX_PRIORITY_AREA_SIZE_ID, defined in Section 3.4.13 on page
34.

• The size of the message queue exceeds the maximum size of a message queue
supported by the implementation. Refer to the enum
SA_MSG_MAX_QUEUE_SIZE_ID, defined in Section 3.4.13 on page 34.

SA_AIS_ERR_NOT_EXIST - The SA_MSG_QUEUE_CREATE flag is not set, the
creationAttributes is NULL, and the message queue identified by the name to which
queueName points does not exist.

SA_AIS_ERR_EXIST - The SA_MSG_QUEUE_CREATE flag is set, the message
queue identified by the name to which queueName points exists, and one or both of
the values creationAttributes->creationFlags or
creationAttributes->size are different from the corresponding values used at creation
time.

SA_AIS_ERR_BUSY - The message queue identified by the name to which
queueName points is already open.

SA_AIS_ERR_BAD_FLAGS - The openFlags parameter or the creationFlags field of
the structure to which the creationAttributes parameter points is invalid.
46 SAI-AIS-MSG-B.03.01 Section 3.6.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueClose(), SaMsgQueueOpenCallbackT,
SaMsgMessageReceivedCallbackT, saMsgQueueRetentionTimeSet()

3.6.2 SaMsgQueueOpenCallbackT

Prototype

typedef void(*SaMsgQueueOpenCallbackT)(

SaInvocationT invocation,

SaMsgQueueHandleT queueHandle,

SaAisErrorT error

);

Parameters

invocation - [in] A designator that associates this invocation to a previous call to the
saMsgQueueOpenAsync() function. The SaInvocationT type is defined in [1].

queueHandle - [in] The handle to the opened message queue. The
SaMsgQueueHandleT type is defined in Section 3.4.1.2 on page 23.

error - [in] The error parameter specifies whether the corresponding invocation of
saMsgQueueOpenAsync() succeeded or not. The SaAisErrorT type is defined in [1].
The possible values of the error parameter are:

• SA_AIS_OK - The open completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle in the corresponding
invocation of the saMsgQueueOpenAsync() function is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.2 47

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly in the cor-
responding invocation of the saMsgQueueOpenAsync() function. In particular,
this value is returned if one of the cases below apply:
• The SA_MSG_QUEUE_CREATE flag is not set, and creationAttributes is

not NULL.
• The SA_MSG_QUEUE_CREATE flag is set, and creationAttributes is

NULL.
• The SA_MSG_QUEUE_CREATE flag is set in openFlags, and the name to

which queueName points is not a DN, or the type of its first RDN is not
safMq.

• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-
vider of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other
than memory). In particular, this value is returned if this invocation attempts to
create a new message queue, and the maximum number of message queues
supported by the implementation is already reached. Refer to the enum
SA_MSG_MAX_NUM_QUEUES_ID, defined in Section 3.4.13 on page 34.

• SA_AIS_ERR_TOO_BIG - This value is returned if this invocation attempts to
create a new message queue, and one or both of the following conditions are
met:
• The size of one or more of the priority areas exceeds the maximum size of a

priority area supported by the implementation. Refer to the enum
SA_MSG_MAX_PRIORITY_AREA_SIZE_ID, defined in Section 3.4.13 on
page 34.

• The size of the message queue exceeds the maximum size of a message
queue supported by the implementation. Refer to the enum
SA_MSG_MAX_QUEUE_SIZE_ID, defined in Section 3.4.13 on page 34.

• SA_AIS_ERR_NOT_EXIST - In the corresponding invocation of the
saMsgQueueOpenAsync() function, the SA_MSG_QUEUE_CREATE flag is
not set, the creationAttributes is NULL, and the message queue identified by
the name to which queueName points does not exist.

• SA_AIS_ERR_EXIST - In the corresponding invocation of the
saMsgQueueOpenAsync() function, the SA_MSG_QUEUE_CREATE flag is
set, the message queue identified by the name to which queueName points
exists, and one or both of the values
creationAttributes->creationFlags or
creationAttributes->size are different from the corresponding values used at
creation time.
48 SAI-AIS-MSG-B.03.01 Section 3.6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• SA_AIS_ERR_BUSY - The message queue identified by the name to which
queueName points in the corresponding invocation of the
saMsgQueueOpenAsync() function is already open.

• SA_AIS_ERR_BAD_FLAGS - In the corresponding invocation of the
saMsgQueueOpenAsync() function, the openFlags parameter or the
creationFlags field in the structure to which the creationAttributes parameter
points is invalid.

• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-
able on this cluster node because it is not a member node.

Description

The Message Service invokes this callback function when the operation requested by
the invocation of saMsgQueueOpenAsync() completes. This callback is invoked in
the context of a thread calling saMsgDispatch() on the handle msgHandle that was
specified in the saMsgQueueOpenAsync() call.

The reference to the opened/created message queue is returned in queueHandle
only if error is SA_AIS_OK; If the call is not successful, an error is returned in the
error parameter.

Return Values

None

See Also

saMsgQueueOpenAsync(), saMsgQueueClose(), saMsgDispatch()

3.6.3 saMsgQueueClose()

Prototype

SaAisErrorT saMsgQueueClose(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue to be closed. The
SaMsgQueueHandleT type is defined in Section 3.4.1.2 on page 23.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.3 49

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Description

This API function closes the message queue designated by queueHandle. If this call
completes successfully, the handle queueHandle is no longer valid.

This call frees all resources allocated for this process by the Message Service on the
message queue identified by the handle queueHandle.

This call cancels all pending callbacks that refer directly or indirectly to the handle
queueHandle. Note that because the callback invocation is asynchronous, it is still
possible that some callback calls are processed after this call returns successfully.

The Message Service will immediately delete the message queue in the following
cases:

• The saMsgQueueUnlink() function has been invoked for the message queue
while it was open.

• The message queue is nonpersistent, and its retention time is zero.

If the message queue is nonpersistent with a retention time greater than zero, the
retention time starts when the saMsgQueueClose() call completes successfully. If the
message queue is not opened again before the retention time elapses, the Message
Service deletes the message queue.

The deletion (unlink) of a message queue (see Section 3.6.6) frees all resources allo-
cated by the Message Service for it.

When a message queue is deleted, it is also deleted from all message queue groups
that have this message queue as a member.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:
50 SAI-AIS-MSG-B.03.01 Section 3.6.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), SaMsgQueueOpenCallbackT,
saMsgQueueUnlink(), SaMsgMessageReceivedCallbackT

3.6.4 saMsgQueueStatusGet()

Prototype

SaAisErrorT saMsgQueueStatusGet(

SaMsgHandleT msgHandle,

const SaNameT *queueName,

SaMsgQueueStatusT *queueStatus

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueName - [in] A pointer to the name of the message queue whose communication
status is to be retrieved. The SaNameT type is defined in [1].

queueStatus - [out] A pointer to the structure (which is allocated by the invoking pro-
cess) into which the Message Service writes status information on the message
queue identified by the name to which queueName points. The SaMsgQueueStatusT
type is defined in Section 3.4.8.2 on page 27.

Description

This function retrieves information about the status of a message queue.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.4 51

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The message queue identified by the name to which
queueName points cannot be found.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

None

3.6.5 saMsgQueueRetentionTimeSet()

Prototype

SaAisErrorT saMsgQueueRetentionTimeSet(

SaMsgQueueHandleT queueHandle,

SaTimeT *retentionTime

);

Parameters

queueHandle - [in] The handle to the message queue for which the retention time is
to be set. The SaMsgQueueHandleT type is defined in Section 3.4.1.2 on page 23.
52 SAI-AIS-MSG-B.03.01 Section 3.6.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
retentionTime - [in] Pointer to the value of the retention time to be set for the message
queue designated by queueHandle. The SaTimeT type is defined in [1].

Description

The saMsgQueueRetentionTimeSet() function sets the retention time of the message
queue designated by queueHandle to the value to which retentionTime points. If the
message queue is closed and not reopened by any process within the duration spec-
ified by the value to which retentionTime points, the Message Service deletes the
message queue. The retention time can only be set for nonpersistent message
queues.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to one of the functions
saMsgQueueOpen() or saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_BAD_OPERATION - The retention time of the message queue desig-
nated by queueHandle cannot be changed because the message queue has been
unlinked or is persistent.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), saMsgQueueClose(),
saMsgQueueOpenCallbackT, saMsgQueueUnlink()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.5 53

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.6.6 saMsgQueueUnlink()

Prototype

SaAisErrorT saMsgQueueUnlink(

SaMsgHandleT msgHandle,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueName - [in] A pointer to the name of the message queue to be unlinked. The
SaNameT type is defined in [1].

Description

This function deletes from the cluster the message queue identified by the name to
which queueName points.

The following applies when a call to this function completes successfully:

• The name to which queueName points is no longer valid, that is, any invocation
of a function of the Message Service API that uses this message queue name
returns an error unless a message queue is re-created with this name. The mes-
sage queue is re-created by specifying in saMsgQueueOpen() or
saMsgQueueOpenAsync() the SA_MSG_QUEUE_CREATE flag and the same
name of the message queue to be unlinked. This way, a new instance of the
message queue is created while the old instance of the message queue is possi-
bly not yet finally deleted.
Note that this behavior is similar to the way POSIX treats files.

• If no process has the message queue open when saMsgQueueUnlink() is
invoked, the message queue is immediately deleted even if its creation attribute
is SA_MSG_QUEUE_PERSISTENT.

• The process that has the message queue open can still continue to access it.
Deletion of the message queue will occur when the message queue is closed.

The deletion of a message queue frees all resources allocated by the Message Ser-
vice for it.
54 SAI-AIS-MSG-B.03.01 Section 3.6.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
When saMsgQueueUnlink() has successfully completed, the message queue has
been removed from all message queue groups of which it was a member.

This API can be invoked by any process and the invoking process need not be the
creator or opener of the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_NOT_EXIST - The message queue identified by the name to which
queueName points cannot be found.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), saMsgQueueClose()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.6.6 55

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.7 Management of Message Queue Groups

3.7.1 saMsgQueueGroupCreate()

Prototype

SaAisErrorT saMsgQueueGroupCreate(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

SaMsgQueueGroupPolicyT queueGroupPolicy

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueGroupName - [in] A pointer to the name of the message queue group to be cre-
ated. The SaNameT type is defined in [1].

queueGroupPolicy - [in] The message queue group policy. Currently, only the
SA_MSG_QUEUE_GROUP_ROUND_ROBIN policy is mandatory. The
SaMsgQueueGroupPolicyT type is defined in Section 3.4.9 on page 28.

Description

This function creates a message queue group of a particular policy. The current ver-
sion of the specification only requires round robin load distribution to be supported.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
56 SAI-AIS-MSG-B.03.01 Section 3.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if the name to which queueGroupName points is not a DN, or the
type of its first RDN is not safMqg.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). In particular, this value is returned if the maximum number of queue groups
supported by the implementation is already reached. Refer to the enum
SA_MSG_MAX_NUM_QUEUE_GROUPS_ID, as defined in Section 3.4.13 on page
34.

SA_AIS_ERR_EXIST - The message queue group identified by the name to which
queueGroupName points already exists.

SA_AIS_ERR_NOT_SUPPORTED - The specified queueGroupPolicy is not sup-
ported by the implementation.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupDelete(), saMsgQueueGroupInsert(),
saMsgQueueGroupRemove()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.1 57

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.7.2 saMsgQueueGroupInsert()

Prototype

SaAisErrorT saMsgQueueGroupInsert(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueGroupName - [in] A pointer to the name of the message queue group into
which the message queue designated by the name to which queueName points is to
be inserted. The SaNameT type is defined in [1].

queueName - [in] A pointer to the name of the message queue to be inserted into the
message queue group identified by the name to which queueGroupName points. The
SaNameT type is defined in [1].

Description

This function inserts a message queue into a message queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
58 SAI-AIS-MSG-B.03.01 Section 3.7.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). In particular, this value is returned if the maximum number of message
queues per message queue group supported by the implementation is already
reached. Refer to the enum SA_MSG_MAX_NUM_QUEUES_PER_GROUP_ID,
defined in Section 3.4.13 on page 34.

SA_AIS_ERR_NOT_EXIST - The message queue identified by the name to which
queueName points or the message queue group identified by the name to which
queueGroupName points cannot be found.

SA_AIS_ERR_EXIST - The message queue identified by the name to which
queueName points is already a member of the message queue group identified by
the name to which queueGroupName points.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupRemove(), saMsgQueueGroupCreate(),
saMsgQueueGroupDelete()

3.7.3 saMsgQueueGroupRemove()

Prototype

SaAisErrorT saMsgQueueGroupRemove(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.3 59

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
queueGroupName - [in] A pointer to the name of the message queue group from
which the message queue identified by the name to which queueName points is to be
removed. The SaNameT type is defined in [1].

queueName - [in] A pointer to the name of the message queue to be removed from
the message queue group identified by the name to which queueGroupName points.
The SaNameT type is defined in [1].

Description

This function removes a message queue from a message queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - This error is returned in the two following cases.

• The message queue identified by the name to which queueName points or the
message queue group designated by the name to which queueGroupName
points cannot be found.

• The message queue identified by the name to which queueName points is not a
member of the message queue group designated by the name to which
queueGroupName points.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupInsert(), saMsgQueueGroupCreate(),
saMsgQueueGroupDelete()
60 SAI-AIS-MSG-B.03.01 Section 3.7.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.7.4 saMsgQueueGroupDelete()

Prototype

SaAisErrorT saMsgQueueGroupDelete(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueGroupName - [in] A pointer to the name of a message queue group. The
SaNameT type is defined in [1].

Description

An invocation of this function deletes a message queue group immediately. After this
call returns successfully, it is no longer possible to send messages to the message
queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - The message queue group identified by the name to
which queueGroupName points cannot be found.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.4 61

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupCreate(), saMsgQueueGroupInsert(),
saMsgQueueGroupRemove()

3.7.5 saMsgQueueGroupTrack()

Prototype

SaAisErrorT saMsgQueueGroupTrack(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

SaUint8T trackFlags,

SaMsgQueueGroupNotificationBufferT *notificationBuffer

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueGroupName - [in] A pointer to the name of the message queue group for which
tracking of membership is to start. The SaNameT type is defined in [1].

trackFlags - [in] The kind of tracking that is requested, which is the bitwise OR of one
or more of the following flags (as defined in the SA Forum Overview document, see
[1]), which have the following interpretation here:

• SA_TRACK_CURRENT - If notificationBuffer is NULL, information about all
members in the message queue group is returned by a single subsequent
invocation of the saMsgQueueGroupTrackCallback() notification callback; If
notificationBuffer is not NULL, this information is returned in the structure to
which notificationBuffer points when the saMsgQueueGroupTrack() call com-
pletes successfully.

• SA_TRACK_CHANGES - The notification callback is invoked each time a
change occurs in the membership of the message queue group. The callback
62 SAI-AIS-MSG-B.03.01 Section 3.7.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
call provides an SaMsgQueueGroupNotificationT structure for all members
(changed and not changed) of the message queue group.

• SA_TRACK_CHANGES_ONLY - The notification callback is invoked each
time a change occurs in the membership of the message queue group. The
callback call provides an SaMsgQueueGroupNotificationT structure only for
members that have changed.

It is not permitted to set both SA_TRACK_CHANGES and
SA_TRACK_CHANGES_ONLY in an invocation of this function. The SaUint8T type
is defined in [1].

notificationBuffer - [in/out] - A pointer to a buffer of type
SaMsgQueueGroupNotificationBufferT, as defined in Section 3.4.10.4 on page 30.
This parameter is ignored if SA_TRACK_CURRENT is not set in trackFlags; if
SA_TRACK_CURRENT is set in trackFlags and notificationBuffer is not NULL, the
buffer will contain information about all members in the message queue group when
saMsgQueueGroupTrack() returns. The meaning of the fields of the
SaMsgQueueGroupNotificationBufferT buffer is:

• numberOfItems - [in/out] If notification is NULL, numberOfItems is ignored as an
in parameter; otherwise, it specifies that the array to which notification points
provides memory for information about numberOfItems members in the mes-
sage queue group.
When saMsgQueueGroupTrack() returns with SA_AIS_OK or with
SA_AIS_ERR_NO_SPACE, the Message Service has set numberOfItems to
contain the number of members in the message queue group.

• notification - [in/out] If notification is NULL, memory for the message queue group
information is allocated by the Message Service library. The caller is responsible
for freeing the allocated memory by calling the
saMsgQueueGroupNotificationFree() function.

Description

This function starts tracking changes in the membership of a message queue group
designated by the name to which queueGroupName points. The Message Service
notifies the process of these changes by invoking the
saMsgQueueGroupTrackCallback() callback function, which must have been sup-
plied when the process invoked the saMsgInitialize() call.

An application may call saMsgQueueGroupTrack() repeatedly for the same values of
msgHandle and queueGroupName, regardless of whether the call initiates a one-time
status request or a series of callback notifications. If saMsgQueueGroupTrack() is
called with trackFlags containing SA_TRACK_CHANGES_ONLY while changes in
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.5 63

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
the membership of a message queue group are currently being tracked with
SA_TRACK_CHANGES for the same combination of msgHandle and
queueGroupName, the Message Service will invoke further notification callbacks
according to SA_TRACK_CHANGES_ONLY. The same is true vice versa.
Once saMsgQueueGroupTrack() has been called with trackFlags containing either
SA_TRACK_CHANGES or SA_TRACK_CHANGES_ONLY, notification callbacks
can only be stopped by an invocation of the saMsgQueueGroupTrackStop() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saMsgInitialize() to initialize the Mes-
sage Service was incomplete, since the saMsgQueueGroupTrackCallback() callback
function is missing. This value is not returned if only the SA_TRACK_CURRENT flag
is set in trackFlags and the notificationBuffer is not NULL.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
applies if in the structure to which notificationBuffer points, notification is not NULL,
and numberOfItems is 0.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other
than memory).

SA_AIS_ERR_NO_SPACE - The SA_TRACK_CURRENT flag is set, and the
notification field in the structure to which notificationBuffer points is not NULL, but the
numberOfItems field in the same structure indicates that the provided buffer is too
small to hold information about all members in the message queue group identified
by the name to which queueGroupName points.

SA_AIS_ERR_NOT_EXIST - The message queue group identified by the name to
which queueGroupName points cannot be found.
64 SAI-AIS-MSG-B.03.01 Section 3.7.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupTrackStop(), SaMsgQueueGroupTrackCallbackT,
saMsgQueueGroupNotificationFree(), saMsgQueueStatusGet(), saMsgFinalize()

3.7.6 SaMsgQueueGroupTrackCallbackT

Prototype

typedef void (*SaMsgQueueGroupTrackCallbackT) (

const SaNameT *queueGroupName,

const SaMsgQueueGroupNotificationBufferT *notificationBuffer,

SaUint32T numberOfMembers,

SaAisErrorT error

);

Parameters

queueGroupName - [in] A pointer to the name of the message queue group. The
SaNameT type is defined in [1].

notificationBuffer - [in] A pointer to a notification buffer that contains the requested
information about the members in the message queue group. The
SaMsgQueueGroupNotificationBufferT type is defined in Section 3.4.10.4 on page
30.

numberOfMembers - [in] The current number of members in the message queue
group designated by the name to which queueGroupName points. The SaUint32T
type is defined in [1].

error - [in] This parameter indicates whether the Message Service was able to per-
form the operation. The SaAisErrorT type is defined in [1]. The parameter error has
one of the values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.6 65

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred
before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry the saMsgQueueGroupTrack() call later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle in the corresponding
invocation of the saMsgQueueGroupTrack() function is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - In the corresponding invocation of the
saMsgQueueGroupTrack() function, a parameter is not set correctly. In partic-
ular, this applies if in the structure to which notificationBuffer points, notification
is not NULL, and numberOfItems is 0.

• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-
vider of the service is out of memory and cannot provide the service. The pro-
cess that invoked saMsgQueueGroupTrack() might have missed one or more
notifications.

• SA_AIS_ERR_NO_RESOURCES - Either the Message Service library or the
provider of the service is out of resources (other than memory), and cannot
provide the service. The process that invoked saMsgQueueGroupTrack()
might have missed one or more notifications.

• SA_AIS_ERR_NOT_EXIST - The message queue group identified by the
name to which queueGroupName points no longer exists. The Message Ser-
vice has stopped the tracking of the message queue group automatically.

• SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter in the corresponding
invocation of the saMsgQueueGroupTrack() function is invalid.

• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-
able on this cluster node because it is not a member node.

If the error returned is SA_AIS_ERR_NO_MEMORY or
SA_AIS_ERR_NO_RESOURCES, the process that invoked
saMsgQueueGroupTrack() should invoke saMsgQueueGroupTrackStop(). It may
then invoke saMsgQueueGroupTrack() again.

Description

This callback is invoked in the context of a thread calling saMsgDispatch() on the
handle msgHandle that was specified when the process invoked the
saMsgQueueGroupTrack() function to request tracking of membership in a message
queue group or changes in the SaMsgQueueGroupMemberT structure of any mem-
ber of the message queue group.
66 SAI-AIS-MSG-B.03.01 Section 3.7.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
If the saMsgQueueGroupTrackCallback() function completes successfully, it returns
information about the message queue group members in the structure to which the
notificationBuffer parameter points. The kind of information returned depends on the
setting of the trackFlags parameter in the corresponding invocation of the
saMsgQueueGroupTrack() function.

The value of the numberOfItems attribute in the buffer to which the notificationBuffer
parameter points might be greater than the value of the numberOfMembers parame-
ter, because some message queues may no longer be members of the message
queue group: If the SA_TRACK_CHANGES flag or the
SA_TRACK_CHANGES_ONLY flag is set, the structure to which notificationBuffer
points might contain information about the current members of the message queue
group and also about message queues that have recently left the message queue
group.

If an error occurs, it is returned in the error parameter.

Return Values

None

See Also

saMsgQueueGroupTrack(), saMsgQueueGroupTrackStop(),
saMsgQueueStatusGet(), saMsgDispatch()

3.7.7 saMsgQueueGroupTrackStop()

Prototype

SaAisErrorT saMsgQueueGroupTrackStop(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

queueGroupName - [in] A pointer to the name of the message queue group. The
SaNameT type is defined in [1].
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.7 67

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Description

This function requests the Message Service to stop tracking changes for the mes-
sage queue group identified by the name to which queueGroupName points.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - This value is returned for one or both of the cases
below.

• The message queue group name identified by the name to which
queueGroupName points cannot be found.

• No track of changes in the membership for the message queue group identified
by the name to which queueGroupName points was previously started by invok-
ing saMsgQueueGroupTrack() with track flags SA_TRACK_CHANGES or
SA_TRACK_CHANGES_ONLY that would still be in effect.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueGroupTrack(), SaMsgQueueGroupTrackCallbackT
68 SAI-AIS-MSG-B.03.01 Section 3.7.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.7.8 saMsgQueueGroupNotificationFree()

Prototype

SaAisErrorT saMsgQueueGroupNotificationFree(

SaMsgHandleT msgHandle,

SaMsgQueueGroupNotificationT *notification

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

notification - [in] A pointer to the notification array that was allocated by the Message
Service library in the saMsgQueueGroupTrack() function and is to be deallocated.
The SaMsgQueueGroupNotificationT type is defined in Section 3.4.10.3 on page 29.

Description

This function frees the memory to which notification points. This memory was allo-
cated by the Message Service library in a previous call to the
saMsgQueueGroupTrack() function.

For details, refer to the description of the notificationBuffer parameter in the corre-
sponding invocation of the saMsgQueueGroupTrack() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.7.8 69

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
See Also

saMsgQueueGroupTrack()

3.8 Message Send and Receive Operations

3.8.1 saMsgMessageSend() and saMsgMessageSendAsync()

Prototype

SaAisErrorT saMsgMessageSend(

SaMsgHandleT msgHandle,

const SaNameT *destination,

const SaMsgMessageT *message,

SaTimeT timeout

);

SaAisErrorT saMsgMessageSendAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaNameT *destination,

const SaMsgMessageT *message,

SaMsgAckFlagsT ackFlags

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

invocation - [in] This parameter associates this invocation of
saMsgMessageSendAsync() with a corresponding invocation of the
saMsgMessageDeliveredCallback() function. This parameter is ignored if ackFlags is
set to zero. The SaInvocationT type is defined in [1].
70 SAI-AIS-MSG-B.03.01 Section 3.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
destination - [in] A pointer to the name of a message queue or message queue group
to which the message referred to by message is sent. The SaNameT type is defined
in [1].

message - [in] A pointer to the message structure specifying the message to be sent.
It consists of a buffer, which is provided by the process (pointed to by data) and which
contains the message data to be sent, a size field that contains the size of this buffer,
a type field that contains the message type, a version field that is used to distinguish
different versions of a message of the same type, a priority field that gives the priority
of the message, and a senderName pointer. If senderName is not NULL, it points to
an area containing the sender name, which is supplied by the caller; if senderName is
NULL, the sending process does not provide its sender name, and a receiving pro-
cess expecting a sender name will get a
message->senderName->length set to zero. The SaMsgMessageT type is defined in
Section 3.4.11 on page 30.

ackFlags - [in] The kind of the required acknowledgment. This field must be set to
zero or to SA_MSG_MESSAGE_DELIVERED_ACK. In the latter case, the caller
requires to be acknowledged by the saMsgMessageDeliveredCallback() function
whether the message has been stored in the destination message queue. If the
space in the destination message queue is not enough for the entire message, the
error SA_AIS_ERR_QUEUE_FULL is returned.
If ackFlags is set to zero, the saMsgMessageDeliveredCallback() function is not
called, meaning that the caller is not informed whether an error occurred or whether it
did not.
The SaMsgAckFlagsT type is defined in Section 3.4.4 on page 24.

timeout - [in] The saMsgMessageSend() invocation is considered to have failed if it
does not complete within the specified duration. The SaTimeT type is defined in [1].

Description

The functions saMsgMessageSend() and saMsgMessageSendAsync() send the
message to which message points to the message queue or message queue group
designated by the name to which destination points.

The function saMsgMessageSend() waits synchronously (that is, it blocks) until the
message is delivered to the destination message queue or message queue group, or
an error occurs.
After the saMsgMessageSend() function returns, the invoking process may deallo-
cate the memory for the buffer to which message->data points.

The function saMsgMessageSendAsync() returns as soon as possible, without wait-
ing for delivery to the destination message queue(s). If the value of the ackFlags field
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.1 71

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
is zero, the saMsgMessageDeliveredCallback() is not invoked, and the caller is not
informed if an error occurs. If the value of the ackFlags field is set to
SA_MSG_MESSAGE_DELIVERED_ACK, and this call returns SA_AIS_OK,
saMsgMessageDeliveredCallback() is invoked to indicate whether the message was
sent to the destination, or whether an error occurred. For this purpose, the process
must have supplied the saMsgMessageDeliveredCallback() when it invoked the
saMsgInitialize() function.
If saMsgMessageSendAsync() returns successfully, and ackFlags is not set to zero,
the sending process may deallocate the memory for the buffer to which
message->data points either during an invocation of
saMsgMessageDeliveredCallback() or after saMsgMessageDeliveredCallback()
returns.
If saMsgMessageSendAsync() returns an error, or ackFlags is set to zero (which
means that saMsgMessageDeliveredCallback() will not be called), the process may
deallocate the memory for the buffer to which message->data points as soon as
saMsgMessageSendAsync() returns.

Message delivery properties:

These properties apply to either a destination message queue or a message queue
that is a member of a destination message queue group.

saMsgMessageSend():

• Message queue or a unicast message queue group - If the return value is
SA_AIS_OK, the message has been delivered to exactly one destination mes-
sage queue; if the return value is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been delivered to any destina-
tion message queue.

• Multicast message queue group - If the return value is SA_AIS_OK, the mes-
sage has been delivered to at least one member of the destination message
queue group; if the return value is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been delivered to any destina-
tion message queue.

saMsgMessageSendAsync():
If saMsgMessageSendAsync() returns SA_AIS_OK, and if the value of the ackFlags
field is set to SA_MSG_MESSAGE_DELIVERED_ACK, the Message Service will
invoke saMsgMessageDeliveredCallback(); if the error code is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the Message Service will not
invoke saMsgMessageDeliveredCallback() and will not deliver the message to any
destination message queue. For the message delivery properties, refer to the
saMsgMessageDeliveredCallback() function.
72 SAI-AIS-MSG-B.03.01 Section 3.8.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not. This error code
applies only to saMsgMessageSend().

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saMsgInitialize() to initialize the Mes-
sage Service was incomplete, since the saMsgMessageDeliveredCallback() callback
function is missing, and the user specified SA_MSG_MESSAGE_DELIVERED_ACK
in ackFlags of saMsgMessageSendAsync().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_TOO_BIG - This value is returned if the message size of the message
to be sent exceeds the maximum message size supported by the implementation.
Refer to the enum SA_MSG_MAX_MESSAGE_SIZE_ID, defined in Section 3.4.13
on page 34.

SA_AIS_ERR_NOT_EXIST - The destination message queue name or message
queue group name designated by the name to which destination points cannot be
found.

SA_AIS_ERR_QUEUE_FULL - If the name to which destination points refers to a
message queue, the message queue is full. If the name refers to a unicast message
queue group, the selected member queue is full. If it refers to a multicast message
queue group, all selected member message queues are full.

SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The name to which the destination
parameter points designates a message queue group, and the message queue group
is empty.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.1 73

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageSendReceive(), saMsgMessageReply(),
saMsgMessageReplyAsync(), saMsgMessageGet(),
SaMsgMessageDeliveredCallbackT

3.8.2 SaMsgMessageDeliveredCallbackT

Prototype

typedef void (*SaMsgMessageDeliveredCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] A designator that associates this invocation to a previous call to one
of the saMsgMessageSendAsync() or saMsgMessageReplyAsync() functions. The
SaInvocationT type is defined in [1].

error - [in] This parameter specifies whether the message sent by the corresponding
invocation of saMsgMessageSendAsync() or saMsgMessageReplyAsync() has been
delivered to the destination message queue(s) or to the reply buffer supplied by the
process that invoked the saMsgMessageSendReceive() function. The SaAisErrorT
type is defined in [1].

• SA_AIS_OK - The message could be delivered successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle specified in the corre-
sponding invocation of the saMsgMessageSendAsync() or
74 SAI-AIS-MSG-B.03.01 Section 3.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
saMsgMessageReplyAsync() functions is invalid, since it is corrupted, unini-
tialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter was not set correctly in the
corresponding invocation of the saMsgMessageSendAsync() or
saMsgMessageReplyAsync() functions.

• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-
vider of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - Insufficient resources (other than mem-
ory).

• SA_AIS_ERR_TOO_BIG - This value is returned if
• the message size of the message to be sent in the corresponding invocation

of saMsgMessageSendAsync() exceeds the maximum message size sup-
ported by the implementation (refer to the enum
SA_MSG_MAX_MESSAGE_SIZE_ID, defined in Section 3.4.13 on page
34), or

• the message size of the reply message in the corresponding invocation of
saMsgMessageReplyAsync() exceeds the maximum message size of a
reply message supported by the implementation. Refer to the enum
SA_MSG_MAX_REPLY_SIZE_ID, defined in Section 3.4.13 on page 34.

• SA_AIS_ERR_NOT_EXIST - The destination message queue or message
queue group designated by the name to which destination points in the corre-
sponding invocation of saMsgMessageSendAsync() cannot be found, or the
reply buffer identified by *senderId in the corresponding invocation of
saMsgMessageReplyAsync() cannot be located.

• SA_AIS_ERR_NO_SPACE - The reply buffer to which senderId points in the
corresponding invocation of saMsgMessageReplyAsync() is not large enough
to contain the reply message.

• SA_AIS_ERR_QUEUE_FULL - If the name to which destination points in the
corresponding invocation of the saMsgMessageSendAsync() function refers to
a message queue, the message queue is full. If the name refers to a unicast
message queue group, the selected member message queue is full. If the
name refers to a multicast message queue group, all selected member mes-
sage queues are full.

• SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination parameter in the
corresponding invocation of the saMsgMessageSendAsync() function points
to the name of a message queue group, and the message queue group is
empty.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.2 75

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter in the corresponding
invocation of the saMsgMessageSendAsync() or
saMsgMessageReplyAsync() functions is invalid.

• SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavail-
able on this cluster node because it is not a member node.

Description

The Message Service invokes this callback to indicate whether a previous call to
saMsgMessageSendAsync() or saMsgMessageReplyAsync() could deliver a mes-
sage to the destination successfully.

This callback is invoked in the context of a thread calling saMsgDispatch() on the
handle msgHandle that was specified in the corresponding
saMsgMessageSendAsync() or saMsgMessageReplyAsync() call.

If an error occurs, it is returned in the error parameter.

During this call or after this call returns, the process may deallocate the memory for

• either the data buffer to which message->data points, and which was passed pre-
viously to the corresponding saMsgMessageSendAsync() function or

• for the data buffer to which replyMessage->data points, and which was passed
previously to the corresponding saMsgMessageReplyAsync() call.

Message delivery properties:

For saMsgMessageSendAsync(), the message delivery properties apply to both a
destination message queue or a message queue that is a member of a destination
message queue group.

• Message queue or a unicast message queue group: If error is SA_AIS_OK,
the message has been successfully delivered to exactly one message queue;
if error is neither SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the
message has not been and will not be delivered to any destination message
queue.

• Multicast message queue group: If error is SA_AIS_OK, the message has
been successfully delivered to at least one member of the message queue
group; if error is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been and will not be delivered
to any destination message queue.

For saMsgMessageReplyAsync(), the message delivery properties apply to the deliv-
ery of the reply message into the reply buffer supplied by the process that invoked the
saMsgMessageSendReceive() function. If error is SA_AIS_OK, the message has
76 SAI-AIS-MSG-B.03.01 Section 3.8.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
been successfully delivered; if error is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been and will not be delivered.

Return Values

None

See Also

saMsgMessageSendAsync(), saMsgMessageReplyAsync(),
saMsgMessageSendReceive(), saMsgDispatch()

3.8.3 saMsgMessageGet()

Prototype

SaAisErrorT saMsgMessageGet(

SaMsgQueueHandleT queueHandle,

SaMsgMessageT *message,

SaTimeT *sendTime,

SaMsgSenderIdT *senderId,

SaTimeT timeout

);

Parameters

queueHandle - [in] The handle of the message queue from which a message is to be
received. The SaMsgQueueHandleT type is defined in Section 3.4.1.2 on page 23.

message - [in/out] A pointer to a message structure of type SaMsgMessageT (as
defined in Section 3.4.11 on page 30) which contains the following fields:

• data - [in/out] Pointer to a buffer to contain the message data of the message
that is to be received.
If data as an in parameter is not NULL, it points to memory allocated by the
invoking process for the buffer. The size of this memory is given by the size
parameter.
If data as an in parameter is NULL, the value of size provided by the invoking
process is ignored, and the buffer is provided by the Message Service library.
In this case, the buffer must be deallocated by the calling process by invoking
the saMsgMessageDataFree() function.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.3 77

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• size - [in/out] The size of the buffer to which data as an in parameter points. If
the saMsgMessageGet() function returns successfully, size contains the actual
size of the message data of the received message. If size as an in parameter
is too small, an error is returned, and size contains the size required to receive
the message.

• type - [out] The message type of the received message.
• version - [out] Distinguishes different versions of a message of the same type.
• priority - [out] The priority of the received message.
• senderName [in/out] If senderName as an in parameter is not NULL, it points

to an area to contain the sender name. If the sender name is available in the
received message, the Message Service places the sender name into this
area; otherwise, message->senderName->length is set to zero.
If senderName as an in parameter is NULL, no sender name is provided to the
caller.

sendTime - [in/out] If sendTime as an in parameter is not NULL, it points to a value of
type SaTimeT (as defined in [1]) on return from saMsgMessageGet(). If
saMsgMessageGet() returns SA_AIS_OK, this value represents the absolute time
when the received message was stored in the destination message queue by one of
the calls saMsgMessageSend(), saMsgMessageSendAsync(), or
saMsgMessageSendReceive(). If sendTime as an in parameter is NULL, it is ignored.

senderId - [in/out] This parameter must point to a value of type SaMsgSenderIdT, as
defined in Section 3.4.2 on page 23. If saMsgMessageGet() returns SA_AIS_OK and
the contents of the field to which senderId points is not zero, the receiving thread
must reply to the received message by invoking either saMsgMessageReply() or
saMsgMessageReplyAsync() and supplying in either case the same value of
*senderId.

timeout - [in] The time duration that specifies how long the saMsgMessageGet() func-
tion waits for the arrival of a message before it returns with a timeout error.
If timeout is set to 0, the call returns immediately; if a message has been found in the
message queue before the call returns, and no other error has occurred, this mes-
sage is returned, and the return value is set to SA_AIS_OK; otherwise,
SA_AIS_ERR_TIMEOUT is returned. The SaTimeT type is defined in [1].

Description

This function retrieves a message from the message queue designated by
queueHandle. This function will block until a message is available to be retrieved, or
until the time duration specified by the timeout parameter elapses, or an error occurs.
78 SAI-AIS-MSG-B.03.01 Section 3.8.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
The saMsgMessageGet() function receives messages in a higher priority area before
it receives messages in a lower priority area. Messages with the same priority are
received in the order of their arrival in the priority area associated with a priority. For
more details, see Section 3.1.5 on page 20.

When the Message Service library allocates the buffer to which data points, the
invoking process must deallocate this buffer by calling the saMsgMessageDataFree()
function.

If SA_AIS_OK is returned, the received message is removed from the message
queue.
If SA_AIS_ERR_LIBRARY or SA_AIS_ERR_TIMEOUT is returned, it is unspecified
whether the message is removed from the message queue or whether it is not. For all
other error codes, the message is not removed from the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly. In par-
ticular, this value is returned if senderId is NULL.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.3 79

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_NO_SPACE - The message could not be received because the buffer
provided was not large enough.

SA_AIS_ERR_INTERRUPT - This error code is returned if the call is terminated by a
call to saMsgMessageCancel().

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageReply(), saMsgMessageReplyAsync(), saMsgMessageSend(),
saMsgMessageSendAsync(), saMsgMessageSendReceive(),
saMsgMessageDataFree(), saMsgMessageCancel(), saMsgFinalize()

3.8.4 saMsgMessageDataFree()

Prototype

SaAisErrorT saMsgMessageDataFree(

SaMsgHandleT msgHandle,

void *data

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

data - [in] A pointer to the buffer that was allocated by saMsgMessageGet() or
saMsgMessageSendReceive() and is to be deallocated.

Description

This function frees the memory to which data points. This memory was allocated by
the Message Service library in a previous call to the saMsgMessageGet() or
saMsgMessageSendReceive() functions.

For details, refer to the description of the message parameter in the corresponding
invocation of the saMsgMessageGet() function and to the description of the
receiveMessage parameter in the corresponding invocation of the
saMsgMessageSendReceive() function.
80 SAI-AIS-MSG-B.03.01 Section 3.8.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageGet(), saMsgMessageSendReceive()

3.8.5 SaMsgMessageReceivedCallbackT

Prototype

typedef void (*SaMsgMessageReceivedCallbackT)(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue from which the message can
be received. The SaMsgQueueHandleT type is defined in Section 3.4.1.2 on page
23.

Description

The Message Service invokes this callback function to notify a process that a mes-
sage can be received from the message queue designated by queueHandle.

This callback is invoked in the context of a thread calling saMsgDispatch() on the
handle msgHandle that was specified when the process invoked one of the
saMsgQueueOpen() or saMsgQueueOpenAsync() functions to obtain the handle
queueHandle.

The process can receive this message by invoking the saMsgMessageGet() function.

The Message Service invokes this callback whenever a message is placed in the
message queue, irrespective of its priority.
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.5 81

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Return Values

None

See Also

saMsgMessageGet(), saMsgQueueOpen(), saMsgQueueOpenAsync(),
saMsgMessageSend(), saMsgMessageSendAsync(),
saMsgMessageSendReceive(), saMsgMessageReply(),
saMsgMessageReplyAsync(), saMsgDispatch()

3.8.6 saMsgMessageCancel()

Prototype

SaAisErrorT saMsgMessageCancel(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue for which blocking calls to
saMsgMessageGet() are to be canceled. The SaMsgQueueHandleT type is defined
in Section 3.4.1.2 on page 23.

Description

This function cancels all blocking calls to saMsgMessageGet() in the invoking pro-
cess for the message queue designated by queueHandle.

This function is normally called during fault recovery.

The canceled call returns with the error code set to SA_AIS_ERR_INTERRUPT.

If no process is blocking in an saMsgMessageGet() call, the saMsgMessageCancel()
call has no effect and returns SA_AIS_ERR_NOT_EXIST.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
82 SAI-AIS-MSG-B.03.01 Section 3.8.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_NOT_EXIST - No process was blocking in an saMsgMessageGet()
call.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageGet(), saMsgQueueOpen(), saMsgQueueOpenAsync()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.8.6 83

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.9 Request-Reply Operations

3.9.1 saMsgMessageSendReceive()

Prototype

SaAisErrorT saMsgMessageSendReceive(

SaMsgHandleT msgHandle,

const SaNameT *destination,

const SaMsgMessageT *sendMessage,

SaMsgMessageT *receiveMessage,

SaTimeT *replySendTime,

SaTimeT timeout

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

destination - [in] A pointer to the name of a message queue or a unicast message
queue group to which the message pointed to by sendMessage is to be sent. It is not
permitted to specify a multicast message queue group in destination. The SaNameT
type is defined in [1].

sendMessage - [in] A pointer to the message structure of SaMsgMessageT type (as
defined in Section 3.4.11 on page 30) for the message to be sent. The message
structure consists of a type field that contains the message type, a version field that is
used to distinguish different versions of a message of the same type, a data field that
points to the message data, a size field that contains the size of the message data, a
priority field that gives the priority of the message, and a senderName pointer.
If senderName is not NULL, it points to an area which contains the sender name, and
which is supplied by the caller; If senderName is NULL, the sending process does not
provide its sender name, and a receiving process expecting a sender name will get
message->senderName->length set to zero.
84 SAI-AIS-MSG-B.03.01 Section 3.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
receiveMessage - [in/out] A pointer to the message structure of type
SaMsgMessageT, as defined in Section 3.4.11 on page 30. This message structure
contains the following fields:

• data - [in/out] Pointer to a buffer (the reply buffer) to contain the message data
of the reply message.
If data as an in parameter is not NULL, it points to memory allocated by the
invoking process for the buffer. The size of the buffer is given by the size
parameter.
If data as an in parameter is NULL, the value of size provided by the invoking
process is ignored, and the reply buffer is provided by the Message Service
library. In this case, the reply buffer must be deallocated by the invoking pro-
cess by calling the saMsgMessageDataFree() function.

• size - [in/out] The size of the reply buffer as an in parameter. If the
saMsgMessageSendReceive() function returns successfully, the size field as
an out parameter contains the size of the message data of the reply message.
If size as an in parameter is too small, an error is returned.

• type - [out] The message type of the received message.
• version - [out] Distinguishes different versions of a message of the same type.
• priority - [out] The priority of the received message.
• senderName - [in/out] If senderName as an in parameter is not NULL, it points

to an area to contain the sender name of the process replying to this
saMsgMessageSendReceive() call. If a sender name is available in the
received message, the Message Service places the sender name into this
area; otherwise, receiveMessage->senderName->length is set to zero.
If senderName as an in parameter is NULL, no sender name is provided to the
caller.

replySendTime - [in/out] If replySendTime as an in parameter is not NULL, it points to
a value of type SaTimeT (as defined in [1]) on successful return from
saMsgMessageSendReceive(). This value represents the timestamp when the reply
message was written into the buffer to which receiveMessage->data points. If
replySendTime as an in parameter is NULL, it is ignored.

timeout - [in] The time duration that specifies how long the
saMsgMessageSendReceive() function must wait before it returns with a timeout
error. The SaTimeT type is defined in [1].

Description

This function enables the transmission of a message to which sendMessage points
as well as the receipt of a reply message to which receiveMessage points in a single
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.9.1 85

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
invocation. The message to which sendMessage points is sent to the message queue
or message queue group designated by the name to which destination points. The
message is sent synchronously, that is, the process blocks waiting for a reply. The
reply consists of the message referred to by receiveMessage. It must be sent by
invoking one of the saMsgMessageReply() or saMsgMessageReplyAsync() func-
tions, and it must arrive before the time duration specified by the timeout parameter
elapses; If the reply does not arrive during this time, the error
SA_AIS_ERR_TIMEOUT is returned.

In absence of errors, the thread that invoked saMsgMessageSendReceive() will
receive the corresponding reply, even when other threads are waiting for replies to
other invocations of saMsgMessageSendReceive(). Moreover, the reply message
sent by invoking saMsgMessageReply() or saMsgMessageReplyAsync() is not
enqueued in a message queue.

After this call returns, the invoking process may deallocate the memory for the buffer
to which sendMessage->data points.
When the buffer to which receiveMessage->data points is allocated by the Message
Service library, the invoking process must deallocate this buffer space promptly by
calling the saMsgMessageDataFree() function.

Message delivery properties:

These properties apply when a message is sent to either a destination message
queue or to a message queue that is a member of a destination message queue
group.

If SA_AIS_ERR_QUEUE_FULL is returned, the message has not been delivered to
the process receiving from the destination message queue, because the message
queue was full.

If SA_AIS_ERR_NO_SPACE is returned, the message has been delivered to a pro-
cess receiving from the destination message queue, because this error applies only
when receiving the reply.

If SA_AIS_ERR_TIMEOUT, SA_AIS_ERR_NO_MEMORY, or
SA_AIS_ERR_NO_RESOURCES is returned, the message may or may not have
been delivered to a process receiving from the destination message queue, because
those errors apply to both the sending and receiving parts of this call.

For all other return values except SA_AIS_OK, the Message Service guarantees that
no process receiving from the destination message queue receives this message.

Return Values

SA_AIS_OK - The function completed successfully.
86 SAI-AIS-MSG-B.03.01 Section 3.9.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly. In par-
ticular, this applies if the destination parameter points to the name of a multicast mes-
sage queue group.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory).

SA_AIS_ERR_TOO_BIG - This value is returned if the message size of the message
to be sent exceeds the maximum message size supported by the implementation.
Refer to the enum SA_MSG_MAX_MESSAGE_SIZE_ID, defined in Section 3.4.13
on page 34.

SA_AIS_ERR_NOT_EXIST - The destination message queue or message queue
group designated by the name to which destination points cannot be found.

SA_AIS_ERR_NO_SPACE - The message could not be received because the reply
buffer provided by the invoking process is not large enough.

SA_AIS_ERR_QUEUE_FULL - If destination points to the name of a message
queue, the message queue is full. If destination points to the name of a unicast mes-
sage queue group, the selected member message queue is full.

SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination parameter points to a
message queue group, and the message queue group is empty.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageReply(), saMsgMessageReplyAsync(), saMsgMessageGet(),
saMsgMessageSend(), saMsgMessageSendAsync(), saMsgMessageDataFree(),
saMsgFinalize()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.9.1 87

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.9.2 saMsgMessageReply() and saMsgMessageReplyAsync()

Prototype

SaAisErrorT saMsgMessageReply(

SaMsgHandleT msgHandle,

const SaMsgMessageT *replyMessage,

const SaMsgSenderIdT *senderId,

SaTimeT timeout

);

SaAisErrorT saMsgMessageReplyAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaMsgMessageT *replyMessage,

const SaMsgSenderIdT *senderId,

SaMsgAckFlagsT ackFlags

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

invocation - [in] This parameter associates this invocation of
saMsgMessageReplyAsync() with a corresponding invocation of the
saMsgMessageDeliveredCallback() function. This parameter is ignored if ackFlags is
set to zero. The SaInvocationT type is defined in [1].

replyMessage - [in] A pointer to a structure of type SaMsgMessageT (as defined in
Section 3.4.11 on page 30) which contains the reply message to be sent. The reply
message consists of a type field that contains the message type, a version field that is
used to distinguish different versions of a message of the same type, a buffer to
which data points and that contains the message data, a size field that contains the
size of the message data, a priority field that gives the priority of the message, and a
senderName pointer. The priority field is not used and is set to zero by the Message
Service.
If senderName is not NULL, it points to an area which contains the sender name, and
88 SAI-AIS-MSG-B.03.01 Section 3.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
which is supplied by the caller; if senderName is NULL, the replying process does not
provide the sender name. In this case, if the receiving process (that is the process
waiting for a reply in the saMsgMessageSendReceive() call) requested a sender
name, the saMsgMessageSendReceive() call sets the sender name to zero
(receiveMessage->senderName->length = 0).

senderId - [in] Pointer to the same value that the saMsgMessageGet() call obtained in
*senderId for the message to which the caller is replying. The SaMsgSenderIdT type
is defined in Section 3.4.2 on page 23.

ackFlags - [in] The kind of the required acknowledgment. This parameter must be set
to zero or to SA_MSG_MESSAGE_DELIVERED_ACK. If ackFlags is set to zero, the
saMsgMessageDeliveredCallback() function is not called, and the caller is not
informed whether an error occurred or whether it did not. If ackFlags is set to
SA_MSG_MESSAGE_DELIVERED_ACK, the caller requires to be acknowledged
whether the message has been stored in the reply buffer provided in the correspond-
ing saMsgMessageSendReceive() call. If the space in the reply buffer is not enough
for the entire message, the error SA_AIS_ERR_NO_SPACE is returned. The
SaMsgAckFlagsT type is defined in Section 3.4.4 on page 24.

timeout - [in] The saMsgMessageReply() invocation is considered to have failed if it
does not complete within the specified duration. The SaTimeT type is defined in [1].

Description

These functions are used to reply to a message that was previously sent by calling
the saMsgMessageSendReceive() function in which case the Message Service sets
*senderId for the message received by the saMsgMessageGet() function to a non-
zero value. This indicates to the process that it must reply to the received message
by invoking either saMsgMessageReply() or saMsgMessageReplyAsync() and with
*senderId set to the same value that the saMsgMessageGet() function set for
*senderId.

A process may not reply to a message more than once.

The saMsgMessageReply() function waits synchronously (that is, it blocks) until the
reply message has been placed in the reply buffer provided by the process that
invoked saMsgMessageSendReceive(), or an error occurs.
After the saMsgMessageReply() function returns, the invoking process may deallo-
cate the memory for the buffer to which replyMessage->data points.

The function saMsgMessageReplyAsync() returns as soon as possible, without wait-
ing until the reply message has been placed in the reply buffer provided by the pro-
cess that invoked saMsgMessageSendReceive(). If the value of the ackFlags field is
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.9.2 89

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
zero, the saMsgMessageDeliveredCallback() is not invoked, and the caller is not
informed whether an error occurred or whether it did not.
If the value of the ackFlags field is set to SA_MSG_MESSAGE_DELIVERED_ACK,
and this call returns SA_AIS_OK, saMsgMessageDeliveredCallback() is invoked to
indicate whether the message was delivered or whether an error occurred. For this
purpose, the invoking process must have supplied the
saMsgMessageDeliveredCallback() when it called the saMsgInitialize() function.
If saMsgMessageReplyAsync() returns successfully, and ackFlags is not set to zero,
the caller may deallocate the memory for the buffer to which
replyMessage->data points either during the invocation of
saMsgMessageDeliveredCallback() or after saMsgMessageDeliveredCallback()
returns.
If saMsgMessageReplyAsync() returns an error, or ackFlags is set to zero (meaning
that saMsgMessageDeliveredCallback() will not be called), the caller may deallocate
the memory for the buffer to which replyMessage->data points as soon as
saMsgMessageReplyAsync() returns.

If the process that invoked saMsgMessageSendReceive() exits or calls
saMsgFinalize() for its handle msgHandle before saMsgMessageReply() or
saMsgMessageReplyAsync() completes, the Message Service returns
SA_AIS_ERR_NOT_EXIST to the process that invoked saMsgMessageReply() or
saMsgMessageReplyAsync().

Message delivery properties:

saMsgMessageReply:
If the return value is SA_AIS_OK, the Message Service delivers the reply to the pro-
cess that invoked saMsgMessageSendReceive(). If the return value is
SA_AIS_ERR_LIBRARY or SA_AIS_ERR_TIMEOUT, it is unspecified whether the
reply is delivered or not. In all other cases, the Message Service shall not deliver the
reply.

saMsgMessageReplyAsync():
If saMsgMessageReplyAsync() returns SA_AIS_OK, and the value of the ackFlags
field is set to SA_MSG_MESSAGE_DELIVERED_ACK, the Message Service will
invoke saMsgMessageDeliveredCallback(); if the error code is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the Message Service will not
invoke saMsgMessageDeliveredCallback() and will not deliver the reply. Refer to the
saMsgMessageDeliveredCallback() function for the message delivery properties.

Return Values

SA_AIS_OK - The function completed successfully.
90 SAI-AIS-MSG-B.03.01 Section 3.9.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - Before the call could complete, either an implementation-
dependent timeout occurred, or the timeout specified by the timeout parameter in the
saMsgMessageReply() call occurred. It is unspecified whether the
saMsgMessageReply() call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous invocation of saMsgInitialize() to initialize the Mes-
sage Service was incomplete, since the saMsgMessageDeliveredCallback() callback
function is missing, and the user specified SA_MSG_MESSAGE_DELIVERED_ACK
in ackFlags of saMsgMessageReplyAsync().

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly, or the
message to which this reply is sent was not sent by invoking
saMsgMessageSendReceive().

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_TOO_BIG - This value is returned if the message size of the reply
message exceeds the maximum message size of a reply message supported by the
implementation. Refer to the enum SA_MSG_MAX_REPLY_SIZE_ID, defined in
Section 3.4.13 on page 34.

SA_AIS_ERR_NOT_EXIST - Either no thread is waiting for a reply, or the value to
which the senderId parameter points is invalid.

SA_AIS_ERR_NO_SPACE - The reply buffer specified in the corresponding
saMsgMessageSendReceive() call is not large enough for the reply message.

SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgMessageSendReceive(), saMsgMessageGet(), saMsgMessageSend(),
saMsgMessageSendAsync()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.9.2 91

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.10 Set and Get Critical Capacity Thresholds Operations
The section presents one function to set critical capacity thresholds for a message
queue and another one to retrieve these thresholds.

3.10.1 saMsgQueueCapacityThresholdsSet()

Prototype

SaAisErrorT saMsgQueueCapacityThresholdsSet(

SaMsgQueueHandleT queueHandle,

const SaMsgQueueThresholdsT *thresholds

);

Parameters

queueHandle - [in] The handle to the message queue for which the critical capacity
thresholds are to be set. The SaMsgQueueHandleT type is defined in Section 3.4.1.2
on page 23.

thresholds - [in] Pointer to an SaMsgQueueThresholdsT structure (as defined in Sec-
tion 3.4.12.2 on page 32) that contains the critical capacity thresholds to be set for the
message queue identified by the handle queueHandle.

Description

This function enables a user application to set the critical capacity thresholds for the
priority areas of a message queue. The values set for each priority area i must fulfill
the following relationships:

0 <= capacityAvailable[i] <= capacityReached[i] <= size[i],

where size represents the array containing the sizes of the priority areas as specified
at creation time, and capacityReached and capacityAvailable are arrays in the struc-
ture to which thresholds points and which contain for each priority area the high-water
capacity threshold and the low-water capacity threshold respectively.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
92 SAI-AIS-MSG-B.03.01 Section 3.10 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. This error is
returned if one or both of the following conditions are met:

• The thresholds pointer is NULL.
• The values set for each priority area i do not fulfill the following relationships:

0 <= capacityAvailable[i] <= capacityReached[i] <= size[i], where
capacityAvailable and capacityReached are the arrays in the structure to which
thresholds points, and size represents the array containing the sizes of the prior-
ity areas as specified at creation time.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Message Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueCapacityThresholdsGet(), saMsgQueueOpen(),
saMsgQueueOpenAsync()
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.10.1 93

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
3.10.2 saMsgQueueCapacityThresholdsGet()

Prototype

SaAisErrorT saMsgQueueCapacityThresholdsGet(

SaMsgQueueHandleT queueHandle,

SaMsgQueueThresholdsT *thresholds

);

Parameters

queueHandle - [in] The handle to the message queue for which the critical capacity
thresholds are to be retrieved. The SaMsgQueueHandleT type is defined in Section
3.4.1.2 on page 23.

thresholds - [out] Pointer to an SaMsgQueueThresholdsT structure (as defined in
Section 3.4.12.2 on page 32) where the Message Service stores the critical capacity
thresholds for the message queue identified by the handle queueHandle.

Description

This function enables a user application to retrieve the critical capacity thresholds for
a message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained with the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.
94 SAI-AIS-MSG-B.03.01 Section 3.10.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. This error is
returned if the thresholds pointer is NULL.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Message Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgQueueCapacityThresholdsSet(), saMsgQueueOpen(),
saMsgQueueOpenAsync()

3.11 Retrieve Metadata Size and Limit Fetch Operations
The saMsgMetadataSizeGet() and the saMsgLimitGet() functions retrieve implemen-
tation-specific values.

3.11.1 saMsgMetadataSizeGet()

Prototype

SaAisErrorT saMsgMetadataSizeGet(

SaMsgHandleT msgHandle,

SaUint32T *metadataSize

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

metadataSize - [out] A pointer to a memory area where the Message Service will
return the size of the implementation-specific message metadata portion per mes-
sage. The SaUint32T type is defined in [1].
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.11 95

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Description

This function enables a user application to retrieve from the Message Service the
size of the implementation-specific message metadata portion.

The message size of a given message msg of type SaMsgMessageT is calculated as
follows:

size of the standard message metadata portion + size of the message data (rounded
up to the next multiple of 8 bytes) + metadataSize.

The size of the standard message metadata portion is:

sizeof (

struct {

SaUint32T type;

SaUint32T version;

SaUint16T senderNameLength;

SaUint8T priority;

SaSizeT dataSize;

}

)

plus the size of the sender name, rounded up to the next multiple of 8 bytes.

The fields type, version, priority, and dataSize in the preceding structure correspond
to the fields type, version, priority, and size respectively in the SaMsgMessageT
structure, as described in Section 3.4.11 on page 30.

The field senderNameLength refers to the length field of the senderName in the
SaMsgMessageT structure (that is, senderName.length).

The size of the implementation-specific message metadata portion metadataSize is
not tied to a given message, that is, it is the same for all messages.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
96 SAI-AIS-MSG-B.03.01 Section 3.11.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The metadataSize pointer is NULL.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Message Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgInitialize(), saMsgQueueOpen(), saMsgQueueStatusGet()

3.11.2 saMsgLimitGet()

Prototype

SaAisErrorT saMsgLimitGet(

SaMsgHandleT msgHandle,

SaMsgLimitIdT limitId,

SaLimitValueT *limitValue

);

Parameters

msgHandle - [in] The handle which was obtained by a previous invocation of the
saMsgInitialize() function and which designates this particular initialization of the
Message Service. The SaMsgHandleT type is defined in Section 3.4.1.1 on page 23.

limitId - [in] The Message Service limit whose implementation-specific value needs to
be obtained. The limits are defined in the SaMsgLimitIdT type in Section 3.4.13 on
page 34.

limitValue - [out] Pointer to the current value of the limit specified in limitId. For details
regarding this type, refer to the SA Forum Overview document ([1]).
AIS Specification SAI-AIS-MSG-B.03.01 Section 3.11.2 97

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
Description

This function enables a user application to retrieve the current implementation-spe-
cific value of an Message Service limit. The limitId parameter represents the limit to
be queried. When this function completes successfully, it returns the current value of
the specified limit in the memory area pointed to by limitValue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. This error is
returned due to one or both of the following reasons:

• The limitId parameter contains an invalid value.
• The limitValue pointer is NULL.

SA_AIS_ERR_VERSION - The invoked function is not supported in the version spec-
ified in the call to initialize this instance of the Message Service library.

SA_AIS_ERR_UNAVAILABLE - The operation requested in this call is unavailable on
this cluster node because it is not a member node.

See Also

saMsgInitialize()
98 SAI-AIS-MSG-B.03.01 Section 3.11.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
4 Message Service Information Model
The Message Service information model is described in UML and has been orga-
nized in a UML class diagram.

The Message Service UML model is implemented by the SA Forum IMM Service [3].
For details on this implementation, refer to the SA Forum Overview document ([1]).

The Message Service UML class diagram has three classes, which show the con-
tained attributes.

4.1 DN Format for the Message Service UML Classes

The ‘*’ notation at the end of a DN format indicates that zero, one or more RDNs may
be appended to the DN format.

4.2 Message Service UML Classes
The three classes of the Message Service UML model are:

• SaMsgQueue —This is a runtime object class that exposes various runtime
attributes of a message queue.

• SaMsgQueuePriority —This is a runtime object class that exposes various runt-
ime attributes of a message queue priority area.

• SaMsgQueueGroup—This is a runtime object class that exposes various runt-
ime attributes of a message queue group.

FIGURE 1 shows these classes. A description of each attribute of these classes may
be found in the XMI file (see [5]). For additional details, refer to the SA Forum Over-
view document ([1]).

Table 2 DN Formats for Objects of Message Service Classes

Object Class DN Format for Objects of the Class

SaMsgQueue "safMq=…,* "

SaMsgQueueGroup "safMqg=…,* "

SaMsgQueuePriority "safMqPrio=…,safMq=…,* "
AIS Specification SAI-AIS-MSG-B.03.01 Section 4 99

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
FIGURE 1 Message Service UML Classes
100 SAI-AIS-MSG-B.03.01 Section 4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
5 Message Service Administration API
The Message Service has no administration interface at the time of publication of this
specification.
AIS Specification SAI-AIS-MSG-B.03.01 Section 5 101

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
102 SAI-AIS-MSG-B.03.01 Section 5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
6 Alarms and Notifications
The Message Service produces certain alarms and notifications to convey important
information regarding

• its operational and functional state and
• the operational and functional state of the objects under its control

to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The recommended vehicle to be used for producing alarms and notifications is the
Notification Service of the Service AvailabilityTM Forum (abbreviated to NTF, see [2]),
and hence the various notifications are partitioned into categories as described in this
service.

In some cases, this specification uses the term “Unspecified” for values of attributes.
This means that the SA Forum has no specific recommendation on the setting, and
the vendor may set these attributes to whatever makes sense in the vendor’s context.
Such values are generally optional from the CCITT Recommendation X.733 perspec-
tive (see [7]).

6.1 Setting Common Attributes

The tables presented in Section 6.2 refer to attributes defined in [2]. The following list
provides recommendations regarding how to populate these attributes.

• Correlation ids - They are supplied to correlate two notifications that have been
generated because of a related cause. This attribute is optional; however, in
case of alarms that are generated to clear certain conditions, that is, produced
with a perceived severity of SA_NTF_SEVERITY_CLEARED, the correlation id
shall be populated by the application with the notification id that was generated
by the Notification Service when invoking the saNtfNotificationSend() API during
the production of the actual alarm.

• Event time - The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value in which case the timestamp is provided by the
Notification Service.
AIS Specification SAI-AIS-MSG-B.03.01 Section 6 103

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
• NCI id - The notification class identifier is an attribute of type SaNtfClassIdT. The
vendorId portion of the SaNtfClassIdT data structure must be set to
SA_NTF_VENDOR_ID_SAF always. The majorId and minorId will vary based
on the specific SA Forum service and the particular notification. Every SA Forum
service shall have a majorId as described in the enumeration SaNtfSafServicesT
of the Notification Service specification.

• Notification id - This attribute is obtained from the Notification Service when a
notification is generated, and hence need not be populated by an application.

• Notifying object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and contain at least the safApp
RDN value portion of the DN set to the specified standard RDN value of the SA
Forum AIS service generating the notification. For details on the SA Forum AIS
naming convention, refer to the SA Forum Overview document ([1]).

6.2 Message Service Notifications
The following sections describe a set of notifications that a Message Service imple-
mentation shall produce.

The notifying object must be set to the DN "safApp=safMsgService" for the Message
Service.

The value of the majorId field in the notification class identifier (SaNtfClassIdT) must
be set to SA_SVC_MSG (as defined in the SaServicesT enum in [1]) in all notifica-
tions generated by the Message Service.

The minorId field within the notification class identifier (SaNtfClassIdT) is set distinctly
for each individual notification as described below. This field is range-bound, and the
used ranges are:

• Alarms: (0x01–0x64)
• State change notifications: (0x65–0xC8)
• Object change notifications: (0xC9–0x12C)
• Attribute change notifications: (0x12D–0x190)

6.2.1 Message Service Alarms

The Message Service does not issue any alarms at the time of publication of this
specification.
104 SAI-AIS-MSG-B.03.01 Section 6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
6.2.2 Message Service State Change Notifications

6.2.2.1 Message Queue Capacity Reached

Description

All priority areas of the message queue are filled up to their critical capacities (see
Section 3.4.12.1 on page 32).

Table 3 Message Queue Capacity Reached Notification

NTF Attribute Name Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue (as speci-
fied in Section 4.1) that is full and cannot
accept any more messages.

Notification Class
Identifier

NTF-internal minorId = 0x65

Additional Text Optional Unspecified

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory SA_MSG_QUEUE_CAPACITY_REACHED
AIS Specification SAI-AIS-MSG-B.03.01 Section 6.2.2 105

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
6.2.2.2 Message Queue Capacity Available

Description

At least one priority area of the message queue is no longer filled up to its critical
capacity after the Message Queue Group Capacity Reached condition has been noti-
fied for the message queue group before (see Section 3.4.12.1 on page 32).

Table 4 Message Queue Capacity Available Notification

NTF Attribute Name Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue (as speci-
fied in Section 4.1) which is available for
receipt of messages.

Notification Class
Identifier

NTF-internal minorId = 0x66

Additional Text Optional Unspecified

Additional Informa-
tion

Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional SA_MSG_QUEUE_CAPACITY_REACHED

New Attribute Value Mandatory SA_MSG_QUEUE_CAPACITY_AVAILABLE
106 SAI-AIS-MSG-B.03.01 Section 6.2.2.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
6.2.2.3 Message Queue Group Capacity Reached

Description

All priority areas of all the message queues within a message queue group are filled
up to their critical capacities (see Section 3.4.12.1 on page 32).

Table 5 Message Queue Group Capacity Reached Notification

NTF Attribute
Name

Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification
Object

Mandatory LDAP DN of the message queue group (as speci-
fied in Section 4.1) that is full and cannot accept
any more messages.

Notification
Class Identi-
fier

NTF-internal minorId = 0x67

Additional Text Optional Unspecified

Additional
Information

Optional Unspecified

Source Indica-
tor

Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed
State Attribute
ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute
Value

Optional Unspecified

New Attribute
Value

Mandatory SA_MSG_QUEUE_GROUP_CAPACITY_REACHED
AIS Specification SAI-AIS-MSG-B.03.01 Section 6.2.2.3 107

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
6.2.2.4 Message Queue Group Capacity Available

Description

At least one priority area in one message queue in the message queue group is no
longer filled up to its critical capacity after the Message Queue Group Capacity
Reached condition has been notified for the message queue group before (see Sec-
tion 3.4.12.1 on page 32).

Table 6 Message Queue Group Capacity Available Notification

NTF Attribute
Name

Attribute Type (NTF-
Recommended Value) SA Forum-Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification
Object

Mandatory LDAP DN of the message queue group (as speci-
fied in Section 4.1) that is available to receive
messages.

Notification
Class Identifier

NTF-internal minorId = 0x68

Additional Text Optional Unspecified

Additional Infor-
mation

Optional Unspecified

Source Indica-
tor

Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State
Attribute ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute
Value

Optional SA_MSG_QUEUE_GROUP_CAPACITY_REACHED

New Attribute
Value

Mandatory SA_MSG_QUEUE_GROUP_CAPACITY_AVAILABLE
108 SAI-AIS-MSG-B.03.01 Section 6.2.2.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
7 Message Service Management Interface
Currently, an SNMP MIB interface is defined for the Message Service. Other man-
agement access methods to the Message Service may be added in future versions of
this specification.

7.1 Message Service MIB (SAF-MSG-SVC-MIB)
The Message Service MIB contains the three read-only tables saMsgQueueTable,
saMsgQueuePriorityTable and saMsgQueueGroupTable, which enumerate the
attributes of all currently created message queues, priority areas of a message
queue, and message queue groups respectively. The currently created message
queues in the cluster include all message queues in the cluster that have not been
unlinked as well as the ones that have been unlinked but are still in-use within the
cluster.

These tables mimic the UML runtime object classes described in Section 4.2 in terms
of the objects contained in the table.

Additionally, the Message Service MIB also defines SNMP traps that correspond to
the various notifications for the service defined in Chapter 6 of this specification.

For a detailed description of the various objects of this MIB, refer to the
SAF-MSG-SVC-MIB as can be downloaded from
http://www.saforum.org/specification/download/get_spec.
AIS Specification SAI-AIS-MSG-B.03.01 Section 7 109

http://www.saforum.org/specification/download/get_spec

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Message Service
110 SAI-AIS-MSG-B.03.01 Section 7.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
Index of Definitions
A
acknowledgment see transmission acknowledgment
at-most-once delivery property 20

B
broadcast distribution policy 18

C
capacity see critical capacity
close time of a message queue 28
critical capacity 31

D
data see message data
data size 30
data size see message data size
delivery guarantees 20
distribution policies

see also message queue groups
definition 18
broadcast 18
local best queue 18
local equal load 18
multicast 18
unicast 17

H
high-water capacity thresholds 31

I
implementation-specific portion see message metadata
integrity of messages 20

L
local best queue distribution policy 18
local equal load distribution policy 18
local member message queue 18
low-water capacity thresholds 31

M
message data 17, 31
message data size 17
message metadata

see also messages
definition 17
implementation-specific portion 17
standard portion 17

message priority 17, 20, 31
message queue groups

see also distribution policies; messages; message queues
definition 17
local member message queue 18
remote member message queue 18

message queues
see also message queue groups; messages; priority areas
definition 17
acknowledgment 21
at-most-once delivery property 20

close time 28
delivery guarantees 20
integrity of messages 20
nonpersistent 19
persistence of messages 21
persistent 19
retention time 27

message retention time 19
message size 17
message type 17, 30
message version 17, 30
messages

see also message queues; message queue groups; mes-
sage metadata

definition 17
data 17, 31
data size 17, 30
message size 17
priority 17, 20, 31
reply 88
sender name 17, 31
type 17, 30
version 17, 30

metadata see message metadata
multicast message queue group 18

N
nonpersistent message queues 19

P
persistence of messages 21
persistent message queues 19
priority areas

see also message queues
definition 17
capacity 31
critical capacity 31
high-water capacity thresholds 31
low-water capacity thresholds 31

priority see message priority

Q
queue groups see message queue groups
queues see message queues

R
remote member message queue 18
reply buffer 24
reply message 88
retention time of a message queue 27

S
sender id 23, 78, 89
sender name 17, 31
size see message data size; message size
standard portion see message metadata

T
thresholds see priority areas 31
transmission acknowledgment 21
type see message type
AIS Specification SAI-AIS-MSG-B.03.01 Section 111

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Index of Definitions
U
unicast message queue group 17

V
version see message version
112 SAI-AIS-MSG-B.03.01 Section AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Changes in Return Values of API Functions:
	1.3.4 Removed Topics
	1.3.5 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Message Service

	3 SA Message Service API
	3.1 Message Service Model
	3.1.1 Messages and Message Queues
	3.1.2 Message Queue Groups
	3.1.3 Properties of Message Queues
	3.1.3.1 Nonpersistent and Persistent Message Queues
	3.1.3.2 Message Preservation Property of a Queue

	3.1.4 Associating Processes with Message Queues
	3.1.5 Message Delivery Properties

	3.2 Unavailability of the Message Service API on a Non-Member Node
	3.2.1 A Member Node Leaves or Rejoins the Cluster Membership
	3.2.2 Guidelines for Message Service Implementers

	3.3 Include File and Library Name
	3.4 Type Definitions
	3.4.1 Handles
	3.4.1.1 SaMsgHandleT
	3.4.1.2 SaMsgQueueHandleT

	3.4.2 SaMsgSenderIdT
	3.4.3 SaMsgCallbacksT
	3.4.4 SaMsgAckFlagsT
	3.4.5 Message Queue Creation Flags and Creation Attributes
	3.4.5.1 SaMsgQueueCreationFlagsT
	3.4.5.2 SaMsgQueueCreationAttributesT

	3.4.6 SaMsgQueueOpenFlagsT
	3.4.7 Message Priority
	3.4.8 Message Queue Usage and Status
	3.4.8.1 SaMsgQueueUsageT
	3.4.8.2 SaMsgQueueStatusT

	3.4.9 SaMsgQueueGroupPolicyT
	3.4.10 Types for Tracking Message Queue Group Changes
	3.4.10.1 SaMsgQueueGroupChangesT
	3.4.10.2 SaMsgQueueGroupMemberT
	3.4.10.3 SaMsgQueueGroupNotificationT
	3.4.10.4 SaMsgQueueGroupNotificationBufferT

	3.4.11 SaMsgMessageT
	3.4.12 Critical Capacity of Message Queues and Message Queue Groups
	3.4.12.1 saMsgMessageCapacityStatusT
	3.4.12.2 SaMsgQueueThresholdsT
	3.4.12.3 saMsgStateT

	3.4.13 SaMsgLimitIdT

	3.5 Library Life Cycle
	3.5.1 saMsgInitialize()
	3.5.2 saMsgSelectionObjectGet()
	3.5.3 saMsgDispatch()
	3.5.4 saMsgFinalize()

	3.6 Message Queue Operations
	3.6.1 saMsgQueueOpen() and saMsgQueueOpenAsync()
	3.6.2 SaMsgQueueOpenCallbackT
	3.6.3 saMsgQueueClose()
	3.6.4 saMsgQueueStatusGet()
	3.6.5 saMsgQueueRetentionTimeSet()
	3.6.6 saMsgQueueUnlink()

	3.7 Management of Message Queue Groups
	3.7.1 saMsgQueueGroupCreate()
	3.7.2 saMsgQueueGroupInsert()
	3.7.3 saMsgQueueGroupRemove()
	3.7.4 saMsgQueueGroupDelete()
	3.7.5 saMsgQueueGroupTrack()
	3.7.6 SaMsgQueueGroupTrackCallbackT
	3.7.7 saMsgQueueGroupTrackStop()
	3.7.8 saMsgQueueGroupNotificationFree()

	3.8 Message Send and Receive Operations
	3.8.1 saMsgMessageSend() and saMsgMessageSendAsync()
	3.8.2 SaMsgMessageDeliveredCallbackT
	3.8.3 saMsgMessageGet()
	3.8.4 saMsgMessageDataFree()
	3.8.5 SaMsgMessageReceivedCallbackT
	3.8.6 saMsgMessageCancel()

	3.9 Request-Reply Operations
	3.9.1 saMsgMessageSendReceive()
	3.9.2 saMsgMessageReply() and saMsgMessageReplyAsync()

	3.10 Set and Get Critical Capacity Thresholds Operations
	3.10.1 saMsgQueueCapacityThresholdsSet()
	3.10.2 saMsgQueueCapacityThresholdsGet()

	3.11 Retrieve Metadata Size and Limit Fetch Operations
	3.11.1 saMsgMetadataSizeGet()
	3.11.2 saMsgLimitGet()

	4 Message Service Information Model
	4.1 DN Format for the Message Service UML Classes
	4.2 Message Service UML Classes

	5 Message Service Administration API
	6 Alarms and Notifications
	6.1 Setting Common Attributes
	6.2 Message Service Notifications
	6.2.1 Message Service Alarms
	6.2.2 Message Service State Change Notifications
	6.2.2.1 Message Queue Capacity Reached
	6.2.2.2 Message Queue Capacity Available
	6.2.2.3 Message Queue Group Capacity Reached
	6.2.2.4 Message Queue Group Capacity Available

	7 Message Service Management Interface
	7.1 Message Service MIB (SAF-MSG-SVC-MIB)

	Index of Definitions

