
Service AvailabilityTM Forum
Application Interface Specification

Platform Management Service         SAI-AIS-PLM-A.01.02

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.



.



AIS Specification SAI-AIS-PLM-A.01.02 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT 
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products 
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered 
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

    Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package 
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package.  If the 
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a 
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's 
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given 
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to 
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party.  It does not 
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright 
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder. 

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be 
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of 
the Source form.

Permission for Use and Modification Without Distribution

(1)  You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you 
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2)  You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either 
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers.  At your discretion, 
such verbatim copies may or may not include a Compiled form of the Package.

(3)  You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder.  The resulting 
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4)  You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the 
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any 
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a)  make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright 
Holder may include your modifications in the Standard Version.

http://www.saforum.org


4 SAI-AIS-PLM-A.01.02 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Legal Notice

(b)  ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the 
Modified Version must bear a name that is different from the name of the Standard Version.

(c)  allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i)  the Original License or

(ii)  a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that 
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be 
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5)  You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to 
get the Source of the Standard Version.  Such instructions must be valid at the time of your distribution.  If these instructions, at any time while 
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not 
forfeit any of your rights under this license.

(6)  You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the 
Source of the Modified Version.

Aggregating or Linking the Package

(7)  You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting 
aggregation provided that you do not charge a licensing fee for the Package.  Distributor Fees are permitted, and licensing fees for other 
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as 
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build 
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the 
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the 
Package to be a Modified Version.  In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this 
license.

General Provisions

(10)  Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or 
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11)  If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to 
ensure that your Modified Version complies with the requirements of this license.

(12)  This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13)  This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and 
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the 
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct 
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14)  Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR 
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO 
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
Table of Contents                      
1 Document Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

   1.1 Document Purpose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
   1.2 AIS Documents Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
   1.3 History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
          1.3.1 New Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
          1.3.2 Clarifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
          1.3.3 Deleted Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
          1.3.4 Other Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
          1.3.5 Superseded and Superseding Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
          1.3.6 Changes in Return Values of API and Administrative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
   1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
   1.5 How to Provide Feedback on the Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
   1.6 How to Join the Service Availability™ Forum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
   1.7 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
          1.7.1 Member Companies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
          1.7.2 Press Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

2 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

   2.1 Platform Management Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Platform Management Service API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

   3.1 Platform Management Service Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
          3.1.1 Role of PLM in the Overall Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
          3.1.2 PLM Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
                     3.1.2.1 Hardware Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
                     3.1.2.2 Execution Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
                     3.1.2.3 Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
          3.1.3 PLM State Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
                     3.1.3.1 HE States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
                                 3.1.3.1.1 HE Presence State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
                                 3.1.3.1.2 Administrative State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
                                 3.1.3.1.3 Operational State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
                                 3.1.3.1.4 Readiness State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
                                 3.1.3.1.5 Readiness Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
                     3.1.3.2 EE States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
                                 3.1.3.2.1 EE Presence State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
                                 3.1.3.2.2 Administrative State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
                                 3.1.3.2.3 Operational State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
                                 3.1.3.2.4 Readiness State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
                                 3.1.3.2.5 Readiness Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
                     3.1.3.3 Mapping Between PLM and HPI Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
                     3.1.3.4 Recommendation for HE Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
AIS Specification SAI-AIS-PLM-A.01.02 5



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
                     3.1.3.5 Hardware Health Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
                     3.1.3.6 Other Aspects of Interworking with HPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
          3.1.4 EE Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
                     3.1.4.1 Recommendation for EE Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
                     3.1.4.2 PLM Virtualization Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
          3.1.5 Verification of the System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
                     3.1.5.1 Verification of the Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
                     3.1.5.2 Verification of Execution Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
          3.1.6 Isolation of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
          3.1.7 Overview of the PLM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
          3.1.8 PLM Service and Cluster Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
   3.2 Include File and Library Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
   3.3 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
          3.3.1 PLM Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
                     3.3.1.1 SaPlmHandleT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
                     3.3.1.2 SaPlmEntityGroupHandleT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
          3.3.2 HE Administrative State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
          3.3.3 EE Administrative State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
          3.3.4 Operational State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
          3.3.5 HE Presence State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
          3.3.6 EE Presence State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
          3.3.7 Readiness State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
          3.3.8 Readiness Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
          3.3.9 Readiness Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
          3.3.10 Readiness Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
          3.3.11 HE Deactivation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
          3.3.12 Entity Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
          3.3.13 State Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
                     3.3.13.1 SaPlmGroupChangesT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
                     3.3.13.2 SaPlmChangeStepT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
                     3.3.13.3 SaPlmTrackCauseT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
                     3.3.13.4 SaPlmReadinessTrackedEntityT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
                     3.3.13.5 SaPlmReadinessTrackedEntitiesT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
          3.3.14 Callback Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
          3.3.15 Notification Related Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
                     3.3.15.1 SaPlmNotificationMinorIdT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
                     3.3.15.2 SaPlmAdditionalInfoIdT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
                     3.3.15.3 SaPlmStateT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
          3.3.16 SaPlmCallbacksT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
   3.4 Library Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
          3.4.1 saPlmInitialize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
          3.4.2 saPlmSelectionObjectGet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
          3.4.3 saPlmDispatch()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
          3.4.4 saPlmFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
   3.5 PLM Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
          3.5.1 Entity Group Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
                     3.5.1.1 saPlmEntityGroupCreate()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
6 SAI-AIS-PLM-A.01.02 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
                     3.5.1.2 saPlmEntityGroupAdd()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
                     3.5.1.3 saPlmEntityGroupRemove() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
                     3.5.1.4 saPlmEntityGroupDelete()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
          3.5.2 Readiness Status Tracking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
                     3.5.2.1 saPlmReadinessTrack() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
                     3.5.2.2 SaPlmReadinessTrackCallbackT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
                     3.5.2.3 saPlmReadinessTrackResponse()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
                     3.5.2.4 saPlmReadinessTrackStop()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
                     3.5.2.5 saPlmReadinessNotificationFree()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
          3.5.3 Entity Readiness Impact  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
                     3.5.3.1 saPlmEntityReadinessImpact() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

4 PLM Service UML Information Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

   4.1 Notes on the Conventions Used in UML Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
   4.2 DN Formats for PLM Service UML Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
   4.3 PLM Classes and Other Services’ Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
   4.4 PLM Instances and Types View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
   4.5 PLM HE Classes Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
          4.5.1 Matching Configured HEs to Hardware Entities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
                     4.5.1.1 Hardware Entity Location Check  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
                     4.5.1.2 HPI Entity Characteristics Check  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
   4.6 PLM EE Classes Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
   4.7 PLM Other Classes Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 PLM Service Administration API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

   5.1 Include File and Library Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
   5.2 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
          5.2.1 SaPlmAdminOperationIdT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
          5.2.2 Parameter lockOption for the LOCK Administrative Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
          5.2.3 Parameter restartOption for the Restart Administrative Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .115
   5.3 Interface to the Information Model Management Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
   5.4 Administrative Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
          5.4.1 SA_PLM_ADMIN_UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
          5.4.2 SA_PLM_ADMIN_LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
          5.4.3 SA_PLM_ADMIN_SHUTDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
          5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
          5.4.5 SA_PLM_ADMIN_UNLOCK_INSTANTIATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
          5.4.6 SA_PLM_ADMIN_RESTART  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
          5.4.7 SA_PLM_ADMIN_DEACTIVATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
          5.4.8 SA_PLM_ADMIN_ACTIVATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
          5.4.9 SA_PLM_ADMIN_RESET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
          5.4.10 SA_PLM_ADMIN_REPAIRED  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
          5.4.11 SA_PLM_ADMIN_REMOVED  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

6 PLM Service Alarms and Notifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
AIS Specification SAI-AIS-PLM-A.01.02 7



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
   6.1 Setting Common Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
   6.2 Platform Management Service Notifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
          6.2.1 Platform Management Service Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
                     6.2.1.1 Hardware Element Alarm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
                     6.2.1.2 Execution Environment Alarm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
                     6.2.1.3 Hardware Element Security Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
                     6.2.1.4 Execution Environment Security Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
                     6.2.1.5 Unmapped Hardware Entity Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
          6.2.2 Platform Management Service State Change Notifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
                     6.2.2.1 PLM Entity State Change Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
          6.2.3 HPI Events Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

Appendix A Mapping of PLM State Model to CCITT X.731  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix B Basic Operational Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

   B.1 Extraction of a Computing Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
          B.1.1 Extraction of a Computing Blade with Managed Hot Swap  167
          B.1.2 Extraction of a Computing Blade with Unmanaged Hot Swap  178
   B.2 Fault of a Computing Blade  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Index of Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8 SAI-AIS-PLM-A.01.02 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Table of Contents
List of Figures
Figure 1: Relating HPI Entities with the Rest of the Information Model Through PLM Objects . . . . . . 21
Figure 2: Mapping Between PLM Objects and Objects of Other SA Forum Services . . . . . . . . . . . . . . 45
Figure 3: Virtualized Architectures in the PLM Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4: Cluster View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 5: PLM Instances and Types View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 6: PLM HE Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 7: PLM EE Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 8: PLM Other Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 9: Administrative States and Related Operations for PLM EE Entities . . . . . . . . . . . . . . . . . . . 116
Figure 10: Administrative States and Related Operations for PLM HE Entities  . . . . . . . . . . . . . . . . . 117
Figure 11: Extraction of a Computing Blade (Deactivation Part 1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 12: Extraction of a Computing Blade (Deactivation Part 2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 13: Extraction of a Computing Blade (Deactivation Part 3)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 14: Actual Extraction of a Computing Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 15: Extraction of a Computing Blade Supporting Unmanaged Hot Swap . . . . . . . . . . . . . . . . . 181
Figure 16: Fault of a Computing Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

List of Tables
Table 1: DN Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 2: IDR Names and Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 3: Hardware Element Alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 4: Execution Environment Alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 5: Hardware Element Security Alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 6: Execution Environment Security Alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 7: Unmapped Hardware Entity Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 8: PLM Entity State Change Notification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 9: HPI Event Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 10: Mapping HPI Event Type to Notification Event Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
AIS Specification SAI-AIS-PLM-A.01.02 9





Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1   Document Introduction

1.1 Document Purpose
This document defines the Platform Management Service of the Application Interface 
Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for 
use by implementers of the Application Interface Specification and by application 
developers who would use the Application Interface Specification to develop applica-
tions that must be highly available. The AIS is defined in the C programming lan-
guage and requires substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be 
used in conjunction with the Service AvailabilityTM Forum Hardware Platform 
Interface Specification (HPI).

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of 
all Application Interface Specification documents, refer to the SA Forum Overview 
document ([1]).

1.3 History
The first and only previous release of the Platform Management Service specification 
is:

SAI-AIS-PLM-A.01.01

This section presents the changes of the current release, SAI-AIS-PLM-A.01.02, with 
respect to the SAI-AIS-PLM-A.01.01 release. Editorial changes that do not change 
semantics or syntax of the described interfaces are not mentioned.

1.3.1 New Topics

None

1.3.2 Clarifications
⇒ In Section 3.1.1 on page 19 on the role of PLM in the overall architecture, in a 

paragraph on page 20, the text fragment “modeled as objects of the SaPlmEE 
object class” has replaced the fragment “modeled as an object class“. In the 
same paragraph, the word “directly” has been added to the second sentence. 
Note also a few editorial changes in the paragraph following this one.
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 1 11



Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ The title of FIGURE 1 on page 21 has changed.
⇒ In the first paragraph of the description of the not-present state in 

Section 3.1.3.1.1 on page 26 on the HE presence state, a reference to 
Section 4.5.1 has been added.

⇒ The first paragraph in the description of the management-lost readiness flag of 
an HE in Section 3.1.3.1.5 and the first paragraph in the description of the man-
agement-lost readiness flag of an EE in Section 3.1.3.2.5 have been clarified.

⇒ In Section 3.1.3.1.5 on the readiness flags of an HE, the first paragraph in the 
description of the admin-operation-pending flag and the first paragraph in the 
description of the isolate-pending flag have been clarified. The same clarification 
has been added to the description of the SA_AIS_ERR_TRY_AGAIN error code 
of the administrative operation with SA_PLM_ADMIN_RESET as operationId in 
Section 5.4.9.

⇒ In Section 3.1.3.2.1 on the EE presence state, in the paragraph on page 38 
describing the instantiation-failed state, “failed” was mistakenly used instead of 
“disabled”.

⇒ The last bullet in the explanation of the in-service readiness state of an EE in 
Section 3.1.3.2.4 on page 41 has been clarified.

⇒ In Section 3.1.3.2.5 on page 42 on the readiness flags, in the second bullet 
describing the admin-operation-pending flag, the text fragment “has applied the 
administrative state” has replaced the text fragment “has performed the adminis-
trative operation“. In the same section, a few clarifications have been added to 
the first paragraph in the description of the management-lost flag.

⇒ The first bullet in Section 3.1.4.2 on page 49 on the PLM Virtualization Support 
has been slightly rephrased.

⇒ In Section 3.1.5.1 on page 51 on the verification of the hardware configuration, it 
been clarified that the PLM Service may issue the Unmapped Hardware Entity 
Alarm.

⇒ In Section 3.3.13.3 on page 64, additional clarification is provided in the descrip-
tion of the SA_PLM_CAUSE_MANAGEMENT_LOST and 
SA_PLM_CAUSE_MANAGEMENT_REGAINED values.

⇒ The behavior of the saPlmFinalize() function in Section 3.4.4 on page 76 
has been clarified in the second paragraph of the description section of this func-
tion.

⇒ The behavior of the saPlmEntityGroupDelete() function in 
Section 3.5.1.4 on page 83 has been clarified in the description section of this 
function.

⇒ A sentence has been added the end of the description subsection of 
Section 3.5.3.1 on page 99 on the saPlmEntityReadinessImpact() function.
12 SAI-AIS-PLM-A.01.02 Section 1.3.2 AIS Specification



Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Deleted Topics

None

1.3.4 Other Changes
⇒ Throughout the document, the term “isolation-pending flag” has been changed to 

“isolate-pending flag”.
⇒ In Section 3.3.13.3 on page 64, the new value SA_PLM_CAUSE_STATUS_INFO 

has been added to the SaPlmTrackCauseT enumeration. The meaning of this 
new value is explained in the mentioned section; this value is intended to be 
used, for instance, in connection with the track flag SA_TRACK_CURRENT. This 
modification has led to a change to the description of the rootCorrelationId 
parameter of the SaPlmReadinessTrackCallbackT function in 
Section 3.5.2.2 on page 92.

⇒ In the previous release, references to the 
saPlmReadinessTrackResponse() function were mistakenly written as 
saPlmResponse(). These corrections apply to Section 3.3.14, Section 3.5.2, 
Section 5.4.3, and in Appendix B.1.1, enumerations (14) and (24).

⇒ In Section 4.2, Table 1 on page 102 has been updated to add a root, 
"safApp=safPlmService", to the distinguished names for 
SaPlmEEBaseType, SaPlmEEType, SaPlmHEBaseType, and SaPlmHEType 
objects classes.

⇒ The object class SaPlmEntity has been made abstract. This is reflected in 
FIGURE 4 on page 103 by showing the SaPlmEntity in italics.

⇒ The SaPlmDependency object class has changed from an association class to 
a “regular” object class. In the previous version, only 1:1 dependencies between 
PLM entities were possible. This new definition allows for 1:N dependencies. 
Note also that the relationship between the SaPlmEntity and 
SaPlmDependency object classes has changed. These changes are shown in:
• Section 4.4, FIGURE 5 on page 104 depicting the PLM Instances and Types 

View and in
• Section 4.7, FIGURE 8 on page 112 depicting the PLM Other Classes dia-

gram.
⇒ The code snippets for the params parameter in Section 5.4.2 on page 120 on 

the SA_PLM_ADMIN_LOCK and in Section 5.4.6 on page 129 on the 
SA_PLM_ADMIN_RESTART administrative operations have been changed to use 
correct C syntax.

⇒ In Table 5 on page 150 (Section 6.2.1.3) on the Hardware Element Security 
Alarm and in Table 6 on page 152 (Section 6.2.1.4) on the Execution Environ-
ment Security Alarm, the descriptions of the attributes Detector, Service User, 
AIS Specification SAI-AIS-PLM-A.01.02 Section 1.3.3 13



Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
and Service Provider have changed. Note that a typo in the title of 
Table 5 on page 150 has also been corrected.

⇒ The place of the first quote in the LDAP DN of the notification object on page 160 
has been corrected.

1.3.5 Superseded and Superseding Functions

None

1.3.6 Changes in Return Values of API and Administrative Functions

None

1.4 References
The following documents contain information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview,
SAI-Overview-B.05.02

[2] Service AvailabilityTM Forum, Service Availability Interface, C Programming 
Model, SAI-AIS-CPROG-B.05.02

[3] Service AvailabilityTM Forum, Hardware Platform Interface Specification,
SAI-HPI-B.03.02

[4] Service AvailabilityTM Forum, Application Interface Specification, Notification 
Service, SAI-AIS-NTF-A.03.01

[5] Service AvailabilityTM Forum, Application Interface Specification, Information 
Model Management Service, SAI-AIS-IMM-A.03.01

[6] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.04.01

[7] Service AvailabilityTM Forum, Application Interface Specification, Security Ser-
vice, SAI-AIS-SEC-A.01.01

[8] Service AvailabilityTM Forum, SA Forum Information Model in XML Metadata 
Interchange (XMI) v2.1 format, SAI-IM-XMI-A.04.02.xml.zip

[9] Service AvailabilityTM Forum, Application Interface Specification, Availability 
Management Framework, SAI-AIS-AMF-B.04.01

[10] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[11] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Func-

tion
[12] CCITT Recommendation X.731 | ISO/IEC 10164-2 : 1992/Amd.2 : 2001
14 SAI-AIS-PLM-A.01.02 Section 1.3.5 AIS Specification



Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
[13] Virtualization: State of the Art, Published by SCOPE Alliance,
http://www.scope-alliance.org

[14] RFC 4506, XDR: External Data Representation Standard,
http://www.rfc-archive.org/getrfc.php?rfc=4506

References to these documents are made by placing the number of the document in 
square brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback 
online by following the links provided for this purpose on the Service Availability™ 
Forum Web site (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership 
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally 
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by 
using the links provided on the SA Forum Web site (http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource 
materials, including the Forum Press Kit, graphics, and press contact information. 
Visit this area often for the latest press releases from the Service Availability™ Forum 
and its member companies by following the pertinent links provided on the SA Forum 
Web site (http://www.saforum.org).
AIS Specification SAI-AIS-PLM-A.01.02 Section 1.5 15

http://www.rfc-archive.org/getrfc.php?rfc=4506
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.scope-alliance.org




Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
2   Overview
This specification defines the Platform Management (PLM) Service within the Appli-
cation Interface Specification (AIS).

2.1 Platform Management Service
The PLM Service provides a logical view of the hardware and low-level software of 
the system. Low-level software in this sense comprises the operating system and vir-
tualization layers that provide execution environments for all kinds of software.
This logical view is presented in the Service AvailabilityTM Forum Information Model 
by a set of objects that

• allow for the management of hardware entities and execution environments,
• allow other software to keep track of status changes of the hardware and execu-

tion environments, and
• allow the mapping of the HPI (see [3]) data to objects represented in the SA 

Forum Information Model.

The PLM Service typically uses HPI to derive all necessary information from the hard-
ware. HPI discovers existing hardware and notifies its users about events (see [3]). 
The PLM Service may use implementation-specific means to derive hardware infor-
mation which cannot be accessed via HPI.

The PLM Service not only provides the hardware information in the Service Availabil-
ityTM Forum Information Model through the IMM Service (see [5]), but also provides 
objects that are administratively configurable. Additionally, the PLM Service is 
responsible for matching the configuration with the discovered hardware.

The main logical entities implemented by the PLM Service are:

• Execution Environment (EE)
An EE is a logical entity that represents an environment capable of running soft-
ware. An EE may or may not host one CLM node. In most cases, a CPU blade or 
an SMP machine runs one operating system modeled as an EE.
When a hypervisor provides hardware virtualization, the hypervisor itself and 
each operating system running under its control are modeled as separate EEs.

• Hardware Element (HE)
An HE is a logical entity that represents any kind of hardware entity, which can 
be, for instance, a chassis, a blade, or an I/O device.
Typically, all FRUs (Field Replaceable Units) are modeled as HEs. If necessary, 
the system architect may model in the PLM Information Model additional entities 
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 2 17



Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
that are part of a FRU as hardware elements, for example, I/O ports, CPU cores, 
and so on.

The PLM Service maintains the state information of HE entities. For this purpose, it 
retrieves as necessary any information about the health of the hardware. The PLM 
Service may also map HPI events to notifications distributed by the Service Availabil-
ityTM Forum Notification Service (see [4]) and generate these notifications.

Similarly, the PLM Service retrieves all necessary information about the health of the 
operating system and any available virtualization layer to maintain states of EE enti-
ties and generate necessary notifications about events of the EE entities.

The PLM Service allows application processes to register a callback function to 
receive notifications when PLM Service entities start or stop to provide service. This 
mechanism also allows application processes to gracefully shut down their own ser-
vices when a PLM Service entity is about to terminate, for instance, when an extrac-
tion or an administrative LOCK operation is requested for the entity.
18 SAI-AIS-PLM-A.01.02 Section 2.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3   Platform Management Service API

3.1 Platform Management Service Model

3.1.1 Role of PLM in the Overall Architecture

The Platform Management Service merges the software world of AIS and the hard-
ware world of HPI (Hardware Platform Interface, see [3]) to provide a homogeneous 
system view. It plugs the system view presented by the hardware platform interface 
into the information model used by AIS.

The system view of HPI represents the physical reality. HPI discovers the hardware 
entities that are present in the system and reflects them together with their states.

On the other side, AIS uses a preconfigured information model to represent the sys-
tem. This view not only considers entities currently present, but also entities that are 
planned or entities that should be present but currently are not. So this configured 
system model exists regardless of whether the hardware is present or not.

It is the responsibility of the PLM Service to connect those views.

On the hardware side, the PLM Service typically uses HPI to determine the discov-
ered system view. HPI discovers which hardware is actually present, independently 
from the configuration of the information model. HPI also reports hardware types and 
capabilities and provides means to assess the health states of hardware.

PLM provides a model to describe the desired or planned system configuration, that 
is, it provides object classes allowing the system architect to create object instances 
that represent the various pieces of hardware. This configuration is maintained by the 
SA Forum AIS Information Model Management Service (IMMS, see [5]). PLM is 
responsible for matching this configuration to the discovered hardware view. PLM 
checks whether the present hardware is of the right type and version, as specified in 
the SA Forum Information Model.

PLM represents a piece of hardware by a hardware element (HE) object. As the 
hardware architecture is typically organized in a hierarchical way, PLM reflects this 
organization with a containment tree of HE objects in the SA Forum Information 
Model. However, the mapping of HPI entities to HE objects is not necessarily one to 
one. It is left to the discretion of the system architect to decide which HPI entity or 
group of entities are mapped onto an HE object. Since PLM uses these objects in dif-
ferent maintenance tasks, it is strongly recommended to model at least every field 
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 3 19



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
replaceable unit (FRU) as a separate HE object. For more details, see 
Section 3.1.3.4 on page 46.

Any software needs some sort of operating system or such an environment to orga-
nize the execution of the software. The PLM Service represents this environment with 
a logical entity, the execution environment (EE). Execution environments may or 
may not provide the capability to run SA Forum AIS middleware.
AIS Services need a CLM cluster node (see [6]) to run on, and every CLM cluster 
node needs an execution environment.

EEs are modeled as objects of the SaPlmEE object class in the SA Forum Informa-
tion Model. An operating system running directly on an HE is thus represented by an 
EE object, its parent in the containment tree being the HE object.

EE objects are also used to model virtualized architectures in the PLM Information 
Model. In this case, there is also a containment hierarchy of EE objects. Virtual 
machine monitors (VMM), which are sometimes called hypervisors, are repre-
sented by parent EEs, virtual machines or guest operating systems by child 
EEs.

Note: In this document, the term “parent” of an object X means the object Y of which 
X is a (direct) child in the containment tree. A parent object may also have 
another parent. Thus, these parent objects form a list, and any parent in this 
list is termed an “ancestor” of X.
Similarly, the terms parent and ancestor are also used for logical entities: a 
logical entity Y is the parent (or an ancestor, respectively) of a logical entity X 
if— in the SA Forum Information Model—, the object corresponding to Y is 
the parent (or an ancestor, respectively) of the object corresponding to X.

Thus, the PLM Information Model connects the discovered hardware entities (mod-
eled in HPI) with the AIS objects in the SA Forum Information Model as shown in 
FIGURE 1. The diagram shows in a simplified way the relationship of PLM and its 
objects with CLM and AMF on one side and with HPI on the other side.
20 SAI-AIS-PLM-A.01.02 Section 3.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
FIGURE 1 Relating HPI Entities with the Rest of the Information Model Through PLM Objects

PLM also provides a state model for these entities and the necessary administrative 
operations. PLM is also responsible for maintaining these states. For HE entities, 
PLM needs to listen to HPI events and perform all necessary actions to retrieve from 
HPI the information about the hardware. For EE entities, implementation-specific 
interactions with the operating systems and virtualization facilities are needed.

Some operations on PLM entities may have a wide impact on services being pro-
vided. In many cases, when an operator or administrator performs maintenance oper-
ations, such as issuing a LOCK administrative operation or requesting a hot swap 
extraction, it is difficult to know whether the system provides sufficient redundancy to 
avoid a service outage. Therefore, the PLM Service not only informs its users about 
state changes of PLM Service entities, but it also provides the means to validate 
operations on hardware elements or execution environments before these operations 
are executed. The PLM Service also provides the means to force a LOCK administra-
tive operation in urgent cases, accepting the service outage.

Execution
Environment

Cluster-
Node

AMF-
Node

Service-
Unit

HPI  PLM  CLM  AMF  

HPI-
Entity

Hardware
Element

Execution
Environment

HPI-
Entity

Hardware
Element

Only in case of 
Virtualization
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.1 21



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.1.2 PLM Information Model

3.1.2.1 Hardware Elements

PLM uses the SaPlmHE object class for all kinds of hardware entities:

• container entities such as shelves, racks, or even slots;
• computing entities such as single board computer blades which are able to 

directly host an execution environment;
• resources of computing entities such as interfaces, chip-sets, memory, and 

CPUs;
• resources of the equipment such as fans and power-entry-modules.

Hardware elements are modeled in containments and should reflect the physical 
architecture of the hardware. For the highest containment level, the PLM Service pro-
vides the SaPlmDomain object class. The PLM Service implements a single instance 
of this class.

Since PLM maintains the state information and allows for administrative operations 
on hardware at the granularity of the HE objects, it is recommended to represent 
every FRU (field replaceable unit) by a separate HE. It is also possible to model the 
hardware in finer granularity.

PLM uses the SaPlmHEType and SaPlmHEBaseType object classes to support 
easy modeling of hardware units of the same hardware type or of similar hardware 
types and also to support hardware upgrade. HE types are also used to validate the 
configuration against the hardware entities that are present in the system (see 
Section 3.1.5 on page 51).

For a complete description of the classes and attributes that are used to configure an 
HE, refer to Section 4.5 on page 105.

3.1.2.2 Execution Environments

Without virtualization, a computing HE can run exactly one EE at a time.
With virtualization, a computing HE can run multiple EEs concurrently. Typically, 
when such an HE boots, a hypervisor or virtual machine monitor starts. This hypervi-
sor or virtual machine monitor can control multiple operating systems, which consti-
tute EEs that may run concurrently. There may be multiple instances of the same type 
of operating system or even of different types.
Many different architectures for virtual machine monitors are possible. In all cases, 
the PLM Service represents the virtual machine monitor by an EE as direct child of an 
HE. This EE is parent to all EEs representing the virtual machines. Note that a hyper-
22 SAI-AIS-PLM-A.01.02 Section 3.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
visor EE can run multiple child EEs concurrently, whereas an HE, directly, can run 
only one EE at a time.

Thus, the following kinds of EEs are considered:

⇒ EEs running directly on an HE, which can be:
• Payload operating system (if there is no virtualization).

The payload operating system may or may not have a configured CLM node.
• Parent EEs hosting child operating systems (with virtualization).

The virtualization monitor (sometimes called hypervisor), running directly on 
an HE, may or may not also have a configured CLM node.

⇒ Child operating systems, which may run as virtual machines controlled by a virtu-
alization monitor.
Child EEs may or may not run a configured CLM node.

In virtualized architectures, the containment tree shall reflect the relationships of virtu-
alization monitors and virtual machines as parent—child relationships. In this version, 
the PLM Service does not support dynamic migration of virtual machines.
More details on virtualization can be found in Section 3.1.4.2.

All EEs are modeled using the SaPlmEE class. Every EE directly running on an HE is 
modeled as a child of this HE in the containment tree.

PLM uses the SaPlmEEType and SaPlmEEBaseType object classes to support 
easy modeling of multiple EEs of the same type and also to support upgrade of oper-
ating systems.
The EE types contain attributes that can be used by the PLM Service to validate the 
configuration against the types of execution environments that are present and 
installed in the system (see Section 3.1.5 on page 51).

For a complete description of the object classes and attributes that are used to con-
figure an EE, refer to Section 4.6 on page 110.

For best practices on operating systems providing the notion of node name, it is rec-
ommended that the name of an EE be derived from the operating system node name 
(EE RDN: safEE=os_node_name). For details on naming issues, refer to [2].
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.2.2 23



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.1.2.3 Dependencies
There may be dependencies between PLM Service entities, that is, an entity cannot 
provide service without another entity being present and in-service. For instance, the 
outage of an entity may directly cause other entities to fail, or it may imply that PLM 
should actively terminate another entity. Dependencies may be caused by physical 
hardware conditions or by the way the system is configured. For instance, an EE may 
depend on a disk (which is located somewhere else in the system), because the disk 
is used as the system disk by the operating system.
These dependencies between PLM entities are reflected by dependencies between 
the objects representing these entities in the PLM Information Model. Some of the 
dependencies are expressed implicitly by the containment tree of the model. Other 
dependencies need to be explicitly specified.

Thus, a PLM object can only be in-service if all objects on which it depends are in-
service. The dependency influences the readiness state. For the readiness state of 
HEs and EEs, see Section 3.1.3.1.4 and Section 3.1.3.2.4 respectively.

All objects depend implicitly on their ancestors, that is, if any ancestor gets out-of-ser-
vice, all its children objects become out-of-service.

The following dependencies can be modeled explicitly in PLM, and PLM will react 
according to these dependencies and will also provide correlation of events of these 
objects.

• HEs may depend on HEs.
• EEs may depend on HEs and EEs.

Different “kinds” of dependencies are possible:

• on-the-parent
Implicit dependency of an object on its parent or on any other ancestor.

• one-on-one
Direct dependency of one object on another.

• one-of-a-group
Dependency on one object of a set of objects.
When the readiness state of at least one object in the dependency set is in-ser-
vice, the readiness state of the entity that depends on the set can be in-service.

• all-of-a-group
Dependency on all objects of a set of objects.
When the readiness state of any object in the dependency set becomes out-of-
service, the readiness state of the object that depends on the set also must be 
out-of-service.
24 SAI-AIS-PLM-A.01.02 Section 3.1.2.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• n-of-a-group
Dependency on a subset of a set of objects.
When fewer than n objects in the dependency set have their readiness state in-
service, the readiness state of the object that depends on the set must not be in-
service.
For instance, object A needs at least two of the objects B, C, D, and E. Any two 
of them may be out-of-service while A can still be in-service. However, if a third 
object gets out-of-service, A will also be brought out-of-service by PLM.

Note also that one-on-one, one-of-a-group, and all-of-a-group are just special cases 
of n-of-a-group. The term mandatory dependency is used to identify any of the 
above dependencies if the readiness state of the depending entity would need to 
transition to out-of-service if the readiness state of an object the entity depends upon 
transitions to out-of-service.

Dependencies are modeled using the SaPlmDependency object class defined in 
Section 4.7 on page 112. An HE or EE object instance may be parent to any number 
of SaPlmDependency objects. An SaPlmDependency object specifies

• in its saPlmDepNames attribute the list of objects on which this particular depen-
dency relies and

• in the saPlmDepMinNumber attribute the minimum number of objects that must 
be in-service in order to satisfy the dependency.

3.1.3 PLM State Model

The PLM state model is harmonized with the state model of the SA ForumTM AIS Ser-
vices. In addition, the PLM state model includes readiness flags to qualify the readi-
ness state.

The PLM state model defines the following types of states:

• Presence State
The presence state is defined differently for HEs and EEs.

• Administrative State
The administrative state is defined differently for HEs and EEs.

• Operational State
• Readiness State
• Readiness Flags

If a system needs to provide state management as defined in CCITT Recommenda-
tion X.731 (see [11]) to the outside world, the PLM state model can be mapped as 
described in Appendix A on page 165.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3 25



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Each PLM entity is typically designed to provide one or several functions; these func-
tions are called the service provided by the HE or EE.
An HE may include other parts providing, for example, control and management inde-
pendently of the service the HE provides.
An EE typically provides its service when it is able to run application software.
All states and flags introduced in the next sections reflect—from different 
perspectives—the ability of an entity to provide its service.

In some cases, PLM disallows an entity to provide its service. This may be done with 
or without termination, power-off, or other operations on the entity itself. In fault situa-
tions, the PLM Service must isolate the faulty entity by using appropriate operations 
like hot swap or power down. Details on isolation of faulty entities and the necessary 
operations are described in Section 3.1.6 on page 52. PLM also provides administra-
tive operations to isolate an entity.

3.1.3.1 HE States

3.1.3.1.1 HE Presence State

The HE presence state is used to manage physical presence of hardware. It resem-
bles the HPI hot swap state in many ways but is not always identical. Possible values 
of the HE presence state of an HE are active, inactive, activating, deactivating, and 
not-present.

⇒ not-present

In the system, there is no hardware entity that matches the characteristics of this 
HE (see Section 4.5.1 on page 106 about mapping hardware entities to HEs).

For example, the following situations are reflected by this state:

• The hardware entity that is represented by the HE has been removed from 
the system. HPI has reported this fact to PLM by a state change of the entity 
to not-present hot swap state.

• There is no hardware entity in the system with an HPI entity path that can be 
matched to the saPlmHEEntityPaths configuration attribute of the HE (in 
most cases, this means the location is empty).

• There are hardware entities in the system with an HPI entity path that can 
be matched to the saPlmHEEntityPaths configuration attribute of the 
HE, but none of these hardware entities match the characteristics of the HE, 
as specified by the saPlmHetIdr attribute in the HE’s SaPlmHEType 
object.
26 SAI-AIS-PLM-A.01.02 Section 3.1.3.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• There are hardware entities in the system with an HPI entity path that can 
be matched to the saPlmHEEntityPaths configuration attribute of the 
HE, and these hardware entities match the characteristics of the HE, as 
specified by the saPlmHetIdr attribute in the HE’s SaPlmHEType object, 
but they were not mapped to any HE at the time the PLM Service performed 
the mapping (see Section 4.5.1 on page 106), as they were redundant.

If an HE is not-present, any child HE must also be not-present, and any child EE 
must have a presence state of uninstantiated.

PLM also needs to transition an HE to not-present if the management-lost readi-
ness flag was set for the entity, and the operator issued a 
SA_PLM_ADMIN_REMOVED administrative operation (see Section 5.4.11).

Note that the saPlmCurrHEType and saPlmHECurrEntityPath attributes 
are not valid if an HE is not-present.

⇒ inactive

The hardware entity that is represented by the HE is physically located in the sys-
tem but is functionally inactive and logically isolated from the platform.

The meaning of HE isolation is described in detail in Section 3.1.6 on page 52.

For example, PLM generally sets the presence state of an HE to inactive if one of 
the following conditions is met:

• The hardware entity supports hot swap, and its HPI hot swap state is inac-
tive.

• The hardware entity supports power management and the entity is powered 
off.

• The entity supports reset management and reset state is asserted.
• Another hardware specific appropriate way is used to prevent the entity 

from providing service.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 27



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Typically, the HE presence state is inactive in the following situations:

• The HE is in administrative state locked-inactive.1

• The HE is isolated because it is faulty.
• The HE assumes the inactive state when PLM successfully completed an 

extraction request by opening the ejector latch (for instance, 
advancedTCA® and compactPCI™).

If an HE is inactive, any child HE must also be inactive or not-present, and any 
child EE must have a presence state of uninstantiated.

⇒ activating

This value is used as a transitional state when the presence state of the HE was 
inactive and should become active.

For example, the following situations are reflected by this state:

• When HPI notifies the PLM Service that an entity entered the hot swap 
insertion-pending state, the PLM Service—after performing implementa-
tion-specific checks—sets the HE presence state of the entity to activating 
and allows the entity to power on and become an active entity in the system.

• When the entity was inactive and is activated by software, for instance, by 
executing the SA_PLM_ADMIN_ACTIVATE (see Section 5.4.8) or 
SA_PLM_ADMIN_REPAIRED (see Section 5.4.10) administrative operations, 
the PLM Service also needs to transition the HE presence state of the entity 
to activating.

Note that PLM may also apply this state to HEs representing hardware that does 
not support the managed hot swap model.

⇒ active

From the hardware viewpoint, the entity is now an active member of the system.

If the hardware entity supports hot swap, its HPI hot swap state should be active. 
Generally, the entity must be powered on, and not have the reset state asserted 
or be prohibited from providing service by other means.

1.  For the administrative state of HEs see Section 3.1.3.1.2 on page 31.
28 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
⇒ deactivating

This value is used as a transitional state when an HE was active and should 
become inactive or later not-present. When the presence state of an HE is set to 
deactivating, the hardware element may be undergoing a graceful deactivation 
or an abrupt deactivation.

Whether the deactivation is graceful or abrupt is not directly reflected in the state 
attributes of the HE, but PLM needs to handle these situations differently.

The deactivating state may be set as a result of a hardware state change or of an 
administrative operation.

PLM can detect whether a hardware entity is undergoing a graceful or abrupt 
deactivation by examining the hardware state communicated by HPI. For more 
details, see [3].

Generally, a graceful deactivation is detected when:

(a) A FRU that supports managed hot swap enters the EXTRACTION PENDING 
state, and PLM successfully cancels the HPI auto extraction policy.

(b) PLM detects a platform-specific status that indicates that a hardware entity is 
requesting a deactivation, and PLM has means to control the timing of the 
deactivation or to prevent the deactivation from happening.

An abrupt deactivation is detected when:

(a) A FRU that supports unmanaged hot swap enters the EXTRACTION PEND-
ING state.

(b) A FRU that supports managed hot swap enters the EXTRACTION PENDING 
state, but PLM cannot cancel its auto extraction policy.

(c) PLM detects a platform-specific status that indicates that a hardware entity 
has begun a deactivation that cannot be interrupted.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 29



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
When PLM detects a graceful deactivation of an HE, a number of actions are per-
formed:

{1} PLM sets the presence state of the HE to deactivating.
{2} PLM checks the readiness state of the HE being deactivated and all depen-

dent PLM entities1. If all are already out-of-service, processing continues with 
step {4}, below. If any are not out-of-service, the deactivation policy (see 
Section 3.3.11) determines how processing continues.

{3a} If the deactivation policy is SA_PLM_DP_REJECT_NOT_OOS, the deactiva-
tion is rejected; PLM signals HPI to change the entity back to an ACTIVE 
state and changes the HE presence state to active.

{3b} If the deactivation policy is SA_PLM_DP_VALIDATE, track callbacks are 
invoked for the SA_PLM_CHANGE_VALIDATE step to determine if the deac-
tivation may proceed. If all processes receiving callbacks accept the deacti-
vation, or if none of the entities that will be placed out-of-service by the 
deactivation are being tracked for the VALIDATE step, processing continues 
with step {3c}. If one or more processes reject the deactivation, the deacti-
vation is rejected; PLM signals HPI to change the entity back to an ACTIVE 
state and changes the HE presence state to active, generating the appropri-
ate state change notification, and track callbacks are invoked for the 
SA_PLM_CHANGE_ABORTED step.

Note: In the remainder of this document, saying that a track user accepted a track 
callback means that the track user agreed that the pending operation be per-
formed, as it responded to the track callback by invoking the 
saPlmReadinessTrackResponse() function with the response parame-
ter set to SA_PLM_CALLBACK_RESPONSE_OK.

{3c} If the deactivation policy is SA_PLM_DP_UNCONDITIONAL, or after all pro-
cesses receiving VALIDATE callbacks accept the deactivation, track call-
backs are invoked for the SA_PLM_CHANGE_START step. When all 
processes receiving callbacks at this step respond, processing continues at 
step {4}.

{4} If all PLM entities affected by the deactivation are out-of-service, or after all 
processes receiving START callbacks have responded, PLM initiates the 
necessary actions using HPI interfaces to actually deactivate the hardware.

1.   Dependent PLM entities are the children and entities with a configured dependency relationship. The readi-
ness state of an entity with a configured dependency is affected when—after the deactivation—fewer than 
saPlmDepMinNumber entities have a readiness state of in-service or stopping.
30 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
{5} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked 
for the SA_PLM_CHANGE_COMPLETED step.

When PLM detects an abrupt deactivation of a hardware element, no intervention 
by PLM or application programs is possible during the deactivation process. For 
abrupt deactivations, these actions are taken:

{1} PLM sets the presence state to deactivating.
{2} PLM monitors the hardware as it deactivates.
{3} When the deactivation is complete, PLM changes the presence state to inac-

tive and the readiness state to out-of-service, and track callbacks are invoked 
for the SA_PLM_CHANGE_COMPLETED step.

PLM also sets the presence state to deactivating when a 
SA_PLM_ADMIN_DEACTIVATE administrative operation (see Section 5.4.7) is 
processed. The HE must be locked before SA_PLM_ADMIN_DEACTIVATE can 
be issued, so processing in PLM continues as with an abrupt deactivation, 
described above.

3.1.3.1.2 Administrative State

Like other AIS Services, the PLM Service defines the administrative state of an HE 
using an extension of the administrative state specified by ITU (see [11]). Possible 
values are locked, unlocked, locked-inactive, and shutting-down.

The administrative state for an HE has the following meaning:

⇒ unlocked

The HE has not been directly prohibited from providing service by the administra-
tor.

⇒ locked

The administrator has prevented the HE from providing service, which also 
means that children of the HE may not provide service. The HE and its children 
may be active from the hardware viewpoint, but their readiness states report out-
of-service. Other objects that have a mandatory dependency on this HE are also 
prevented from providing service. Hardware diagnostics can be started on the 
HE, but a configured EE is not allowed to execute.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.1.2 31



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
⇒ locked-inactive

The administrator has prevented the HE from providing service by appropriate 
hardware means. PLM sets the hardware entity represented by the HE in a con-
dition that causes its presence state to become inactive.

If the hardware does not provide appropriate means to support the presence 
state inactive, this administrative state may be not supported for an HE.

⇒ shutting-down

The administrator has prevented the hardware element and its contained and 
depending entities from providing service to new users. The hardware element's 
administrative state becomes locked as soon as all services it provides as well as 
all services provided by its contained and depending entities become unused by 
all their current users.

3.1.3.1.3 Operational State

The PLM Service defines the operational state as in other AIS specifications, which is 
different from the way ITU uses this term. As defined by the PLM Service, the opera-
tional state indicates whether or not an entity is faulty. Possible values are enabled 
and disabled.

The PLM Service detects failure conditions of HEs by analyzing the state of health of 
the hardware, listening to HPI events, and reading HPI state information. Additionally, 
PLM Service users can detect hardware failure conditions and report these condi-
tions by invoking the saPlmEntityReadinessImpact() function (see 
Section 3.5.3.1).

⇒ enabled

The hardware entities represented by the HE are healthy and PLM is not aware 
of any failure conditions that would prevent the intended use of these entities.
The operational state of an HE transitions from disabled to enabled when a suc-
cessful repair action has been performed on the HE. Repair actions are reported 
to PLM with the saPlmEntityReadinessImpact() interface (see 
Section 3.5.3.1) or with the SA_PLM_ADMIN_REPAIRED administrative operation 
(see Section 5.4.10). The operational state may transition from disabled to 
enabled without a repair action being reported if PLM detects that the failure con-
dition has cleared.
32 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
⇒ disabled

The operational state of an HE transitions to disabled if a failure condition is 
detected by analyzing the state of health of the hardware, by listening to HPI 
events, by reading HPI state information, or if a failure condition was reported 
with the saPlmEntityReadinessImpact() interface (see Section 3.5.3.1).

3.1.3.1.4 Readiness State

As for other AIS Services, the readiness state summarizes values of a set of states. 
Possible values are in-service, out-of-service, and stopping.

The readiness state indicates whether the HE provides its service. This state collects 
information from all other states, from the ancestor objects, and from mandatory 
dependencies.

⇒ out-of-service

The entity represented by the HE object does not provide service due to one or 
more of the following conditions:

• Its HE administrative state is locked or locked-inactive.
• Its HE presence state is neither active nor deactivating.
• Its operational state is disabled.
• The readiness state of the direct parent or of any other ancestor in the con-

tainment tree is out-of-service.
• The readiness state of a mandatory dependency is out-of-service, that is, 

fewer than saPlmDepMinNumber entities of a dependency have a readi-
ness state of in-service or stopping.

If the readiness state transitions to out-of-service, because any of the preceding 
conditions change, PLM must actively terminate the entity. In case of the last two 
conditions, the dependency readiness flag is also set.

⇒ in-service

The readiness state of an HE is in-service if the entity can provide its service. So 
all of the following conditions must be met:

• Its administrative state is unlocked.
• Its HE presence state is active or deactivating.
• Its operational state is enabled.
• The readiness state of all ancestors is in-service.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.1.4 33



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
• For each dependency, at least saPlmDepMinNumber entities are in-service.
⇒ stopping

The readiness state of an HE transitions from in-service to stopping when one of 
the following conditions is met:

• Its administrative state is set to shutting-down.
• The readiness state of an ancestor is set to stopping.
• The readiness state of an entity in a dependency is stopping, and the num-

ber of remaining in-service entities is lower than saPlmDepMinNumber 
while still saPlmDepMinNumber entities of that dependency are not out-of-
service

The readiness state cannot transition from out-of-service to stopping.

3.1.3.1.5 Readiness Flags

The readiness flags complement the readiness state of an object by providing addi-
tional information. A flag is defined for each of the following situations:

⇒ management-lost

The PLM Service has management capability over an entity when the PLM Ser-
vice is able to monitor and control the entity sufficiently to accurately model the 
entity via an HE or EE object that represents the entity. When the PLM Service 
loses some or all of its management capabilities such that this is not possible, the 
PLM Service sets the management-lost readiness flag for the entity to reflect this 
situation. In this case, the value of the operational, administrative, presence, and 
readiness states of the HE or EE object may or may not reflect the actual state of 
the entity.

The following applies when the management-lost readiness flag is set for the 
entity:

• Its administrative state may vary as a consequence of an administrative opera-
tion. If the PLM Service processes an administrative operation on the entity 
and attempts to change the administrative state of the entity but cannot per-
form all the necessary actions to apply the administrative state or cannot 
determine whether all these actions were completed, the administrative state 
of the entity is set to the intended value, and the PLM Service additionally sets 
the admin-operation-pending readiness flag for the entity.
The PLM Service returns SA_AIS_ERR_DEPLOYMENT error code to the corre-
sponding administrative operation on the entity.
34 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• Its operational state may vary as a consequence of a failure detected by the 
PLM Service or reported by a PLM user with the invocation of the 
saPlmEntityReadinessImpact() function (see Section 3.5.3.1). If the 
failure of the entity is detected, and the PLM Service is not able to isolate the 
failed entity, the flag isolate-pending is additionally set. This flag is cleared by 
the PLM Service when it regains its management capability for the entity, or if 
the failure is cleared by an invocation of the 
saPlmEntityReadinessImpact() function (see Section 3.5.3.1) or by the 
execution of the SA_PLM_ADMIN_REPAIRED administrative operation
(see Section 5.4.10).

• Its readiness state may vary as a consequence of changes in its administrative 
or operational states or as a consequence of changes in the readiness state of 
entities it depends upon.

• Its presence state is the last value known by the PLM Service, that is, the 
value of the presence state before the management-lost readiness flag was 
set for the entity.

When the PLM Service regains its capability to monitor and control the state of an 
entity for which the management-lost readiness flag was set, the PLM Service 
automatically clears this flag and updates the value of the operational, presence, 
and readiness states of the entity to reflect the current state of the entity. If the 
admin-operation-pending flag is set, the PLM Service must perform the pending 
administrative operation and must clear the flag. If the isolate-pending flag is set, 
and the operational state of the entity is still disabled, the PLM Service must iso-
late the failed entity.

When the operator issues an SA_PLM_ADMIN_REMOVED administrative opera-
tion (see Section 5.4.11) on the HE, PLM transitions the presence state of the HE 
to not-present and clears all readiness flags.

⇒ dependency

The dependency flag is set for an entity when one of its ancestors is not in-ser-
vice, or fewer than saPlmDepMinNumber entities of one of its dependencies are 
not in-service. That is, this flag indicates that the entity is not in-service, at least 
in part due to the readiness state of an ancestor or of an entity upon which it is 
dependent.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.1.5 35



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
⇒ imminent-failure

This flag is set for an entity when its operational state is enabled, and an immi-
nent failure on the entity has been detected by the PLM Service or reported to 
the PLM Service with the saPlmEntityReadinessImpact() function (see 
Section 3.5.3.1).

The PLM Service clears this flag if the operational state of the entity is disabled or 
if the imminent-failure condition is cleared. The PLM Service may detect that the 
imminent-failure condition is cleared by analyzing the hardware state, or a user 
may report that an imminent-failure condition is cleared by calling 
saPlmEntityReadinessImpact() or by issuing the 
SA_PLM_ADMIN_REPAIRED administrative operation; however, if a user reports 
that an imminent-failure condition is cleared, the flag may remain set if PLM 
determines that the imminent-failure condition still exists.

⇒ dependency-imminent-failure

This flag is set for an entity when its operational state is enabled, but the immi-
nent-failure or dependency-imminent-failure readiness flag is set for an ancestor 
or in enough entities upon which this entity depends, so that if they failed would 
cause the failure of this entity. In other words, this flag indicates that this entity is 
at risk of failure due to the failure of other entities that are known to be at risk of 
imminent-failure.

This flag is cleared if the operational state of the entity becomes disabled, or if 
the imminent-failure and dependency-imminent-failure readiness flags are 
cleared for all ancestor entities and for at least saPlmDepMinNumber entities 
that are not out-of-service in each of its dependencies.

⇒ admin-operation-pending

This flag is used together with the management-lost readiness flag, as has been 
explained previously. It indicates that the PLM Service was not able to perform all 
the actions necessary to apply the administrative state or could not determine 
whether all the actions were completed on the entity due to circumstances for 
which the management-lost readiness flag was set for the entity.
The admin-operation-pending flag is removed when

• the management-lost readiness flag has been removed, and
• the PLM Service has performed the administrative operation, or the operator 

has successfully executed the SA_PLM_ADMIN_REMOVED administrative oper-
ation.
36 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
⇒ isolate-pending

This flag is used together with the management-lost readiness flag, as has been 
explained previously. It indicates that the PLM Service was not able to issue the 
actions necessary to isolate the entity or could not determine whether the actions 
were completed on the entity due to circumstances for which the management-
lost readiness flag was set for the entity.
The isolate-pending flag is removed when

• the management-lost readiness flag has been removed, and
• the PLM Service has isolated the entity, or the operator has successfully exe-

cuted the SA_PLM_ADMIN_REMOVED administrative operation.

3.1.3.2 EE States

3.1.3.2.1 EE Presence State

The presence state of the EE represents its life-cycle. Possible values are instanti-
ated, uninstantiated, terminating, instantiating, instantiation-failed, and termination-
failed.

⇒ uninstantiated

The presence state of an EE is set to uninstantiated when the operating system 
or other software that provides the operating environment for that EE is not exe-
cuting. Typically, this will be due to one or more of the following conditions:

• the administrative state of the EE is locked-instantiation;
• the operational state of the EE is disabled, so PLM has isolated the EE (the 

meaning of EE isolation is described in Section 3.1.6 on page 52 in detail);
• the readiness state of an ancestor or dependency object is out-of-service.

PLM also needs to set the presence state of the EE to uninstantiated if the man-
agement-lost readiness flag was set for the entity, and the operator issued an 
SA_PLM_ADMIN_REMOVED administrative operation (see Section 5.4.11).

⇒ instantiating

This value is used as a transitional state when an EE was uninstantiated and 
should become instantiated.

For example, the following situations may be reflected by this state:

• The parent HE just entered the active presence state, so the EE starts boot-
ing.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2 37



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
• The administrative state of the EE was changed from locked-instantiation to 
locked, allowing the EE to boot.

• The administrative state of the EE was changed from locked to unlocked 
and the implementation requires a reboot of the operating system.

• The readiness state of the EE or of one of its ancestors or a dependency 
changed, allowing the presence state of the EE to transition from uninstanti-
ated to instantiated.

• The EE or one of its ancestors was restarted by the RESTART or RESET 
administrative operations, and the boot process for the EE started.

⇒ instantiated

The presence state of an EE is set to instantiated when the start-up of the EE 
completed, and the EE is able to provide its service.

⇒ instantiation-failed

If an EE cannot be instantiated within the configured time (specified by the 
saPlmEEInstantiateTimeout attribute of the SaPlmEE object class, shown 
in FIGURE 7 on page 111), the presence state of the EE is set to instantiation-
failed, and its operational state is set to disabled.

⇒ terminating

The presence state of an EE is set to terminating when the operating system (or 
other software that provides the operating environment for that EE) was execut-
ing and is now in the process of stopping its execution. This value is used as a 
transitional state when an EE was instantiated and transitions to uninstantiated. 

For example, the following situations may be reflected by this state:

• The parent HE just entered the deactivating presence state, and track users 
have accepted the deactivation request, so PLM starts to terminate all services 
and also terminates the EE.

• The administrative state of the EE was changed from locked to locked-instanti-
ation, so PLM starts to terminate the EE.

• A LOCK administrative operation was issued on one of the ancestors, and 
track users have accepted the request, or the forced option was given, so PLM 
starts to terminate all services and will also eventually terminate the EE.

• A LOCK administrative operation on an entity upon which the EE depends will 
cause that fewer than saPlmDepMinNumber entities of one of the EE's 
dependencies will be in-service.
38 SAI-AIS-PLM-A.01.02 Section 3.1.3.2.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• The readiness state of the EE, of one of its ancestors, or of an entity upon 
which it depends changed to out-of-service (such that in the latter case fewer 
than saPlmDepMinNumber entities of one of the EE's dependencies will be 
in-service), so the EE must be terminated.

• A SHUTDOWN administrative operation was issued on the EE or on one of its 
ancestors, and all services have been terminated, so PLM will start to termi-
nate the EE itself.

• PLM detects that the EE unexpectedly starts its termination process.
⇒ termination-failed

If an EE is not able to successfully terminate within the configured time (specified 
by the saPlmEETerminateTimeout attribute of the SaPlmEE object class, 
shown in FIGURE 7 on page 111), the presence state of the EE is set to termina-
tion-failed, and its operational state is set to failed.

3.1.3.2.2 Administrative State

As for other AIS Services, the PLM Service defines the administrative state of an EE 
using an extension of the administrative state specified by ITU (see [11]). Possible 
values for the administrative state of an EE are locked, unlocked, locked-instantia-
tion, and shutting-down.

The administrative state for an EE has the following meaning:

⇒ unlocked

The EE has not been directly prohibited by the administrator from providing ser-
vice.

⇒ locked

The administrator has prevented the EE from providing service.
The EE itself may be up and running, but none of its contained objects (for 
instance, child-EEs and cluster nodes) are allowed to run.
Software diagnostics could be started on the EE, but configured applications and 
AIS Services other than PLM are not allowed to execute.

⇒ locked-instantiation

The administrator has forced the EE itself to be not running at all.

In case of an EE running directly on an HE, the appropriate means may be to 
assert reset state of that EE.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2.2 39



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
In case of an EE running on a virtual machine, the PLM Service may use the vir-
tual machine monitor (VMM) to prevent the EE from executing.

⇒ shutting-down

The administrator has prevented the execution environment and its contained 
and depending entities from providing service to new users. The execution envi-
ronment's administrative state becomes locked as soon as all services the exe-
cution environment provides as well as all services provided by its contained and 
depending entities become unused by all their current users. PLM provides the 
API for the coordination with its clients (see Section 3.1.7).

3.1.3.2.3 Operational State

The PLM Service uses the operational state as in other AIS Services, which is differ-
ent from the way ITU uses the state with the same name. As defined by the PLM Ser-
vice, the operational state indicates whether or not an entity is faulty. Possible 
values are enabled and disabled.

⇒ enabled

The EE is healthy and capable of executing the intended software. PLM is not 
aware of any failure conditions that would prevent any intended use.
The operational state of an EE transitions from disabled to enabled when a suc-
cessful repair action has been performed on the EE. Repair actions are reported 
to PLM with the saPlmEntityReadinessImpact() interface (see 
Section 3.5.3.1) or with the SA_PLM_ADMIN_REPAIRED administrative operation 
(see Section 5.4.10). The operational state may transition from disabled to 
enabled without a repair action being reported if the EE becomes instantiated 
again.

⇒ disabled

The operational state of an EE transitions to disabled if a failure condition is 
detected.

PLM detects failure conditions of EEs in different ways:

• PLM can detect EE failure conditions by EE-specific means.
• PLM declares an EE as failed if the EE's presence state was set to instanti-

ation-failed because the EE was unable to start up successfully.
PLM also declares an EE as failed if the EE's presence state was set to ter-
mination-failed because the EE was unable to terminate successfully.
40 SAI-AIS-PLM-A.01.02 Section 3.1.3.2.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• PLM users can detect failure conditions and report these conditions by 
invoking the saPlmEntityReadinessImpact() function (see 
Section 3.5.3.1).

3.1.3.2.4 Readiness State

As in other AIS Services, the readiness state summarizes values of a set of states. 
Possible values are in-service, out-of-service, and stopping.

The readiness state indicates whether the EE provides its service. This state collects 
information from all other states, from the ancestor objects, and from mandatory 
dependencies.

⇒ out-of-service

The entity represented by the EE object does not provide service due to one or 
more of the following conditions:

• Its administrative state is locked or locked-instantiation.
• Its EE presence state is neither instantiated nor terminating.
• Its operational state is disabled.
• The readiness state of any ancestor is out-of-service.
• Fewer than the saPlmDepMinNumber entities of a dependency are in-ser-

vice or stopping.

In case of the last two conditions, the readiness flag “dependency” is also set.

⇒ in-service

The readiness state of an EE is in-service if the entity can provide its service. So 
all of the following conditions must be met:

• Its administrative state is unlocked.
• Its EE presence state is instantiated or terminating.
• Its operational state is enabled.
• The readiness states of all ancestors are in-service.
• For each of its dependencies, at least as many entities are in-service as the 

required number specified by saPlmDepMinNumber.
⇒ stopping

The readiness state of an HE transitions from in-service to stopping when one of 
the following conditions occur:
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2.4 41



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
• Its administrative state is set to shutting-down.
• The readiness state of an ancestor is set to stopping.
• the readiness state of an entity in a dependency is stopping, and the num-

ber of remaining in-service entities is lower than saPlmDepMinNumber 
while still saPlmDepMinNumber entities of that dependencies are not out-
of-service.

The readiness state cannot transition from out-of-service to stopping.

3.1.3.2.5 Readiness Flags

The readiness flags complement the readiness state of an object by providing addi-
tional information. A flag is defined for each of the following situations:

⇒ management-lost

The PLM Service has management capability over an entity when the PLM Ser-
vice is able to monitor and control the entity sufficiently to accurately model the 
entity via an HE or EE object that represents the entity. When the PLM Service 
loses some or all of its management capabilities such that this is not possible, the 
PLM Service sets the management-lost readiness flag for the entity to reflect this 
situation. In this case, the value of the operational, administrative, presence, and 
readiness states of the HE or EE object may or may not reflect the actual state of 
the entity.

The following applies when the management-lost readiness flag is set for the 
entity:

• Its administrative state may vary as a consequence of an administrative opera-
tion. If the PLM Service processes an administrative operation on the entity 
and attempts to change the administrative state of the entity but cannot per-
form all the necessary actions to apply the administrative state or cannot 
determine whether all these actions were completed, the administrative state 
of the entity is set to the intended value, and the PLM Service additionally sets 
the admin-operation-pending readiness flag for the entity.
The PLM Service returns SA_AIS_ERR_DEPLOYMENT error code to the corre-
sponding administrative operation on the entity.

• Its operational state may vary as a consequence of a failure detected by the 
PLM Service or reported by a PLM user with the invocation of the 
saPlmEntityReadinessImpact() function (see Section 3.5.3.1). If the 
failure of the entity is detected, and the PLM Service is not able to isolate the 
failed entity, the flag isolate-pending is additionally set. This flag is cleared by 
the PLM Service when it regains its management capability for the entity, or if 
42 SAI-AIS-PLM-A.01.02 Section 3.1.3.2.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
the failure is cleared by an invocation of the 
saPlmEntityReadinessImpact() function (see Section 3.5.3.1) or by the 
execution of the SA_PLM_ADMIN_REPAIRED administrative operation (see 
Section 5.4.10).

• Its readiness state may vary as a consequence of changes in its administrative 
or operational states or as a consequence of changes in the readiness state of 
entities it depends upon.

• Its presence state is the last value known by the PLM Service, that is, the 
value of the presence state before the management-lost readiness flag was 
set for the entity.

When the PLM Service regains its capability to monitor and control the state of an 
entity for which the management-lost readiness flag was set, the PLM Service 
automatically clears this flag and updates the value of the operational, presence, 
and readiness states of the entity to reflect the current state of the entity. If the 
admin-operation-pending flag is set, the PLM Service must perform the pending 
administrative operation and must clear the flag. If the isolate-pending flag is set, 
and the operational state of the entity is still disabled, the PLM Service must iso-
late the failed entity.

When the operator issues an SA_PLM_ADMIN_REMOVED administrative opera-
tion (see Section 5.4.11) on the EE, PLM changes the presence state of the EE 
to uninstantiated and clears all readiness flags.

⇒ dependency

The dependency flag is set for an entity when one of its ancestors is not in-ser-
vice, or fewer than saPlmDepMinNumber entities of one of its dependencies are 
not in-service. That is, this flag indicates that the entity is not in-service, at least 
in part due to the readiness state of an ancestor or of an entity upon which it is 
dependent.

⇒ imminent-failure

This flag is set for an entity when its operational state is enabled, and an immi-
nent failure on the entity has been detected by the PLM Service or reported to 
the PLM Service with the saPlmEntityReadinessImpact() function (see 
Section 3.5.3.1).

The PLM Service clears this flag if the operational state of the entity is disabled or 
if the imminent-failure condition is cleared. The PLM Service may detect that the 
imminent-failure condition is cleared by analyzing the hardware state, or a user 
may report that an imminent-failure condition is cleared by calling 
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2.5 43



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
saPlmEntityReadinessImpact() or by issuing the 
SA_PLM_ADMIN_REPAIRED administrative operation; however, if a user reports 
that an imminent-failure condition is cleared, the flag should remain set if the 
PLM Service determines that the imminent-failure condition still exists.

⇒ dependency-imminent-failure

This flag is set for an entity when its operational state is enabled, but the immi-
nent-failure or dependency-imminent-failure readiness flag is set for an ancestor 
or for enough entities upon which this entity depends, so that if they failed would 
cause the failure of this entity. In other words, this flag indicates that this entity is 
at risk of failure due to the failure of other entities that are known to be at risk of 
imminent-failure.

This flag is cleared if the operational state of the entity becomes disabled, or if 
the imminent-failure and dependency-imminent-failure readiness flags are 
cleared for all ancestor entities, and at least saPlmDepMinNumber entities that 
are not out-of-service in each of its dependencies.

⇒ admin-operation-pending

This flag is used together with the management-lost readiness flag, as has been 
explained previously. It indicates that the PLM Service was not able to perform all 
the actions necessary to apply the administrative state or could not determine 
whether all the actions were completed on the entity because the management-
lost readiness flag was set for the entity.
The admin-operation-pending flag is removed when

• the management-lost readiness flag has been removed, and
• the PLM Service has applied the administrative state, or the operator has suc-

cessfully executed the SA_PLM_ADMIN_REMOVED administrative operation.
⇒ isolate-pending

This flag is used together with the management-lost readiness flag, as has been 
explained previously. It indicates that the PLM Service was not able to issue the 
actions necessary to isolate the entity or could not determine whether the actions 
were completed on the entity because the management-lost readiness flag was 
set for the entity.
The isolate-pending flag is removed when

• the management-lost readiness flag has been removed, and
• the PLM Service has isolated the entity, or the operator has successfully exe-

cuted the SA_PLM_ADMIN_REMOVED administrative operation.
44 SAI-AIS-PLM-A.01.02 Section 3.1.3.2.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.1.3.3 Mapping Between PLM and HPI Objects

FIGURE 2 illustrates how PLM objects and objects of other SA Forum Services map 
to each other. Note that the multiplicities for HPI object classes below 
SaHpiManagementCapability are not shown in the figure. For details on HPI 
classes and objects, refer to [3].

FIGURE 2 Mapping Between PLM Objects and Objects of Other SA Forum Services

SaHpiSession

SaHpiDomain

0..*
Accesses

1

SaHpiResource

0..*
Accesses

0..*

SaHpiSensor

SaHpiControl

SaHpiAnnunciator

SaHpiWatchdogTimer

SaHpiInventoryDataRepository

SaHpiFirmwareUpgradeMI

SaHpiDiagnosticsInitiatorMI

SaHpiManagementInstrument

SaHpiManagementCapability

SaHpiPower

SaHpiReset

SaHpiHotSwap

SaHpiLoadId

SaHpiResourceCapability

SaHpiEntity

1
Manages

1..*
1                                    1..*

Provides

0..1

Maps on

0..1

SaPlmHE

SaPlmEntity

SaPlmEE SaClmNode

SaClmCluster

SaAmfNode

SaAmfCluster

SaAmfApplication

0..1      0..1

1

0..*
Maps on

0..1    0..1

Maps on

0..1    0..1
SaPlmDomain

Maps on

0..1    0..1

1

0..*

0..1                     0..*

0..1

0..*

1

0..*

0..1                                   0..1

0..*

1

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.3 45



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Each HE object is mapped to an HPI entity. In HPI, the entity may have multiple man-
agement capabilities. Each of these management capabilities is accessed through a 
specific resource, and that resource is a member of zero or more domains. The PLM 
Service will typically perform an HPI discovery operation, as described in [3], and 
build a table of available management capabilities, organized by physical entity. This 
table should note, for each capability, which HPI domain and resource to use to 
access that capability for the entity.

3.1.3.4 Recommendation for HE Modeling

When system architects design a system, they need to create HE types for the differ-
ent levels of the hardware architecture. They also need to decide in which granularity 
hardware is visible for software in the information model. Typically, every field 
replaceable unit (FRU) is modeled as a separate HE object.

The PLM Service requires that an HE have at most one EE as a child. This is the EE 
that is booted when an HE starts up. If the EE runs a virtual machine monitor, then 
additional EEs for the virtual machines are modeled as children of that EE, rather 
than as direct children of the HE.

It is strongly recommended that every hardware entity that should be managed as a 
redundancy unit be modeled as an HE. That is, if there are maintenance procedures 
to exchange hardware units, the PLM Service can reflect the maintenance proce-
dures to application software only if those FRUs are separately modeled as HEs. 
Thus, the PLM Service also provides the administrative operations to support such 
maintenance procedures.

This recommendation is also valid for HEs that are not parent to an EE. Even entities 
like power supplies or fans, which do not directly contribute to the computing capabil-
ities of a system, should be modeled as separate HEs if they are FRUs. When enti-
ties are not modeled as HEs, the PLM Service must map alarms or notifications 
associated with those entities to an HE associated with an entity containing the 
affected entity; PLM should choose the HE closest to the entity in the containment 
tree.

System architects can decide to model with a finer granularity than the granularity of 
FRUs. With this modeling, the PLM Service can do a more detailed mapping of hard-
ware alarms and other events.

The SaPlmHEBaseType object class can be used to represent the functionality of the 
HE from a user’s perspective, and the SaPlmHEType object class reflects the imple-
mentation-specific control aspects. In other words, an object of the 
SaPlmHEBaseType class groups together different objects of the SaPlmHEType 
46 SAI-AIS-PLM-A.01.02 Section 3.1.3.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
class that represent different implementations of the same hardware functionality. 
Thus, from the perspective of entities of other layers, such as EEs, CLM nodes, or 
AMF nodes, HE entities referring to different HE types (objects of SaPlmHEType 
class) of the same HE base type (an object of SaPlmHEBaseType object class) 
should be transparently interchangeable.

In addition, at the SaPlmHEType level, the vendor should provide enough informa-
tion, so that PLM can correctly manage the specific hardware that is installed.

3.1.3.5 Hardware Health Monitoring

The PLM Service monitors the health state of hardware entities with the help of HPI. 
HPI uses sensor states to represent the state of the hardware, and some sensors 
indicate the state of health of the hardware. Changes of sensor states may be 
reported by HPI using HPI events.

PLM needs to keep track of the relevant sensor states. Therefore, PLM needs to 
actively read sensor states when a resource giving access to the sensor is added or 
restored to a domain, or when PLM opens a new session to a domain. PLM needs to 
analyze HPI events and take appropriate actions like reading sensors or enabling 
sensor events.

PLM may need some specific sensors to monitor the state of health of the hardware. 
If those sensors cannot be read, and PLM cannot retrieve the necessary information 
by other means, PLM must set the management-lost readiness flag for the affected 
HE.

Typically, a PLM implementation will provide a means to configure how sensor states 
are evaluated. The user can configure which sensors of a hardware type are impor-
tant for health checking. The configuration will specify which state values are consid-
ered to indicate a hardware failure, an imminent failure, or an alarm for the HE 
representing the hardware1. PLM may enable the related sensor events in HPI or 
may start polling sensors2. When PLM detects a sensor state changing to a value 
that indicates, for instance, a failure (by HPI event or by reading the sensor), PLM will 
assume that the hardware entity associated with the hardware entity monitored by 
that sensor is faulty. There may also be more complex conditions, for instance, when 
multiple sensors that can indicate failure, imminent failures, or alarm conditions need 
to be considered together.

1.  This configuration is implementation-specific.
2.  There may be sensors that do not support events.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.5 47



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.1.3.6 Other Aspects of Interworking with HPI

HPI provides policies for automatic handling of extraction and insertion of entities 
supporting the hot swap model. PLM will typically stop the auto insertion and auto 
extraction policies to gain full control of the insertion and extraction process.

During start-up, the PLM Service needs to discover the present hardware, including 
its state, and map the present hardware to the configured HEs.

The PLM Service uses HPI events to be notified about changes in the hardware as 
fast as possible. The PLM Service needs to analyze all HPI events to detect their 
impact on the system and determine state changes of the configured objects. The 
PLM Service issues state change notifications (see Section 6.2.2 on page 155), as 
defined by the Notification Service, see [4].

The PLM Service may additionally provide the capability to issue notifications for all 
HPI events. These notifications cannot be used directly to indicate the hardware 
states without detailed analysis. Their only goal is to log all relevant events in a sys-
tem at one place and output them if needed through the same channel. PLM should 
provide local suppression for these notifications. For details on the format of these 
notifications, refer to Section 6.2.3 on page 158.

3.1.4 EE Management

A PLM implementation should provide similar capabilities on EE level as provided on 
hardware level. However, no standard interface for the management of operating sys-
tems and virtual machine monitors is available. Thus, EE management at this point is 
implementation-specific and will vary for the operating systems and virtual machine 
monitors that a PLM implementation supports. However, the PLM implementation 
must provide appropriate administrative operations and implementation-specific 
actions according to the state changes. For instance, PLM typically needs to control 
the start-up of an operating system when the hardware element becomes in-service, 
and it also needs to detect when the EE is instantiated and in-service.

3.1.4.1 Recommendation for EE Modeling

In virtualized architectures, it is recommended that system architects model all virtual 
machines as separate EEs. In theory, it is also possible to map all software directly to 
a hypervisor EE without representing each virtual machine in the model. However, in 
that case, an administrative operation (for instance, restart) cannot be executed by 
PLM for individual virtual machines.
48 SAI-AIS-PLM-A.01.02 Section 3.1.3.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.1.4.2 PLM Virtualization Support

Virtualization technologies provide means to aggregate multiple computing elements 
into a single virtual environment or to partition a computing element to provide multi-
ple virtual environments. For an overview of virtualization architectures that are 
important for high availability platforms, see [13].

All architectures can be represented by EE objects in the PLM Information Model.

• In case of aggregation, a single EE depends on multiple hardware entities, which 
may be represented by HEs. The system architect could model this case by 
choosing a reasonable high level HE to be the parent element of the EE.
Other dependencies must be modeled using dependency objects.

• In case of partitioning, EE objects are used to represent the virtual machine 
monitors and also to represent the virtual machines, as described below in more 
detail.

• For other architectures, even a combination of aggregations and partitioning 
may be used.

Virtualization is provided by a virtual machine monitor (VMM) or hypervisor, which

• may run directly on the physical hardware (bare-metal hypervisor) or
• requires an operating system to run on.

Usually, the VMM provides a set of virtual machines (VM). Every VM can run an oper-
ating system.

As explained above, the PLM Service uses EE objects in its information model to rep-
resent the VMM as well as the VMs. These object classes reflect the architecture of 
VMM and VMs in the information model and also enable the PLM Service to manage 
the corresponding entities.

There are several possible types of virtualization architectures.

• A VMM can directly run on the hardware element and provide VMs for operating 
systems running under its control.

• A VMM can be integrated in an operating system, allowing VMs to run in parallel 
with normal processes.

• A VMM can run as an application under control of an operating system and still 
provide VMs that run child operating systems.

The diagram in FIGURE 3 illustrates these architectures and how they are repre-
sented in the information model:
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.4.2 49



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
FIGURE 3 Virtualized Architectures in the PLM Information Model

FIGURE 3 also shows the possible CLM nodes. Note that an EE does not necessarily 
host CLM nodes. Note also that CLM nodes are not nested, that is, every CLM node 
runs directly on an EE. PLM uses interfaces specific to the operating systems and to 
VMM implementations to provide management for the EE objects.

PLM thus hides the proprietary interfaces of VMMs and operating systems from AIS 
middleware and higher layers. PLM reflects all changes in the virtual machines in its 
information model and notifies its users about the changes using the track callback 
interface. That way, AIS middleware configuration can be kept independent from the 
VMM implementation and still be aware of changes in the cluster architecture.

At the same time, the information model shows dependencies that are important for 
high availability. For instance, CLM nodes that run on the same HE, should not host 
active and standby service units for the same service instance (for details, see [9]). 
However, it is the task of the system configurator or of a configuration application to 
avoid this situation. PLM only provides information about which EEs share the same 
hardware or have dependencies to the same hardware entities.

EE: VMM

EE: 
Operating-System

EE: 
Operating-System...

CLM-node CLM-node...

EE: VMM
(OS integrated)

EE: 
Operating-System

EE: 
Operating-System...

CLM-node CLM-node...

CLM-node

HE

EE:VMM
(OS hosted)

EE: 
Operating-System

EE: 
Operating-System...

CLM-node CLM-node...

HEHE

EE: 
Operating-System

CLM-node
50 SAI-AIS-PLM-A.01.02 Section 3.1.4.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.1.5 Verification of the System Configuration

3.1.5.1 Verification of the Hardware Configuration

When attempting to match a hardware element with a hardware entity, the PLM Ser-
vice performs the following actions:

• It checks that the hardware entity is located in one of the potential locations that 
have been configured for the hardware element. The entity path of the hardware 
entity is used by the PLM Service to perform this check.

• It checks that the characteristics of the hardware entity match the configured 
characteristics of the hardware element. The entity type of the HPI entity and the 
contents of its Inventory Data Repositories (IDR) are used by the PLM Service to 
perform this check.

For more details, refer to Section 4.5.1 on page 106.

If there is no configured HE object for a hardware entity that is present in the system, 
the PLM Service will ignore this entity. However, the PLM Service may issue the 
Unmapped Hardware Entity Alarm, which is described in 
Section 6.2.1.5 on page 153.

3.1.5.2 Verification of Execution Environments

The various attributes of the EE types and base types are used to validate the 
installed and automatically booted operating system or virtualization monitor against 
the configuration. These attributes include:

• Vendor name
• Product name
• Release
• Version

It is implementation-specific how the PLM Service uses these attributes to match an 
execution environment with a particular operating system or virtualization monitor.

Details on the EE type (SaPlmEEType) and EE base type (SaPlmEEBaseType) 
object classes are presented in Section 4.6.

If there is no configured EE object matching an execution environment that is present 
in the system, the PLM Service will ignore this entity. 
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.5 51



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.1.6 Isolation of Entities

When a PLM entity is faulty (its operational state is set to disabled), the PLM Service 
is responsible for isolating this entity from the system. An isolated entity cannot pro-
vide service and does not impact other parts of the system.

PLM may attempt automatic repair actions on a faulty entity, for instance, restart or 
reset of the entity or even of its parent. These repair actions are implementation-spe-
cific.

Isolation is done in the same way for the following causes:

• Call to the saPlmEntityReadinessImpact () function
(see Section 3.5.3.1).

• Analysis of HPI events
• Analysis of hardware states
• EE health monitoring

PLM must attempt to isolate the entity before PLM notifies track users about the fail-
ure of the entity. If PLM fails to isolate the entity because the management-lost readi-
ness flag is set for the entity, the isolate-pending flag is set in the readiness flag of the 
entity.

PLM informs track users in the completed step of the track interface about the isola-
tion or pending isolation.

Isolation is not only applicable to faulty entities, PLM also provides an administrative 
operation to allow the operator to isolate an entity. Hardware elements are isolated by 
the SA_PLM_ADMIN_DEACTIVATE administrative operation (see Section 5.4.7), and 
execution environments are isolated by the 
SA_PLM_ADMIN_LOCK_INSTANTIATION operation (see Section 5.4.4).

Isolation of HEs:

When PLM isolates a hardware element, it forces the hardware element’s presence 
state to become inactive. The actions taken depend on the hardware capabilities. 
PLM will take actions such as the following ones:

• Typically, if the hardware element provides managed hot swap capabilities, PLM 
isolates the hardware element by hot swap management and forces the hard-
ware element to be set inactive (HPI hot swap state typically includes power off).
52 SAI-AIS-PLM-A.01.02 Section 3.1.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• Hardware elements that do not support managed hot swap may still support 
power management. PLM usually isolates these elements by powering them 
down.

• On hardware elements that neither support hot swap nor power management, 
PLM may attempt to assert the reset state.

• For hardware elements that do not support the aforementioned measures, PLM 
may attempt other implementation-specific actions to isolate the entity.

If the hardware element hosts an EE, at least the EE must be terminated, that is, its 
presence state must change to uninstantiated when the presence state of the hard-
ware element goes to inactive.

Isolation of EEs that are Directly Hosted by an HE

Again, isolation depends on the capabilities. At least the EE must be terminated and 
its presence state set to uninstantiated. If it is not possible to terminate the EE, PLM 
may assert reset state on the HE or isolate the HE.

Isolation of EEs Running in a Virtual Machine

Again, isolation depends on the capabilities. At least the EE must be terminated and 
its presence state set to uninstantiated.

• PLM may use the hypervisor to terminate the EE.
• If it is not possible to terminate the EE, and other EEs on that HE are still active, 

PLM should not isolate the HE.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.6 53



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.1.7 Overview of the PLM Interfaces

The PLM Service provides the following types of interfaces to its users, which can be 
applications, AIS Services, and management applications:

• Track Interface

The track interface allows users to subscribe and be notified when the readiness 
status (that is, readiness state or readiness flags) of an entity changes.

PLM users can subscribe for groups of PLM objects and select the cases when 
they are notified.

Administrative operations on PLM objects may affect several services, and—in 
many cases—an operator does not know how the locking of a PLM entity or the 
extraction of some hardware will impact the services being provided. To allow 
users of the PLM track API to reject a particular operation or to relocate some 
services before the operation is performed, the PLM track interface notifies its 
users in several steps.

The track interface provides four options:

• Validate: subscribed users are asked to validate, that is, to accept or reject the 
operation that will cause the change.

• Start: subscribed users should now take appropriate actions before the entity 
is locked or deactivated. They can, for instance, relocate their services.

• Completed: subscribed users are notified that the operation has been per-
formed.

• Aborted: subscribed users are notified that the operation was rejected during 
the validate step.

When calling the saPlmReadinessTrack() function, subscribers can choose 
for which of the above steps they want to be notified.

For more details, refer to Section 3.5.2 on page 85. Operational scenarios illus-
trating how these options can be used are included in Appendix B on page 167.

• Notifications

PLM users that need more detailed information about state changes of PLM enti-
ties can subscribe for notifications using the NTF Service (see [4]). For details, 
refer to Section 6.2.2 on page 155.
54 SAI-AIS-PLM-A.01.02 Section 3.1.7 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• Administrative Operations

The PLM Service provides administrative operations to manage the administra-
tive state of its objects.

Additionally, administrative operations provide a means to restart an EE or reset 
an HE. This interface can, for instance, be used during AMF repair procedures.

All administrative operations are described in Section 5.4 on page 115.

• Error Reporting

Not all errors on PLM entities can be detected by PLM itself. AIS Services and 
applications can also detect errors. The saPlmEntityReadinessImpact() 
interface is provided to report errors (see Section 3.5.3.1).

3.1.8 PLM Service and Cluster Membership

The PLM Service has no knowledge about cluster membership. It provides its service 
independently from the Cluster Membership Service.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.8 55



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.2 Include File and Library Names
The following statement containing declarations of data types and function prototypes 
must be included in the source of a process using the PLM Service API:

#include <saPlm.h>

To use the PLM Service API, a process must be bound with the following library:

libSaPlm.so

3.3 Type Definitions
The APIs of the PLM Service use the types described in the following sections.

3.3.1 PLM Handles

3.3.1.1 SaPlmHandleT

typedef SaUint64T SaPlmHandleT;

The SaPlmHandleT type is used for the handle to the PLM Service. A process 
acquires this handle by invoking saPlmInitialize() and uses it in subsequent 
invocations of the functions of the PLM Service.

3.3.1.2 SaPlmEntityGroupHandleT

typedef SaUint64T SaPlmEntityGroupHandleT;

The SaPlmEntityGroupHandleT type is used for the handle to a group of PLM 
entities tracked through saPlmReadinessTrack().

3.3.2 HE Administrative State

typedef enum {

SA_PLM_HE_ADMIN_UNLOCKED = 1,

SA_PLM_HE_ADMIN_LOCKED = 2,

SA_PLM_HE_ADMIN_LOCKED_INACTIVE = 3,

SA_PLM_HE_ADMIN_SHUTTING_DOWN = 4

} SaPlmHEAdminStateT;

The SaPlmHEAdminStateT type is used to represent the administrative state of a 
PLM hardware element.
56 SAI-AIS-PLM-A.01.02 Section 3.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.3.3 EE Administrative State

typedef enum {

SA_PLM_EE_ADMIN_UNLOCKED = 1,

SA_PLM_EE_ADMIN_LOCKED = 2,

SA_PLM_EE_ADMIN_LOCKED_INSTANTIATION = 3,

SA_PLM_EE_ADMIN_SHUTTING_DOWN = 4

} SaPlmEEAdminStateT;

The SaPlmEEAdminStateT type is used to represent the administrative state of a 
PLM execution environment.

3.3.4 Operational State

typedef enum {

SA_PLM_OPERATIONAL_ENABLED = 1,

SA_PLM_OPERATIONAL_DISABLED = 2

} SaPlmOperationalStateT;

The SaPlmOperationalStateT type is used to represent the operational state of a 
PLM entity.

3.3.5 HE Presence State

typedef enum {

SA_PLM_HE_PRESENCE_NOT_PRESENT = 1,

SA_PLM_HE_PRESENCE_INACTIVE = 2,

SA_PLM_HE_PRESENCE_ACTIVATING = 3,

SA_PLM_HE_PRESENCE_ACTIVE = 4,

SA_PLM_HE_PRESENCE_DEACTIVATING = 5

} SaPlmHEPresenceStateT;

The SaPlmHEPresenceStateT type is used to represent the presence state of a 
PLM hardware element.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.3 57



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.6 EE Presence State

typedef enum {

SA_PLM_EE_PRESENCE_UNINSTANTIATED = 1,

SA_PLM_EE_PRESENCE_INSTANTIATING = 2,

SA_PLM_EE_PRESENCE_INSTANTIATED = 3,

SA_PLM_EE_PRESENCE_TERMINATING = 4,

SA_PLM_EE_PRESENCE_INSTANTIATION_FAILED = 5,

SA_PLM_EE_PRESENCE_TERMINATION_FAILED = 6

} SaPlmEEPresenceStateT;

The SaPlmEEPresenceStateT type is used to represent the presence state of a 
PLM execution environment.

3.3.7 Readiness State

typedef enum {

SA_PLM_READINESS_OUT_OF_SERVICE = 1,

SA_PLM_READINESS_IN_SERVICE = 2,

SA_PLM_READINESS_STOPPING = 3

} SaPlmReadinessStateT;

The SaPlmReadinessStateT type is used to represent the readiness state of a 
PLM entity.

3.3.8 Readiness Flags

#define SA_PLM_RF_MANAGEMENT_LOST 0x00001

#define SA_PLM_RF_ADMIN_OPERATION_PENDING 0x00002

#define SA_PLM_RF_ISOLATE_PENDING 0x00004

#define SA_PLM_RF_DEPENDENCY 0x00100

#define SA_PLM_RF_IMMINENT_FAILURE 0x00200

#define SA_PLM_RF_DEPENDENCY_IMMINENT_FAILURE 0x00400

typedef SaUint64T SaPlmReadinessFlagsT;

The SaPlmReadinessFlagsT type complements the readiness state of an entity by 
providing additional information regarding the readiness status of the entity.
58 SAI-AIS-PLM-A.01.02 Section 3.3.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.3.9 Readiness Status

typedef struct {

SaPlmReadinessStateT readinessState;

SaPlmReadinessFlagsT readinessFlags;

} SaPlmReadinessStatusT;

The SaPlmReadinessStatusT type holds both the readiness state and readiness 
flags of a PLM entity.

3.3.10 Readiness Impact

typedef enum {

SA_PLM_RI_FAILURE = 1,

SA_PLM_RI_IMMINENT_FAILURE = 2,

SA_PLM_RI_FAILURE_CLEARED = 101,

SA_PLM_RI_IMMINENT_FAILURE_CLEARED = 102

} SaPlmReadinessImpactT;

The SaPlmReadinessImpactT type is used to report an event that affects the 
readiness status (readiness state and readiness flags) of a PLM entity. The values of 
SaPlmReadinessImpactT have the following interpretation:

• SA_PLM_RI_FAILURE
This value is used to report the failure of a PLM entity.

• SA_PLM_RI_IMMINENT_FAILURE
This value is used to report an imminent failure of a PLM entity.

• SA_PLM_RI_FAILURE_CLEARED
This value is used to report that the failure of a PLM entity has been repaired.

• SA_PLM_RI_IMMINENT_FAILURE_CLEARED
This value is used to report that the imminent failure of a PLM entity has been 
cleared.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.9 59



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.11 HE Deactivation Policy

typedef enum {

SA_PLM_DP_REJECT_NOT_OOS = 1,

SA_PLM_DP_VALIDATE = 2,

SA_PLM_DP_UNCONDITIONAL = 3

} SaPlmHEDeactivationPolicyT;

This type is used to configure the PLM policy used in conjunction with a graceful 
deactivation of hardware elements.

The values of SaPlmHEDeactivationPolicyT have the following interpretation:

• SA_PLM_DP_REJECT_NOT_OOS
If the readiness state of the HE to be deactivated is not 
SA_PLM_READINESS_OUT_OF_SERVICE, PLM rejects the deactivation.

• SA_PLM_DP_VALIDATE
If the readiness state of the HE to be deactivated is not 
SA_PLM_READINESS_OUT_OF_SERVICE, PLM relies on its clients that track 
(through saPlmReadinessTrack()) the readiness status of this entity or of 
entities that depend on it to validate during the SA_PLM_CHANGE_VALIDATE 
step whether the deactivation can proceed.

• SA_PLM_DP_UNCONDITIONAL
If the readiness state of the HE to be deactivated is not 
SA_PLM_READINESS_OUT_OF_SERVICE, PLM notifies its clients that track 
(through saPlmReadinessTrack()) the readiness status of this entity or of 
entities that depend on it that the deactivation will occur 
(SA_PLM_CHANGE_START step).
60 SAI-AIS-PLM-A.01.02 Section 3.3.11 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.3.12 Entity Groups

typedef enum {

SA_PLM_GROUP_SINGLE_ENTITY = 1,

SA_PLM_GROUP_SUBTREE = 2,

SA_PLM_GROUP_SUBTREE_HES_ONLY = 3,

SA_PLM_GROUP_SUBTREE_EES_ONLY = 4

} SaPlmGroupOptionsT;

The SaPlmGroupOptionsT type is used by the saPlmEntityGroupAdd() func-
tion. The values of SaPlmGroupOptionsT have the following interpretation:

• SA_PLM_GROUP_SINGLE_ENTITY
This option is used to indicate that only the entities directly designated by their 
names in the entities array are to be added to the entity group.

• SA_PLM_GROUP_SUBTREE
This option is used to indicate that all entities contained in the subtrees that have 
as a root the entities designated by their names in the entities array are to be 
added to the entity group.

• SA_PLM_GROUP_SUBTREE_HES_ONLY
This option is used to indicate that all hardware elements contained in the sub-
trees that have as a root the entities designated by their names in the entities 
array are to be added to the entity group.

• SA_PLM_GROUP_SUBTREE_EES_ONLY
This option is used to indicate that all execution environments contained in the 
subtrees that have as a root the entities designated by their names in the 
entities array are to be added to the entity group.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.12 61



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.13 State Tracking

The various types defined in this section are used by the PLM APIs that track 
changes of the readiness status of a group of PLM entities.

3.3.13.1 SaPlmGroupChangesT

typedef enum {

SA_PLM_GROUP_NO_CHANGE = 1,

SA_PLM_GROUP_MEMBER_ADDED = 2,

SA_PLM_GROUP_MEMBER_REMOVED = 3,

SA_PLM_GROUP_MEMBER_READINESS_CHANGE = 4

} SaPlmGroupChangesT;

The SaPlmGroupChangesT type reflects the status of a PLM entity that is contained 
in a track notification array, that is, in the array referred to by the entities pointer in 
a structure of SaPlmReadinessTrackedEntitiesT type. The values of 
SaPlmGroupChangesT have the following interpretation:

• SA_PLM_GROUP_NO_CHANGE
The readiness state and flags of the PLM entity have not changed. This value is 
used when the trackFlags parameter of the saPlmReadinessTrack() 
function is 
• either SA_TRACK_CURRENT
• or SA_TRACK_CHANGES, and the PLM entity was already a member of the 

tracked entity group, and none of its readiness state and flags have changed 
(or are about to change in the case of the SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START tracking steps).

• SA_PLM_GROUP_MEMBER_ADDED
The PLM entity has been added to the tracked entity group.

• SA_PLM_GROUP_MEMBER_REMOVED
The PLM entity has been removed from the tracked entity group.

• SA_PLM_GROUP_MEMBER_READINESS_CHANGE
The readiness state or flags of the PLM entity have changed (or are about to 
change in the case of the SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START tracking steps).
62 SAI-AIS-PLM-A.01.02 Section 3.3.13 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.3.13.2 SaPlmChangeStepT

typedef enum {

SA_PLM_CHANGE_VALIDATE = 1,

SA_PLM_CHANGE_START = 2,

SA_PLM_CHANGE_ABORTED = 3,

SA_PLM_CHANGE_COMPLETED = 4

} SaPlmChangeStepT;

The SaPlmChangeStepT type is used to indicate in which step of the readiness 
change tracking process the track callback is invoked. The values of 
SaPlmChangeStepT have the following interpretation:

• SA_PLM_CHANGE_VALIDATE
The track callback is invoked to allow the invoker to reject the change.

• SA_PLM_CHANGE_START
The change is occurring (it has not been rejected) and the track callback is 
invoked to let the invoker perform all necessary actions for this change to occur 
with no service impact.

• SA_PLM_CHANGE_ABORTED
A proposed change has been rejected.

• SA_PLM_CHANGE_COMPLETED
A change in the readiness state or flags of the PLM entity has occurred.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.13.2 63



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.13.3 SaPlmTrackCauseT

typedef enum {

/* Causes that may trigger all change steps */

SA_PLM_CAUSE_HE_DEACTIVATION = 1,

SA_PLM_CAUSE_LOCK = 2,

/* Causes that may trigger only START and COMPLETED steps */

SA_PLM_CAUSE_SHUTDOWN = 101,

/* Causes that only trigger a COMPLETED step */

SA_PLM_CAUSE_GROUP_CHANGE = 201,

SA_PLM_CAUSE_MANAGEMENT_LOST = 202,

SA_PLM_CAUSE_MANAGEMENT_REGAINED = 203,

SA_PLM_CAUSE_FAILURE = 204,

SA_PLM_CAUSE_FAILURE_CLEARED = 205,

SA_PLM_CAUSE_IMMINENT_FAILURE = 206,

SA_PLM_CAUSE_IMMINENT_FAILURE_CLEARED = 207,

SA_PLM_CAUSE_UNLOCKED = 208,

SA_PLM_CAUSE_HE_ACTIVATED = 209,

SA_PLM_CAUSE_HE_RESET = 210,

SA_PLM_CAUSE_EE_INSTANTIATED = 211,

SA_PLM_CAUSE_EE_UNINSTANTIATED = 212,

SA_PLM_CAUSE_EE_RESTART = 213,

SA_PLM_CAUSE_STATUS_INFO = 214

} SaPlmTrackCauseT;

The SaPlmTrackCauseT type is used in the SaPlmReadinessTrackCallBackT 
callback function to indicate the cause of the readiness state of flags changes. The 
values of SaPlmTrackCauseT have the following interpretation:

• SA_PLM_CAUSE_HE_DEACTIVATION
The hardware element designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback is going through a deactivation 
process. In the case of a graceful deactivation, callbacks with this cause may be 
invoked at all steps of the process, depending on the configuration of the PLM 
deactivation policy. In the case of an abrupt deactivation, callbacks will be 
invoked only at the SA_PLM_CHANGE_COMPLETED step. For more details on the 
deactivation process, see Section 3.1.3.1.1. For the steps used in the 
SaPlmReadinessTrackCallBackT function, refer to Section 3.1.7.
64 SAI-AIS-PLM-A.01.02 Section 3.3.13.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• SA_PLM_CAUSE_LOCK
The entity designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback is the target of a LOCK adminis-
trative operation. Depending on the option selected with that administrative oper-
ation, callbacks with this cause may be invoked at all steps of the process. For 
more details on the LOCK administrative operation, see Section 5.4.2.

• SA_PLM_CAUSE_SHUTDOWN
The entity designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback is the target of a SHUTDOWN 
administrative operation. The track callback is invoked during the 
SA_PLM_CHANGE_START step to force the shutdown process to happen. After 
responses (successful or not) from all callback invocations have been received, 
the entity is administratively locked, and the track callback is invoked in the 
SA_PLM_CHANGE_COMPLETED step. For more details on the SHUTDOWN 
administrative operation, see Section 5.4.3 

• SA_PLM_CAUSE_GROUP_CHANGE
This cause is used to notify tracking processes about changes in the member-
ship of the tracked entity group. Entities may be dynamically added to the 
tracked entity group or removed from it by invoking the 
saPlmEntityGroupAdd() or saPlmEntityGroupRemove() functions, by 
configuring new entities within a tracked subtree, or by removing tracked entities 
from the configuration. For this cause, the callback is only invoked in the 
SA_PLM_CHANGE_COMPLETED step, and the rootCauseEntity parameter is 
set to NULL.

• SA_PLM_CAUSE_MANAGEMENT_LOST
The PLM Service has lost its management capabilities for one or several enti-
ties. For this cause, the callback is only invoked in the 
SA_PLM_CHANGE_COMPLETED step, and the rootCauseEntity parameter is 
set to NULL.

• SA_PLM_CAUSE_MANAGEMENT_REGAINED
The PLM Service has regained its management capabilities for one or several 
entities. For this cause, the callback is only invoked in the 
SA_PLM_CHANGE_COMPLETED step, and the rootCauseEntity parameter is 
set to NULL.

• SA_PLM_CAUSE_FAILURE
The entity designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback has failed. For this cause, the 
callback is only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_FAILURE_CLEARED
A failure on the entity designated by rootCauseEntity in the 
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.13.3 65



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
SaPlmReadinessTrackCallBackT callback has been cleared. For this 
cause, the callback is only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_IMMINENT_FAILURE
An imminent failure has been detected for the entity designated by 
rootCauseEntity in the SaPlmReadinessTrackCallBackT callback. For 
this cause, the callback is only invoked in the SA_PLM_CHANGE_COMPLETED 
step.

• SA_PLM_CAUSE_IMMINENT_FAILURE_CLEARED
An imminent failure on the entity designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback has been cleared. For this 
cause, the callback is only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_UNLOCKED
The entity designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback has been administratively 
unlocked. For this cause, the callback is only invoked in the 
SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_HE_ACTIVATED
The presence state of the hardware element designated by rootCauseEntity 
in the SaPlmReadinessTrackCallBackT callback has changed to 
SA_PLM_HE_PRESENCE_ACTIVE. As a consequence, the readiness state of 
this hardware element became in-service. For this cause, the callback is only 
invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_HE_RESET
The hardware element designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback was reset due to an 
SA_PLM_ADMIN_RESET administrative operation. For this cause, the callback is 
only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_EE_INSTANTIATED
The presence state of the execution environment designated by 
rootCauseEntity in the SaPlmReadinessTrackCallBackT callback has 
changed to SA_PLM_EE_PRESENCE_INSTANTIATED. As a consequence, the 
readiness state of this execution environment became in-service. For this cause, 
the callback is only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_EE_UNINSTANTIATED
The presence state of the execution environment designated by 
rootCauseEntity in the SaPlmReadinessTrackCallBackT callback has 
changed to SA_PLM_EE_PRESENCE_UNINSTANTIATED. As a consequence, 
the readiness state of this execution environment became out-of-service. For 
this cause, the callback is only invoked in the SA_PLM_CHANGE_COMPLETED 
step.
66 SAI-AIS-PLM-A.01.02 Section 3.3.13.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• SA_PLM_CAUSE_EE_RESTART
The execution environment designated by rootCauseEntity in the 
SaPlmReadinessTrackCallBackT callback was restarted due to an 
SA_PLM_ADMIN_RESTART administrative operation. For this cause, the callback 
is only invoked in the SA_PLM_CHANGE_COMPLETED step.

• SA_PLM_CAUSE_STATUS_INFO
The value is used in the SaPlmReadinessTrackCallBackT callback if the 
callback was triggered by specifying the flag SA_TRACK_CURRENT in the call to 
saPlmReadinessTrack. In this case, the callback is invoked in the 
SA_PLM_CHANGE_COMPLETED step, and the rootCauseEntity parameter is 
set to NULL.

3.3.13.4 SaPlmReadinessTrackedEntityT

typedef struct {

SaPlmGroupChangesT change;

SaNameT entityName;

SaPlmReadinessStatusT currentReadinessStatus;

SaPlmReadinessStatusT expectedReadinessStatus;

SaNtfIdentifierT plmNotificationId;

} SaPlmReadinessTrackedEntityT;

The SaPlmReadinessTrackedEntityT type is used to return a descriptor of a 
tracked entity designated by its name, entityName.
The change field indicates the kind of change being reported.
The currentReadinessStatus field contains the current readiness status of the 
entity. When the track callback is invoked in the context of the 
SA_PLM_CHANGE_VALIDATE or SA_PLM_CHANGE_START step, the 
expectedReadinessStatus field provides the expected value of the readiness 
status that the entity will have if the action is completed.
When the track callback is invoked in the context of the 
SA_PLM_CHANGE_COMPLETED or SA_PLM_CHANGE_ABORTED step, both 
expectedReadinessStatus and currentReadinessStatus are set to the cur-
rent value of the readiness status.
The plmNotificationId field is the identifier of the first NTF notification the PLM 
Service has sent (or will send) to notify the readiness status change of the tracked 
entity.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.13.4 67



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.13.5 SaPlmReadinessTrackedEntitiesT

typedef struct {

SaUint32T numberOfEntities;

SaPlmReadinessTrackedEntityT *entities;

} SaPlmReadinessTrackedEntitiesT;

The SaPlmReadinessTrackedEntitiesT type is used in the 
saPlmReadinessTrack() function and in the 
SaPlmReadinessTrackCallBackT callback to return a set of descriptors for 
tracked entities.
numberOfEntities holds the number of SaPlmReadinessTrackedEntitiesT 
descriptors in the descriptor array pointed to by entities.

3.3.14 Callback Response

typedef enum {

SA_PLM_CALLBACK_RESPONSE_OK = 1,

SA_PLM_CALLBACK_RESPONSE_REJECTED = 2,

SA_PLM_CALLBACK_RESPONSE_ERROR = 3

} SaPlmReadinessTrackResponseT;

The SaPlmReadinessTrackResponseT type is used by the 
saPlmReadinessTrackResponse() function to provide the response to a call-
back previously invoked by the PLM Service for an SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START tracking step. The values of 
SaPlmReadinessTrackResponseT have the following interpretation:

• SA_PLM_CALLBACK_RESPONSE_OK
When provided as a response to a readiness track callback invocation in the 
SA_PLM_CHANGE_VALIDATE step, this response indicates that the process 
accepts the pending operation (graceful HE deactivation or 
SA_PLM_ADMIN_LOCK administrative operation with the trylock option).
When provided as a response to a readiness track callback invocation in the 
SA_PLM_CHANGE_START step, this response indicates either that
• the process is ready for the pending operation to be executed (graceful HE 

deactivation or SA_PLM_ADMIN_LOCK administrative operation with the 
trylock option or with no option), or that

• the quiescing triggered by a SA_PLM_ADMIN_SHUTDOWN administrative oper-
ation is now completed by the calling process.
68 SAI-AIS-PLM-A.01.02 Section 3.3.13.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
• SA_PLM_CALLBACK_RESPONSE_REJECTED
This response is valid only as a response to a readiness track callback invoca-
tion in the SA_PLM_CHANGE_VALIDATE step, and it indicates that the process 
rejects the pending operation (graceful HE deactivation or 
SA_PLM_ADMIN_LOCK administrative operation with the trylock option).

• SA_PLM_CALLBACK_RESPONSE_ERROR
When provided as a response to a readiness track callback invocation, this 
response indicates that the process encountered an error and is not able to pro-
vide a meaningful response to the callback invocation. As the PLM Service waits 
for responses from all processes invoked with a readiness track callback with the 
SA_PLM_CHANGE_VALIDATE or SA_PLM_CHANGE_START steps, such pro-
cesses must provide a timely response even if they encounter an error that pre-
vents them from completing the callback processing.

3.3.15 Notification Related Types

3.3.15.1 SaPlmNotificationMinorIdT

typedef enum {

SA_PLM_NTFID_HE_ALARM = 0x01,

SA_PLM_NTFID_EE_ALARM = 0x02,

SA_PLM_NTFID_HE_SEC_ALARM = 0x03,

SA_PLM_NTFID_EE_SEC_ALARM = 0x04,

SA_PLM_NTFID_UNMAPPED_HE_ALARM = 0x05,

SA_PLM_NTFID_STATE_CHANGE_ROOT = 0x65,

SA_PLM_NTFID_STATE_CHANGE_DEP = 0x66,

SA_PLM_NTFID_HPI_NORMAL_MSB = 0x201,

SA_PLM_NTFID_HPI_NORMAL_LSB = 0x202,

SA_PLM_NTFID_HPI_XDR = 0x203

} SaPlmNotificationMinorIdT;

This type provides the values for the minorId field of notification class IDs used by 
the PLM Service.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.15 69



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.3.15.2 SaPlmAdditionalInfoIdT

typedef enum {

SA_PLM_AI_ENTITY_PATH = 1,

SA_PLM_AI_ROOT_OBJECT = 2,

SA_PLM_AI_HPI_DOMAIN_ID = 3,

SA_PLM_AI_HPI_EVENT_DATA = 4,

SA_PLM_AI_HPI_RDR_DATA = 5,

SA_PLM_AI_HPI_RPT_DATA = 6

} SaPlmAdditionalInfoIdT;

This type provides identifiers for the data that is part of the additional information por-
tion of notifications sent by the PLM Service.

3.3.15.3 SaPlmStateT

typedef enum {

SA_PLM_HE_ADMIN_STATE = 1,

SA_PLM_EE_ADMIN_STATE = 2,

SA_PLM_OPERATIONAL_STATE = 3,

SA_PLM_HE_PRESENCE_STATE = 4,

SA_PLM_EE_PRESENCE_STATE = 5,

SA_PLM_READINESS_STATE = 6,

SA_PLM_READINESS_FLAGS = 7

} SaPlmStateT;

This type is used in Platform Management Service state change notifications to iden-
tify which state values (or the readiness flags) are changing for a PLM entity.

3.3.16 SaPlmCallbacksT

typedef struct {

SaPlmReadinessTrackCallbackT saPlmReadinessTrackCallback;

} SaPlmCallbacksT;

The SaPlmCallbacksT callbacks structure is supplied to the PLM Service by a pro-
cess and contains the callback functions that the PLM Service can invoke.
70 SAI-AIS-PLM-A.01.02 Section 3.3.15.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.4 Library Life Cycle

3.4.1 saPlmInitialize()

Prototype

SaAisErrorT saPlmInitialize(

SaPlmHandleT *plmHandle,

const SaPlmCallbacksT *plmCallbacks,

SaVersionT *version

);

Parameters

plmHandle - [out] A pointer to the handle which identifies this particular initialization 
of the PLM Service and which is to be returned by the PLM Service. The 
SaPlmHandleT type is defined in Section 3.3.1.1.

plmCallbacks - [in] If plmCallbacks is set to NULL, no callbacks are registered; 
if plmCallbacks is not set to NULL, it is a pointer to an SaPlmCallbacksT struc-
ture which contains the callback functions of the process that the PLM Service may 
invoke. Only non-NULL callback functions in this structure will be registered. The 
SaPlmCallbacksT is defined in Section 3.3.16.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required PLM Service version. In this case, minorVersion is ignored 
and should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version 
actually supported by the PLM Service. The SaVersionT type is defined in [2].

Description

This function initializes the PLM Service for the invoking process and registers the 
various callback functions. This function must be invoked prior to the invocation of 
any other PLM Service API function. The handle pointed to by plmHandle is 
returned by the PLM Service as the reference to this association between the pro-
cess and the PLM Service. The process uses this handle in subsequent communica-
tion with the PLM Service.
The plmCallbacks parameter points to a structure containing the callbacks that the 
PLM Service can invoke.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4 71



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
If the implementation supports the version of the PLM Service API specified by the 
releaseCode and majorVersion fields of the structure pointed to by the version 
parameter, SA_AIS_OK is returned. In this case, the structure pointed to by the 
version parameter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation 

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation 

can support for the required value of releaseCode and the returned value of 
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and 
the version to which the version parameter points is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

} 

majorVersion = highest value of the major versions that this implementation can 
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can 
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.
72 SAI-AIS-PLM-A.01.02 Section 3.4.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or a process that is pro-
viding the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than 
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the 
version parameter points is not compatible with the version of the PLM Service 
implementation.

See Also

saPlmSelectionObjectGet(), saPlmDispatch(), saPlmFinalize()

3.4.2 saPlmSelectionObjectGet()

Prototype

SaAisErrorT saPlmSelectionObjectGet(

SaPlmHandleT plmHandle,

SaSelectionObjectT *selectionObject

);

Parameters

plmHandle - [in] The handle which was obtained by a previous invocation of the 
saPlmInitialize() function and which identifies this particular initialization of the 
PLM Service. The SaPlmHandleT type is defined in Section 3.3.1.1.

selectionObject - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSelectionObjectT type is 
defined in [2].

Description

This function returns the operating system handle associated with the handle 
plmHandle. The invoking process can use the operating system handle to detect 
pending callbacks, instead of repeatedly invoking the saPlmDispatch() function 
for this purpose.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.2 73



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
In a POSIX environment, the operating system handle is a file descriptor that is used 
with the poll() or select() system calls to detect incoming callbacks.

The operating system handle returned by saPlmSelectionObjectGet() is valid 
until saPlmFinalize() is invoked on the same handle plmHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle plmHandle is invalid, since it is corrupted, 
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other than 
memory).

See Also

saPlmInitialize(), saPlmDispatch()
74 SAI-AIS-PLM-A.01.02 Section 3.4.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.4.3 saPlmDispatch()

Prototype

SaAisErrorT saPlmDispatch(

SaPlmHandleT plmHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

plmHandle - [in] The handle which was obtained by a previous invocation of the 
saPlmInitialize() function and which identifies this particular initialization of the 
PLM Service. The SaPlmHandleT type is defined in Section 3.3.1.1.

dispatchFlags - [in] Flags that specify the callback execution behavior of the 
saPlmDispatch() function, which have the values SA_DISPATCH_ONE, 
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING. These flags are values of the 
SaDispatchFlagsT enumeration type, which is described in [2].

Description

In the context of the calling thread, this function invokes pending callbacks for the 
handle plmHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this 
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or 
SA_DISPATCH_BLOCKING, and the handle plmHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle plmHandle is invalid, since it is corrupted, 
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.3 75



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
See Also

saPlmInitialize(), saPlmSelectionObjectGet()

3.4.4 saPlmFinalize()

Prototype

SaAisErrorT saPlmFinalize(

SaPlmHandleT plmHandle

);

Parameters

plmHandle - [in] The handle which was obtained by a previous invocation of the 
saPlmInitialize() function and which identifies this particular initialization of the 
PLM Service. The SaPlmHandleT type is defined in Section 3.3.1.1.

Description

The saPlmFinalize() function closes the association represented by the 
plmHandle parameter between the invoking process and the PLM Service. The pro-
cess must have invoked saPlmInitialize() before it invokes this function. A pro-
cess must call this function once for each handle it acquired by invoking 
saPlmInitialize().

If the saPlmFinalize() function completes successfully, it cancels all pending call-
backs related to the particular handle, stops tracking of entity groups associated with 
the handle, and deletes those entity groups. Moreover, it releases all resources 
acquired for that handle or for entity groups associated with the handle, including the 
memory allocated for the process in the saPlmReadinessTrack() function, if this 
memory has not yet been freed by a call to the 
saPlmReadinessNotificationFree() function.
Note that because the callback invocation is asynchronous, it is still possible that 
some callback calls are processed after this call returns successfully.

After saPlmFinalize() completes successfully, the handle plmHandle and the 
selection object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.
76 SAI-AIS-PLM-A.01.02 Section 3.4.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle plmHandle is invalid, since it is corrupted, 
uninitialized, or has already been finalized.

See Also

saPlmInitialize()
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.4 77



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.5 PLM Operations

3.5.1 Entity Group Management

For tracking purposes, PLM entities can be grouped together in entity groups. The 
scope of this grouping is local to the client process that created the entity group and 
not visible from other processes. This grouping is not visible in the IMM Service.

Tracking a group of PLM entities ensures that when a single cause affects the state 
of several entities of that group, a single invocation of the track callback will notify the 
client process of the state transitions.

3.5.1.1 saPlmEntityGroupCreate()

Prototype

SaAisErrorT saPlmEntityGroupCreate(

SaPlmHandleT plmHandle,

SaPlmEntityGroupHandleT *entityGroupHandle

);

Parameters

plmHandle - [in] The handle which was obtained by a previous invocation of the 
saPlmInitialize() function and which designates this particular initialization of 
the PLM Service. The SaPlmHandleT type is defined in Section 3.3.1.1.

entityGroupHandle - [out] A pointer to a memory area (provided by the invoking 
process in the address space of the process) to hold the entity group handle. If the 
entity group is created successfully, the PLM Service stores its handle in this memory 
area. This handle is used by the process to designate the entity group in subsequent 
invocations of the functions of the PLM Service API. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

Description

The saPlmEntityGroupCreate() function creates an entity group that may be 
used later by the invoking process to track readiness status changes of entities in the 
group. The entity group is created as empty, and the saPlmEntityGroupAdd() 
function must be used to add entities into the group.
78 SAI-AIS-PLM-A.01.02 Section 3.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle plmHandle is invalid, since it is corrupted, 
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

See Also

saPlmInitialize(), saPlmEntityGroupAdd(), 
saPlmEntityGroupDelete()

3.5.1.2 saPlmEntityGroupAdd()

Prototype

SaAisErrorT saPlmEntityGroupAdd(

SaPlmEntityGroupHandleT entityGroupHandle,

const SaNameT *entityNames,

SaUint32T entityNamesNumber,

SaPlmGroupOptionsT options

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.2 79



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
entityNames - [in] Pointer to an array of entity names. The SaNameT type is 
defined in [2].

entityNamesNumber - [in] Number of names contained in the array referred to by 
entityNames. The SaUint32T type is defined in [2].

options – [in] Indicates how entity names provided in the array referred to by 
entityNames must be interpreted: 

• If options is set to SA_PLM_GROUP_SINGLE_ENTITY, only the entities 
referred to by entityNames are added to the group.

• If options is set to SA_PLM_GROUP_SUBTREE, all subtrees that are rooted at 
the entities referred to by entityNames are added to the group.

• If options is set to SA_PLM_GROUP_SUBTREE_HES_ONLY, all hardware ele-
ments that are part of the subtrees rooted at the entities referred to by 
entityNames are added to the group.

• If options is set to SA_PLM_GROUP_SUBTREE_EES_ONLY, all execution envi-
ronments that are part of the subtrees rooted at the entities referred to by 
entityNames are added to the group.

The SaPlmGroupOptionsT type is defined in Section 3.3.12.

Description

The saPlmEntityGroupAdd() function adds a set of entities referred to by 
entityNames to the entity group designated by entityGroupHandle.

If new entities are configured later in these subtrees, the newly configured entities are 
automatically considered part of the group.

A given entity name can only be added once into an entity group, either as a single 
entity or as the root of a subtree. It is possible for the subtrees identified by entity 
names added into an entity group to overlap.

If this function fails and returns an error, the content of the entity group is not 
changed.
80 SAI-AIS-PLM-A.01.02 Section 3.5.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_EXIST - One of the names referred to by entityNames has already 
been added to the group, or it appears more than once in the array referred to by 
entityNames.

SA_AIS_ERR_NOT_EXIST - One of the names referred to by entityNames does 
not designate an entity configured for the PLM Service.

See Also

saPlmEntityGroupCreate(), saPlmEntityGroupRemove()
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.2 81



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.5.1.3 saPlmEntityGroupRemove()

Prototype 

SaAisErrorT saPlmEntityGroupRemove(

SaPlmEntityGroupHandleT entityGroupHandle,

const SaNameT *entityNames,

SaUint32T entityNamesNumber

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

entityNames - [in] Pointer to an array of entity names. The SaNameT type is 
defined in [2].

entityNamesNumber - [in] Number of names contained in the array 
entityNames. The SaUint32T type is defined in [2].

Description

The saPlmEntityGroupRemove() function removes entities from the entity group 
designated by entityGroupHandle. Entities may only be removed from the group 
in the same manner they have been added to the group: as a single entity or as a 
subtree. This means in particular that if a subtree has been added to the group using 
the SA_PLM_GROUP_SUBTREE, SA_PLM_GROUP_SUBTREE_HES_ONLY, or 
SA_PLM_GROUP_SUBTREE_EES_ONLY options, entities of that subtree cannot be 
removed from the group one by one. The single entities or subtrees of entities to be 
removed from the group are designated by the names referred to by entityNames.

If this function fails and returns an error, the content of the entity group is not 
changed.
82 SAI-AIS-PLM-A.01.02 Section 3.5.1.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST – One of the names referred to by entityNames does 
not match any name contained in the entity group referred to by 
entityGroupHandle.

See Also

saPlmEntityGroupCreate(), saPlmEntityGroupAdd()

3.5.1.4 saPlmEntityGroupDelete()

Prototype

SaAisErrorT saPlmEntityGroupDelete(

SaPlmEntityGroupHandleT entityGroupHandle

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.4 83



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Description

The saPlmEntityGroupDelete() function deletes the entity group designated by 
its handle entityGroupHandle. Moreover, it frees all resources allocated for it, 
including the memory allocated for the process in the saPlmReadinessTrack() 
function, if this memory has not yet been freed by a call to the 
saPlmReadinessNotificationFree() function.
If the saPlmEntityGroupDelete() function fails and returns an error, the entity 
group is not deleted, its content is not changed, and resources are not freed.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_BUSY – The entity group designated by entityGroupHandle has 
been used to start a track request by invoking saPlmReadinessTrack(), and the 
track request is still in effect, as saPlmReadinessTrackStop() has not been 
called to terminate it.

See Also

saPlmEntityGroupCreate(), saPlmReadinessTrack(), 
saPlmReadinessTrackStop()
84 SAI-AIS-PLM-A.01.02 Section 3.5.1.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.5.2 Readiness Status Tracking

The readiness status of a PLM entity is reflected by the value of its readiness state 
and readiness flags.

The readiness status of an entity can change as a consequence of:

• an administrative operation,
• a failure or a repair,
• an activation or a deactivation of a hardware element,
• the instantiation or termination of an execution environment,
• and of a problem or the clearance of a problem reported to the PLM Service with 

the saPlmEntityReadinessImpact() function targeted to the entity or 
another entity on which the entity depends.

The track API allows a process to track changes of the readiness status of a group of 
PLM entities.

In most cases, tracking processes are notified of a change after it already happened. 
This is done with a single invocation of their track callback, using the 
SA_PLM_CHANGE_COMPLETED step.

However, in some situations, the callback of tracking processes is also invoked 
before the change happens (during SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START steps) allowing these tracking processes to validate the 
pending change and also to get ready before the change is effective.

The sequence of tracking steps is:

(1) SA_PLM_CHANGE_VALIDATE
The track callbacks are invoked requesting the tracking processes to validate 
the pending action and prepare themselves to perform the action. The invoked 
processes must provide a response (SA_PLM_CALLBACK_RESPONSE_OK or 
SA_PLM_CALLBACK_RESPONSE_REJECTED) to the PLM Service by invoking 
the saPlmReadinessTrackResponse() function.
Processes that respond with an error (SA_PLM_CALLBACK_RESPONSE_ERROR) 
or call saPlmReadinessTrackStop() with the entity group handle used to ini-
tiate the track operation are ignored by the PLM Service (that is, the PLM Ser-
vice proceeds as if these processes had accepted the pending operation).

(2) SA_PLM_CHANGE_START or SA_PLM_CHANGE_ABORTED
If at least one process invoked during the SA_PLM_CHANGE_VALIDATE step 
rejects the operation, the PLM Service invokes the track callbacks indicating that 
the pending action has been aborted (SA_PLM_CHANGE_ABORTED step); other-
wise, the PLM Service invokes the track callbacks again requesting the pro-
cesses to now perform the action (SA_PLM_CHANGE_START step). Processes 
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2 85



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
must respond to PLM when the operation is completed 
(SA_PLM_CALLBACK_RESPONSE_OK), or if they fail to complete the operation 
(SA_PLM_CALLBACK_RESPONSE_ERROR).
When processes are not allowed to reject the pending change, they may be 
directly notified by an SA_PLM_CHANGE_START step without any prior tracking 
notification with an SA_PLM_CHANGE_VALIDATE step.

(3) SA_PLM_CHANGE_COMPLETED
When all clients involved in the SA_PLM_CHANGE_START step reported that they 
have completed the action, PLM performs actions required to complete the 
action and updates the readiness states of impacted entities. When this is done, 
PLM notifies tracking processes that the action has been completed 
(SA_PLM_CHANGE_COMPLETED step).

Responses to the SA_PLM_CHANGE_VALIDATE and SA_PLM_CHANGE_START steps 
are not time-bounded. The operator should initiate and monitor all operations leading 
to the SA_PLM_CHANGE_VALIDATE or SA_PLM_CHANGE_START steps. If a graceful 
LOCK administrative operation does not complete in a timely manner, the operator 
can issue a forced LOCK; if hot swap indicators do not indicate deactivation in time, 
the operator can abruptly extract hardware or also issue a forced LOCK. The PLM 
Service must wait for responses to the SA_PLM_CHANGE_VALIDATE and 
SA_PLM_CHANGE_START steps until:

• all invoked processes have responded, or until
• tracking for the entity group has stopped, or until
• the current tracking notification has been superseded by a new tracking notifica-

tion, which is triggered by the same entity having a different expected or new 
readiness status as a consequence of another operation on the same entity.

When a process initiates the track operation, the PLM Service always notifies the pro-
cess in the SA_PLM_CHANGE_COMPLETED step. In addition, the process can request 
to receive additional callback notifications, as described next:

• A process that wants to be able to reject a change request in certain circum-
stances may use the SA_TRACK_VALIDATE_STEP flag in the call to 
saPlmReadinessTrack(). The track callback function of the process will then 
be invoked in the SA_PLM_CHANGE_VALIDATE step. If a change is rejected by a 
client of the track API, the process will also receive callbacks in the 
SA_PLM_CHANGE_ABORTED step.

• A process that needs to get ready before a change is effective may use the 
SA_TRACK_START_STEP flag in the call to saPlmReadinessTrack(). The 
track callback function of the process will then be invoked in the 
SA_PLM_CHANGE_START step.
86 SAI-AIS-PLM-A.01.02 Section 3.5.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
Only changes in the readiness status of a tracked entity are reported, so if a particular 
cause does not change the readiness status of any entity in a tracked group, the track 
callback of the tracking process is not invoked.

For example, if a board is administratively locked, extracting the board or reporting a 
failure of the board triggers no callback. Depending on the order of these actions, a 
process may be notified of a board going out-of-service with an 
SA_PLM_CAUSE_LOCK cause and then be notified that the board is back in service 
with an SA_PLM_CAUSE_FAILURE_CLEARED cause without being notified of the 
intermediate failure and unlock events.

3.5.2.1 saPlmReadinessTrack()

Prototype

SaAisErrorT saPlmReadinessTrack(

SaPlmEntityGroupHandleT entityGroupHandle,

SaUint8T trackFlags,

SaUint64T trackCookie,

SaPlmReadinessTrackedEntitiesT *trackedEntities

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

trackFlags – [in] The kind of tracking that is requested, which is the bitwise OR of 
one or more of the following flags (as defined in [2]), which have the following inter-
pretation here:

• SA_TRACK_CURRENT - Request the current readiness information of the entity 
group designated by the handle entityGroupHandle.
If trackedEntities is NULL, information about all entities that are currently in 
this entity group is returned by a single subsequent invocation of the 
SaPlmReadinessTrackCallbackT tracking callback; otherwise, this informa-
tion is returned in the structure to which trackedEntities points when the 
saPlmReadinessTrack() call completes successfully. The change field in 
each entry of the array pointed to by the entities pointer in the structure 
referred to by trackedEntities is set to SA_PLM_GROUP_NO_CHANGE. The 
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 87



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
fields currentReadinessStatus and expectedReadinessStatus both 
contain the current readiness status of this entity.

• SA_TRACK_CHANGES - Start readiness tracking, requesting a complete picture 
of all entities in the entity group.
The SaPlmReadinessTrackCallbackT callback function is invoked each 
time the readiness status of one of the entities in this entity group changes (or is 
about to change) or when entities are added to or removed from the entity group. 
The structure to which trackedEntities points in an invocation of the 
SaPlmReadinessTrackCallbackT function contains information about all 
entities that are currently in the entity group and also about entities that have 
been removed from the entity group since the last invocation of 
SaPlmReadinessTrackCallbackT.

• SA_TRACK_CHANGES_ONLY - Start readiness tracking, requesting a list of only 
the changed entities with each callback.
The SaPlmReadinessTrackCallbackT callback function is invoked each 
time the readiness status of one of the entities in this group changes (or is about 
to change) or when entities are added to or removed from the entity group. The 
structure to which trackedEntities points in an invocation of the 
SaPlmReadinessTrackCallbackT function contains only information about 
entities whose readiness status have changed or have been added or removed 
from the entity group since the last invocation of 
SaPlmReadinessTrackCallbackT.

• SA_TRACK_START_STEP - Request additionally the SA_PLM_CHANGE_START 
step. This flag is ignored, if neither SA_TRACK_CHANGES nor 
SA_TRACK_CHANGES_ONLY is set.

• SA_TRACK_VALIDATE_STEP - Request additionally the 
SA_PLM_CHANGE_VALIDATE step. This flag is ignored, if neither 
SA_TRACK_CHANGES nor SA_TRACK_CHANGES_ONLY is set.

If both SA_TRACK_CHANGES and SA_TRACK_CHANGES_ONLY are set in an invoca-
tion of this function, the function returns SA_AIS_ERR_BAD_FLAGS, and tracking is 
not started. An invocation of this function is also invalid and returns 
SA_AIS_ERR_BAD_FLAGS if none of the flags SA_TRACK_CHANGES, 
SA_TRACK_CHANGES_ONLY, or SA_TRACK_CURRENT are set.
The PLM Service does not support the SA_TRACK_LOCAL flag, and it will be ignored. 
The SaUint8T type is defined in [2].
88 SAI-AIS-PLM-A.01.02 Section 3.5.2.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
trackCookie - [in] Value provided by the invoking process, and which will be 
passed as a parameter to all invocations of the SaPlmReadinessTrackCallbackT 
function triggered by this invocation of the saPlmReadinessTrack() function. This 
parameter can be used to pass process specific information related to the group of 
entities being tracked. The SaUint64T type is defined in [2].

trackedEntities – [in/out] A pointer to a structure of type 
SaPlmReadinessTrackedEntitiesT (defined in Section 3.3.13.5). This parame-
ter is ignored if SA_TRACK_CURRENT is not set in trackFlags; otherwise, if 
trackedEntities is not NULL, the structure will contain information about all enti-
ties in the entity group when saPlmReadinessTrack() returns. The meaning of 
the fields of the SaPlmReadinessTrackedEntitiesT structure is:

• numberOfEntities – [in/out] If entities is NULL, numberOfEntities is 
ignored as input parameter; otherwise, it specifies that the array to which 
entities points provides memory for information about the readiness status of 
numberOfEntities entities. When saPlmReadinessTrack() returns with 
SA_AIS_OK or with SA_AIS_ERR_NO_SPACE, numberOfEntities contains 
the number of entities in the entity group.

• entities - [in/out] If entities is NULL, memory for the readiness status 
information of the tracked entities is allocated by the PLM Service. The caller is 
responsible for freeing the allocated memory by calling the 
saPlmReadinessNotificationFree() function.

Description

The saPlmReadinessTrack() function can be used to retrieve the current readi-
ness status of all PLM entities that are contained in the entity group referred to by 
entityGroupHandle, to start tracking changes of the readiness status of these 
entities, or to perform both actions.

PLM provides this information to the process by invoking its 
saPlmReadinessTrackCallback() callback, which must have been supplied 
when the process invoked the saPlmInitialize() call.

A process may call saPlmReadinessTrack() repeatedly for the same value of 
entityGroupHandle, regardless of whether the call initiates a one-time status 
request or a series of callback invocations.
If a process has enabled tracking by calling saPlmReadinessTrack() with either 
SA_TRACK_CHANGES or SA_TRACK_CHANGES_ONLY set and then calls 
saPlmReadinessTrack() again with the same value of entityGroupHandle, 
the following applies, depending on the flags in the second call:
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 89



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
• If the second call has either SA_TRACK_CHANGES or 
SA_TRACK_CHANGES_ONLY set, the new combination of flags is used to change 
the settings for the tracking. For example, if the first call had 
SA_TRACK_START_STEP set, and the second call does not have this flag set, 
the process will not receive further callbacks for the SA_TRACK_START_STEP. 
The trackCookie of the second call will be used from now on in invocations of 
the saPlmReadinessTrackCallback() callback function of the process.

• If the second call has neither SA_TRACK_CHANGES nor 
SA_TRACK_CHANGES_ONLY set, but rather only SA_TRACK_CURRENT, the 
tracking started by the first call will proceed unchanged, and the process will 
additionally receive the current information about all entities that are currently in 
the entity group designated by its entityGroupHandle.

Note that it is possible for entities to be added or removed from the entity group while 
a track operation is in progress on the group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_INIT – The initialization of the PLM Service library with 
saPlmInitialize() used later on to create the entity group designated by 
entityGroupHandle was incomplete, since the 
saPlmReadinessTrackCallback() callback function of the process is missing. 
This value is returned only if saPlmReadinessTrack() is called in a way that 
requires the callback; that is, with SA_TRACK_CHANGES or 
SA_TRACK_CHANGES_ONLY set, or with SA_TRACK_CURRENT set and 
trackedEntities set to NULL.
90 SAI-AIS-PLM-A.01.02 Section 3.5.2.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this 
applies if in the structure to which trackedEntities points the entities pointer is 
not NULL and numberOfEntities is 0.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NO_SPACE - The SA_TRACK_CURRENT flag is set, and the entities 
pointer in the structure referred to by trackedEntities is not NULL, but the value 
of numberOfEntities in this structure is smaller than the number of entries to be 
provided in the array referred to by the entities pointer.

SA_AIS_ERR_BAD_FLAGS – The trackFlags parameter is invalid. In particular, 
this applies if

• the SA_TRACK_CHANGES and SA_TRACK_CHANGES_ONLY flags are both 
specified or if

• none of the flags SA_TRACK_CHANGES, SA_TRACK_CHANGES_ONLY, or 
SA_TRACK_CURRENT are set.

See Also

saPlmEntityGroupCreate(), SaPlmReadinessTrackCallbackT, 
saPlmReadinessTrackStop(), saPlmReadinessNotificationFree()
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 91



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.5.2.2 SaPlmReadinessTrackCallbackT

Prototype

typedef void (*SaPlmReadinessTrackCallbackT)(

SaPlmEntityGroupHandleT entityGroupHandle,

SaUint64T trackCookie,

SaInvocationT invocation,

SaPlmTrackCauseT cause,

const SaNameT *rootCauseEntity,

SaNtfIdentifierT rootCorrelationId,

const SaPlmReadinessTrackedEntitiesT *trackedEntities,

SaPlmChangeStepT step,

SaAisErrorT error

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

trackCookie - [in] Value that was provided to the saPlmReadinessTrack() 
function when the tracking was initialized. This value complements the handle 
entityGroupHandle and holds process specific information related to the group of 
entities being tracked. The SaUint64T type is defined in [2].

invocation – [in] This parameter is used by the invoked process to provide a 
response to the PLM Service with the saPlmReadinessTrackResponse() func-
tion. This parameter enables the PLM Service to associate the 
saPlmReadinessTrackResponse() invocation with this particular callback invo-
cation. The SaInvocationT type is defined in [2].

cause – [in] Indicates the action or event that caused the invocation of the callback. 
The SaPlmTrackCauseT type is defined in Section 3.3.13.3.

rootCauseEntity – [in] Pointer to the name of the entity directly targeted by the 
action or the event identified by the cause parameter. It is set to NULL if cause is set 
to SA_PLM_CAUSE_GROUP_CHANGE, SA_PLM_CAUSE_MANAGEMENT_LOST, or 
SA_PLM_CAUSE_MANAGEMENT_REGAINED. The SaNameT type is defined in [2].
92 SAI-AIS-PLM-A.01.02 Section 3.5.2.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
rootCorrelationId – [in] Correlation identifier associated with the root cause. It 
is set to SA_NTF_IDENTIFIER_UNUSED if cause is set to 
SA_PLM_CAUSE_GROUP_CHANGE, SA_PLM_CAUSE_MANAGEMENT_LOST, 
SA_PLM_CAUSE_MANAGEMENT_REGAINED, or SA_PLM_CAUSE_STATUS_INFO. 
The SaNtfIdentifierT type is defined in [4].

trackedEntities – [in] Pointer to a structure that contains information about the 
changes in the entity group designated by entityGroupHandle. The 
SaPlmReadinessTrackedEntitiesT type is defined in Section 3.3.13.5.

step – [in] Indicates the tracking step in which the callback is invoked. The 
SaPlmChangeStepT type is defined in Section 3.3.13.2.

error – [in] This parameter indicates whether the PLM Service was able to perform 
the operation. The SaAisErrorT type is defined in [2].

The parameter error has one of the values:

• SA_AIS_OK – No error has been encountered by the PLM Service during the 
tracking process.

• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such 
as corruption). The library cannot be used anymore.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The 
process may retry the saPlmReadinessTrack() call later.

• SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due 
to one or both of the reasons below:
• It is corrupted, or the corresponding entity group associated with that handle 

has been deleted.
• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

• SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the 
service is out of memory and cannot provide the service. The process that 
invoked saPlmReadinessTrack() might have missed one or more tracking 
notifications.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than 
memory). The process that invoked saPlmReadinessTrack() might have 
missed one or more tracking notifications.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.2 93



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Description

This callback is invoked in the context of a thread issuing an saPlmDispatch() call 
with the PLM library handle that was specified when the entity group designated by 
the handle entityGroupHandle was created. If successful, the 
saPlmReadinessTrackCallback() function passes information about tracked 
entities in the structure pointed to by the trackedEntities parameter. The kind of 
information passed depends on the setting of the trackFlags parameter of the 
saPlmReadinessTrack() function.

This callback is invoked when:

• entities are added to or removed from the entity group, either as a result of calls 
to saPlmEntityGroupAdd() or saPlmEntityGroupRemove(), or because 
PLM entities are created or deleted on subtrees that are selected for tracking in 
the entity group, or

• the readiness status of at least one of the entities of the group is about to change 
(SA_PLM_CHANGE_VALIDATE or SA_PLM_CHANGE_START steps), or has 
changed (SA_PLM_CHANGE_COMPLETED step), or

• a pending change has been rejected (SA_PLM_CHANGE_ABORTED step).

A single invocation of this callback contains information about all entities of the 
tracked group whose readiness status is or will be affected by the same cause identi-
fied by the cause and rootCauseEntity parameters.

When the step parameter is set to SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START, the invoked process must provide a response to the PLM 
Service with the saPlmReadinessTrackResponse() function. When the step 
parameter is set to SA_PLM_CHANGE_ABORTED or SA_PLM_CHANGE_COMPLETED, 
the invoked process must not provide a response to the PLM Service.

If an error that prevents the PLM Service from satisfying the tracking request initiated 
by a previous call to saPlmReadinessTrack() occurs, the error is returned in the 
error parameter.

A process may concurrently track changes of the readiness status of several entity 
groups. If an entity is part of more than one of these groups, a change of the entity’s 
readiness status will be notified several times to the process, that is, its 
saPlmReadinessTrackCallback() function will be invoked once for each 
affected group.

Return Values

None
94 SAI-AIS-PLM-A.01.02 Section 3.5.2.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
See Also

saPlmReadinessTrack(), saPlmInitialize(), saPlmDispatch(), 
saPlmReadinessTrackResponse()

3.5.2.3 saPlmReadinessTrackResponse()

Prototype

SaAisErrorT saPlmReadinessTrackResponse(

SaPlmEntityGroupHandleT entityGroupHandle,

SaInvocationT invocation,

SaPlmReadinessTrackResponseT response

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

invocation – [in] This parameter was provided to the process by the PLM Service 
in the SaPlmReadinessTrackCallbackT callback. It enables the PLM Service to 
associate this saPlmReadinessTrackResponse() invocation with the previous 
callback invocation. The SaInvocationT type is defined in [2].

response – [in] This parameter provides the response expected by the PLM Ser-
vice to a previous invocation of the SaPlmReadinessTrackCallbackT track call-
back. The SaPlmReadinessTrackResponseT type is defined in Section 3.3.14.

Description

This function is used by a process to provide a response to an 
SaPlmReadinessTrackCallbackT callback previously invoked with a step 
parameter equal to either SA_PLM_CHANGE_VALIDATE or 
SA_PLM_CHANGE_START. The invocation parameter must be set to the value 
passed in the invocation parameter of the track callback. The response parame-
ter holds the response of the process.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.3 95



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this 
applies if invocation is invalid, or there is no outstanding response for a track call-
back with the same values of invocation and entityGroupHandle.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

See Also

SaPlmReadinessTrackCallbackT

3.5.2.4 saPlmReadinessTrackStop()

Prototype

SaAisErrorT saPlmReadinessTrackStop(

SaPlmEntityGroupHandleT entityGroupHandle

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.
96 SAI-AIS-PLM-A.01.02 Section 3.5.2.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
Description

The saPlmReadinessTrackStop() function stops any further tracking notifica-
tions of readiness status changes of the group of entities designated by 
entityGroupHandle and which were requested by specifying the handle 
entityGroupHandle when invoking the saPlmReadinessTrack() function, and 
which are still in effect. Pending callbacks are removed.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, due to 
one or both of the reasons below:

• It is corrupted, was not obtained with the saPlmEntityGroupCreate() func-
tion, or the corresponding entity group associated with that handle has been 
deleted.

• The handle plmHandle that was passed in to the 
saPlmEntityGroupCreate() function has already been finalized.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_EXIST – No track of readiness status changes in the entity group 
designated by entityGroupHandle was started by invoking the 
saPlmReadinessTrack() function with track flags SA_TRACK_CHANGES or 
SA_TRACK_CHANGES_ONLY and is still in effect.

See Also

saPlmReadinessTrack()
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.4 97



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
3.5.2.5 saPlmReadinessNotificationFree()

Prototype

SaAisErrorT saPlmReadinessNotificationFree(

SaPlmEntityGroupHandleT entityGroupHandle,

SaPlmReadinessTrackedEntityT *entities

);

Parameters

entityGroupHandle - [in] The handle for an entity group which was obtained by a 
previous invocation of the saPlmEntityGroupCreate() function. The 
SaPlmEntityGroupHandleT type is defined in Section 3.3.1.2.

entities – [in] A pointer to the memory array that was allocated by the PLM Ser-
vice library in the saPlmReadinessTrack() function and is to be deallocated. The 
SaPlmReadinessTrackedEntityT type is defined in Section 3.3.13.4.

Description

This function frees the memory to which entities points and which was allocated by 
the PLM Service library in a previous call to the saPlmReadinessTrack() function.
For details, refer to the description of the entities pointer in the structure referred 
to by the trackedEntities parameter in the corresponding invocation of the 
saPlmReadinessTrack() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle entityGroupHandle is invalid, since it is 
corrupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM – A parameter is not set correctly. In particular, this 
applies if the entities parameter does not point to memory allocated by PLM in a 
previous call to the saPlmReadinessTrack() function using the same value of the 
entityGroupHandle parameter.

See Also

saPlmReadinessTrack()
98 SAI-AIS-PLM-A.01.02 Section 3.5.2.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification
3.5.3 Entity Readiness Impact

3.5.3.1 saPlmEntityReadinessImpact()

Prototype

SaAisErrorT saPlmEntityReadinessImpact(

SaPlmHandleT plmHandle,

const SaNameT *impactedEntity,

SaPlmReadinessImpactT impact,

SaNtfCorrelationIdsT *correlationIds

);

Parameters

plmHandle - [in] The handle which was obtained by a previous invocation of the 
saPlmInitialize() function and which designates this particular initialization of 
the PLM Service. The SaPlmHandleT type is defined in Section 3.3.1.1.

impactedEntity – [in] Pointer to the name of the entity whose readiness status 
should be updated. The SaNameT type is defined in [2].

impact – [in] Impact being reported. The SaPlmReadinessImpactT type is 
defined in Section 3.3.10.

correlationIds – [in/out] Pointer to a structure that contains correlation identifi-
ers. The rootCorrelationId and parentCorrelationId fields are in parame-
ters and hold respectively the root and parent correlation identifiers to be included by 
the PLM Service when it generates NTF notifications directly related to this invoca-
tion. The notificationId field is an out parameter. If the invocation of the 
saPlmEntityReadinessImpact() function triggers a state change of the target 
entity, the PLM Service returns in notificationId the identifier of the correspond-
ing state change NTF notification; otherwise PLM sets notificationId to 
SA_NTF_IDENTIFIER_UNUSED. The SaNtfCorrelationIdsT type is defined
in [4].
AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.3 99



Service AvailabilityTM Application Interface Specification
Platform Management Service API Specification

1

5

10

15

20

25

30

35

40
Description

The saPlmEntityReadinessImpact() function is used by processes to report 
that the state of health of an entity has changed. The change may result in changes 
to the operational state and readiness status of the entity being reported as well as in 
changes to the readiness status of other entities that are children of or dependent on 
the entity being reported.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle plmHandle is invalid, since it is corrupted, 
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_EXIST – The name referred to by the impactedEntity param-
eter does not designate an entity configured for the PLM Service.

See Also

saPlmInitialize()
100 SAI-AIS-PLM-A.01.02 Section 3.5.3.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
4   PLM Service UML Information Model
The PLM Service Information Model is described in UML and has been organized in 
UML class diagrams.

The PLM Service Information Model is implemented by the SA Forum IMM Service 
([5]). For further details on this implementation, refer to the SA Forum Overview doc-
ument ([1]).

The classes in the PLM Service UML class diagrams show the contained attributes 
and their type, multiplicity, default values, and constraints. The description of each 
attribute is provided in the SA Forum XMI document (see [8]). The class diagrams 
additionally show the administrative operations (if any) applicable on these classes.

To simplify references, this description uses for the UML diagrams the same names 
used in [8].

The UML diagrams defined for the PLM Service are:

• “Cluster View”
• “PLM Instances and Types View”
• “PLM HE Classes”
• “PLM EE Classes”
• “PLM Other Classes” 

These diagrams will be described starting with Section 4.2.

4.1 Notes on the Conventions Used in UML Diagrams
A general explanation of the conventions used in the UML diagrams, such as the use 
of constraints, default values, and the like is presented in [1].
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 4 101



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
4.2 DN Formats for PLM Service UML Classes
Table 1 provides the format of the various DNs used to name PLM objects of the SA 
Forum Information Model. One format is defined for each object class.
The ‘[safXX=...,]*’ notation indicates that an RDN in the form ‘safXX=...’ may occur 
zero or more times in the DN at a particular position. The ‘[safXX=...,]+’ notation 
indicates that an RDN in the form ‘safXX=...’ may occur 1 or more times in the DN at 
a particular position.  

Table 1 DN Formats

Object Class DN Format for Objects of that Class

SaPlmDependency "safDependency=...,[safEE=...,]+[safHE=...,]*safDomain=..."
or
"safDependency=...,[safHE=...,]+safDomain=..."

SaPlmDomain "safDomain=..."

SaPlmEE "[safEE=...,]+[safHE=...,]*safDomain=..."

SaPlmEEBaseType "safEEType=..., safApp=safPlmService"

SaPlmEEType "safVersion=...,safEEType=..., safApp=safPlmService"

SaPlmHE “[safHE=...,]+safDomain=..."

SaPlmHEBaseType "safHEType=..., safApp=safPlmService"

SaPlmHEType "safVersion=...,safHEType=..., safApp=safPlmService"
102 SAI-AIS-PLM-A.01.02 Section 4.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
4.3 PLM Classes and Other Services’ Classes
FIGURE 4 shows the relationships among the main classes of the PLM Service and 
the main classes of HPI, CLM, and AMF.

Attributes and operations of the PLM classes SaPlmHE, SaPlmEE, and 
SaPlmDomain are shown in Section 4.5, Section 4.6, and Section 4.7 respectively.

The SaPlmEntity class is only used to facilitate the UML description and is not 
implemented in the IMM Service.

HPI, CLM, and AMF object classes are not shown in this document.

FIGURE 4 Cluster View

SaPlmDomain

SaPlmEE

SaClmCluster

SaPlmEntity

SaHpiEntity SaPlmHE SaClmNode SaAmfNode

SaAmfClusterSaHpiDomain
0..10..1

Manages

0..*

1..* 1

0..*

1

0..*

0..10..1
Maps On

0..1 0..1

Maps On
0..1 0..1

Maps On

0..1 0..1

Maps On

0..1 0..1

0..*0..1 0..*0..1

0..*

1

AIS Specification SAI-AIS-PLM-A.01.02 Section 4.3 103



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
4.4 PLM Instances and Types View
FIGURE 5 shows all classes of the PLM Service. The SaPlmEntity class is only 
used to facilitate the UML description and is not implemented in the IMM Service.

FIGURE 5 PLM Instances and Types View

Note that HE and EE classes relate in a different way to their respective type and 
base type classes:

• An HE instance is configured to relate to a particular base type. The relationship 
between an HE instance and its type is established dynamically at run time by 
the PLM Service after the matching process described in Section 4.5.1 com-
pletes successfully.

• An EE instance is configured to relate to a particular type, providing no dynamic 
mapping capability at runtime.

SaPlmHEBaseTypeSaPlmHE

SaPlmEE

SaPlmHEType

SaPlmEEBaseTypeSaPlmEETypeSaPlmDependency

SaPlmEntitySaPlmDomain

Realizes (config)

0..1

0..1

Realizes (runtime)

Realizes (config)

0..*1

0..*

11..*

0..*

0..*
1

0..*

1

104 SAI-AIS-PLM-A.01.02 Section 4.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
4.5 PLM HE Classes Diagram
The diagram shown in FIGURE 6 contains the following classes:

• SaPlmHE—This configuration object class defines configuration and runtime 
attributes of a hardware element and the operations that can be applied on the 
hardware element. For each hardware element, an object of this class must be 
configured, and its saPlmHEBaseHEType attribute must contain the DN of a 
valid object of the SaPlmHEBaseType object class. When hardware matching is 
completed, as described in Section 4.5.1, its saPlmCurrHEType will contain the 
DN of an object of the SaPlmHEType object class.

• SaPlmHEType—This configuration object class defines configuration attributes 
of a hardware element type. All hardware elements of the same type share the 
attribute values defined in the hardware element type configuration.

• SaPlmHEBaseType—This configuration object class defines the configuration 
attributes common to different hardware element types. In particular, a base 
hardware element type defines the common name of versioned hardware ele-
ment types. A hardware element type x belongs to a base hardware element 
type y based on the DN of x, which is the concatenation of the RDN of x (repre-
senting its version) with the DN of y.
AIS Specification SAI-AIS-PLM-A.01.02 Section 4.5 105



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
FIGURE 6 PLM HE Classes

4.5.1 Matching Configured HEs to Hardware Entities

At system startup and at each time new hardware is added, the PLM Service 
attempts to match the newly discovered hardware entities to the configuration 
described in the information model. The PLM Service must not remap any hardware 
element, while it is in-service. When attempting to match a hardware element with a 
hardware entity, the PLM Service performs the following checks:

• It checks that the hardware entity is located in one of the potential locations that 
have been configured for the hardware element. The entity path of the hardware 
entity is used by the PLM Service to perform this check.

<<CONFIG>>
SaPlmHE

safHE : SaStringT [1]{RDN, CONFIG}
saPlmHEBaseHEType : SaNameT [1]{CONFIG}
saPlmHEEntityPaths : SaStringT [0..*]{CONFIG, WRITABLE}
saPlmHECurrHEType : SaNameT [0..1] = Empty{RUNTIME, CACHED}
saPlmHECurrEntityPath : SaStringT [0..1] = Empty{RUNTIME, CACHED}
saPlmHEAdminState : SaPlmHEAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saPlmHEReadinessState : SaPlmReadinessStateT [1]{RUNTIME, CACHED, SAUINT32T}
saPlmHEReadinessFlags : SaPlmReadinessFlagsT [1]{RUNTIME, CACHED, SAUINT64T}
saPlmHEPresenceState : SaPlmHEPresenceStateT [1]{RUNTIME, CACHED, SAUINT32T}
saPlmHEOperationalState : SaPlmOperationalStateT [1]{RUNTIME, CACHED, SAUINT32T}

SA_PLM_ADMIN_ACTIVATE()
SA_PLM_ADMIN_DEACTIVATE()
SA_PLM_ADMIN_LOCK()
SA_PLM_ADMIN_SHUTDOWN()
SA_PLM_ADMIN_UNLOCK()
SA_PLM_ADMIN_RESET()
SA_PLM_ADMIN_REPAIRED()
SA_PLM_ADMIN_REMOVED()

<<CONFIG>>
SaPlmHEType

safVersion : SaStringT [1]{RDN, CONFIG}
saPlmHetIdr : SaStringT [0..*]{CONFIG, WRITABLE}

<<CONFIG>>
SaPlmHEBaseType

safHEType [1]{RDN, CONFIG}
saPlmHetHpiEntityType : SaStringT [1]{CONFIG}
106 SAI-AIS-PLM-A.01.02 Section 4.5.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
• It checks that the characteristics of the hardware entity match the configured 
characteristics of the hardware element. The contents of its Inventory Data 
Repositories are used by the PLM Service to perform this check.

The following sections describe in more details how these checks are performed.

4.5.1.1 Hardware Entity Location Check

Each saPlmHE object class contains two attributes that are used by the PLM Service 
to check if the entity path of a hardware entity matches the configuration of a particu-
lar hardware element:

• The saPlmHECurrEntityPath runtime attribute holds the entity path (using 
the standard text string representation for entity paths defined in [3]) of the hard-
ware entity that has been matched with the hardware element. This attribute is 
set by the PLM Service when the matching is completed.

• The saPlmHEEntityPaths configuration attribute holds one or several entity 
path fragments that are relative to the location of the parent of the PLM hardware 
element entity in the PLM Service containment tree.

When checking that an HPI entity is properly located for a particular hardware ele-
ment, the PLM Service combines the entity path of the parent of the hardware ele-
ment (saPlmHECurrEntityPath attribute of the parent) with each of the entity path 
fragments contained in the saPlmHEEntityPaths attribute and checks that they 
match the entity path of the hardware entity.

So, for example, if the parent's saPlmHECurrEntityPath attribute is
"SUBRACK.1,RACK.2", and the saPlmHEEntityPaths attribute of a hardware ele-
ment includes: "SYSTEM_BLADE.2" and "SYSTEM_BLADE.3", then that hardware 
element could match a hardware entity with an entity path
"SYSTEM_BLADE.2,SUBRACK.1,RACK.2" or
"SYSTEM_BLADE.3,SUBRACK.1,RACK.2".

As another example, the parent's saPlmHECurrEntityPath attribute might be the 
same as above, but the hardware element’s saPlmHEEntityPaths attribute could 
contain: "PICMG_FRONT_BLADE.0,PHYSICAL_SLOT.3" and 
"PICMG_FRONT_BLADE.0,PHYSICAL_SLOT.4". Now, it could match: 
"PICMG_FRONT_BLADE.0,PHYSICAL_SLOT.3,SUBRACK.1,RACK.2" or 
"PICMG_FRONT_BLADE.0,PHYSICAL_SLOT.4,SUBRACK.1,RACK.2".
AIS Specification SAI-AIS-PLM-A.01.02 Section 4.5.1.1 107



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
The entity path fragments contained in the saPlmHEEntityPaths attribute can be 
specified exactly or with a syntax that allows multiple locations to match. The num-
bers that indicate the entity location in the entity path fragments can have:

• a number, for an exact match,
• an asterisk (*), which matches any value, or
• a list of numbers and ranges of numbers separated by colons (ranges specified 

with hyphens).

Examples

"PROCESSOR.3" matches the PROCESSOR entity type at location 3 prepended to the 
parent's entity path.
"PROCESSOR.*" matches the PROCESSOR entity type, any location, prepended to the 
parent’s entity path.
"PROCESSOR.1:3:5-8" matches the PROCESSOR entity type, entity locations 1, 3, 
5, 6, 7, 8 prepended to the parent’s entity path.
"PROCESSOR.1:3-" matches the PROCESSOR entity type, entity locations 1, or entity 
locations greater than or equal to 3 prepended to the parent’s entity path.
"AMC.*,PHYSICAL_SLOT.1-4" match an entity path with two additional elements 
prepended to the parent's entity path. The first element in the resulting entity path is 
of AMC entity type at any location, the second is of PHYSICAL_SLOT entity type, entity 
location 1,2,3, or 4.

4.5.1.2 HPI Entity Characteristics Check

After checking that the location of a hardware entity matches the hardware element’s 
configuration, the PLM Service checks that the other characteristics of the hardware 
entity are also matching the configuration.

Each saPlmHE object class contains an saPlmHEBaseHEType configuration 
attribute that associates a hardware element with a particular base type (the attribute 
contains the name of an object of class SaPlmHEBaseType).

All hardware element types (represented by objects of class SaPlmHEType) that cor-
respond to the different versions of the hardware element’s base type are checked for 
a potential match with the hardware entity. According to the naming conventions 
listed in Section 4.2, the name of these hardware element types is built from the 
name of their base type.
108 SAI-AIS-PLM-A.01.02 Section 4.5.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
The SaPlmHEType object class contains an saPlmHetIdr configuration attribute 
that is used to specify the characteristics of the hardware entities that can be repre-
sented by a particular hardware element type. The saPlmHetIdr configuration 
attribute holds values that are matched to fields of an Inventory Data Repositories 
(IDR) associated with the hardware entity.

One IDR field setting is represented using the following format:

”IDR_Area_Name/IDR_Field_Name=IDR_Field_Value”

where IDR_Area_Name and IDR_Field_Name may take one of the values defined 
in Table 2.

If the setting of several IDR fields must be specified to identify a particular hardware 
entity, they must all be concatenated to form a single string value using “,” as a a sep-
arator. Below is an example of a value held by the saPlmHetIdr configuration 
attribute:

"PRODUCT/MANUFACTURER=name_of_the_manufacturer,
BOARD/PRODUCT_NAME=board_product_name"

A given hardware entity matches a hardware element type if all IDR settings specified 
in one value of the saPlmHetIdr attribute match fields having corresponding 
IDR_Area_Names and IDR_Field_Names in an IDR associated with the hardware 
entity.

Table 2 IDR Names and Values

IDR Names IDR Values

IDR_Area_Name "BOARD","CHASSIS","INTERNAL","OEM", "PRODUCT"

IDR_Field_Name "ASSET_TAG","CHASSIS_TYPE","CUSTOM","FILE_ID", 
"MANUFACTURER","MFG_DATETIME","PART_NUMBER", 
"PRODUCT_NAME","PRODUCT_VERSION","SERIAL_NUMBER"
AIS Specification SAI-AIS-PLM-A.01.02 Section 4.5.1.2 109



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
If the characteristics of the hardware entity match one version of the hardware ele-
ment’s base type, the PLM Service

• sets the value of the hardware element’s saPlmHECurrEntityPath runtime 
attribute to the entity path of the hardware entity and

• sets the value of the hardware element’s saPlmHECurrHEType runtime 
attribute to the name of the hardware element type that matches the hardware 
entity.

For hardware entities not providing an IDR, the saPlmHetIdr attribute should be 
empty, that is, it should have no strings.

4.6 PLM EE Classes Diagram
The diagram shown in FIGURE 7 contains the following classes:

• SaPlmEE—This configuration object class defines configuration and runtime 
attributes of an execution environment and the operations that can be applied on 
the execution environment. For each execution environment, an object of this 
class must be configured, and its saPlmEEType attribute must contain the DN 
of a valid object of the SaPlmEEType object class. Additional configuration 
attributes of an execution environment are defined in the SaPlmEEType class.

• SaPlmEEType—This configuration object class defines configuration attributes 
of an execution environment type. All execution environments of the same type 
share the attribute values defined in the execution environment type configura-
tion.

• SaPlmHEBaseType—This configuration object class defines the configuration 
attributes common to different execution environment types. In particular, a base 
execution environment type defines the common name of versioned execution 
environment types. An execution environment type x belongs to a base execu-
tion environment type y based on the DN of x, which is the concatenation of the 
RDN of x (representing its version) with the DN of y.
110 SAI-AIS-PLM-A.01.02 Section 4.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
UML Information Model
FIGURE 7 PLM EE Classes

<<CONFIG>>
SaPlmEEType

safVersion : SaStringT [1]{RDN, CONFIG}
saPlmEetDefInstantiateTimeout : SaTimeT [0..1] = No Limit{CONFIG, WRITABLE}
saPlmEetDefTerminateTimeout : SaTimeT [0..1] = No Limit{CONFIG, WRITABLE}

<<CONFIG>>
SaPlmEE

safEE : SaStringT [1]{RDN, CONFIG}
saPlmEEType : SaNameT [1]{CONFIG, WRITABLE}
saPlmEEInstantiateTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}
saPlmEETerminateTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}
saPlmEEAdminState : SaPlmEEAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saPlmEEReadinessState : SaPlmReadinessStateT [1]{RUNTIME, CACHED, SAUINT32T}
saPlmEEReadinessFlags : SaPlmReadinessFlagsT [1]{RUNTIME, CACHED, SAUINT32T}
saPlmEEPresenceState : SaPlmEEPresenceStateT [1]{RUNTIME, CACHED, SAUINT32T}
saPlmEEOperationalState : SaPlmOperationalStateT [1]{RUNTIME, CACHED, SAUINT32T}

SA_PLM_ADMIN_LOCK_INSTANTIATION()
SA_PLM_ADMIN_LOCK()
SA_PLM_ADMIN_UNLOCK_INSTANTIATION()
SA_PLM_ADMIN_UNLOCK()
SA_PLM_ADMIN_SHUTDOWN()
SA_PLM_ADMIN_RESTART()
SA_PLM_ADMIN_REPAIRED()
SA_PLM_ADMIN_REMOVED()

<<CONFIG>>
SaPlmEEBaseType

safEEType : SaStringT [1]{RDN, CONFIG}
saPlmEetProduct : SaStringT [1]{CONFIG}
saPlmEetVendor : SaStringT [0..1] = Empty{CONFIG}
saPlmEetRelease : SaStringT [0..1] = Empty{CONFIG}
AIS Specification SAI-AIS-PLM-A.01.02 Section 4.6 111



Service AvailabilityTM Application Interface Specification
UML Information Model

1

5

10

15

20

25

30

35

40
4.7 PLM Other Classes Diagram
The diagram shown in FIGURE 8 contains the following classes:

• SaPlmDomain—This configuration object class defines the root object of all 
hardware elements and execution environments managed by the PLM Service.

• SaPlmDependency—This is a configuration association class used to define 
dependencies between PLM entities. It is used to specify the dependencies that 
a particular PLM entity has on other PLM entities. Use of the 
SaPlmDependency class is described in Section 3.1.2.3.

FIGURE 8 PLM Other Classes

<<CONFIG>>
SaPlmDomain

safDomain : SaStringT [1]{RDN, CONFIG}
saPlmHEDeactivationPolicy : SaPlmHEDeactivationPolicyT [0..1] = 2 (SA_PLM_DP_VALIDATE){CONFIG, WRITABLE, SAUINT32T}

<<CONFIG>>
SaPlmDependency

safDependency : SaStringT [1]{RDN, CONFIG}
saPlmDepNames : SaNameT [1..*]{CONFIG, WRITABLE}
saPlmDepMinNumber : SaUint32T [1]{CONFIG, WRITABLE}
112 SAI-AIS-PLM-A.01.02 Section 4.7 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5   PLM Service Administration API

This section describes the administrative states and API functions that the IMM Ser-
vice exposes on behalf of the PLM Service to a system administrator. These API 
functions are described using a ’C’ API syntax. The main clients of this administrative 
API are system management applications, which typically convert system administra-
tion commands (invoked from a management station) to the correct administrative 
API sequence to yield the wanted result that is expected upon execution of the sys-
tem administration command.
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 5 113



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
5.1 Include File and Library Name
The appropriate IMM Service header file and the PLM Service header file must be 
included in the source of an application using the PLM Service administration API; for 
the name of the IMM Service header file, see [5]).

To use the PLM Service administration API, an application must be bound to the IMM 
Service library (for the library name, see [5]).

5.2 Type Definitions
The specification of PLM Service Administration API requires the following types, in 
addition to the ones already described.

5.2.1 SaPlmAdminOperationIdT

typedef enum {

SA_PLM_ADMIN_LOCK = 1,

SA_PLM_ADMIN_UNLOCK = 2,

SA_PLM_ADMIN_LOCK_INSTANTIATION = 3,

SA_PLM_ADMIN_UNLOCK_INSTANTIATION= 4,

SA_PLM_ADMIN_SHUTDOWN = 5,

SA_PLM_ADMIN_REPAIRED = 6,

SA_PLM_ADMIN_RESTART = 7,

SA_PLM_ADMIN_ACTIVATE = 8,

SA_PLM_ADMIN_DEACTIVATE = 9,

SA_PLM_ADMIN_RESET = 10,

SA_PLM_ADMIN_REMOVED = 11

} SaPlmAdminOperationIdT;

This type defines the identifiers of administrative operations that can be invoked on 
hardware element or execution environment objects.
114 SAI-AIS-PLM-A.01.02 Section 5.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.2.2 Parameter lockOption for the LOCK Administrative Operation

#define SA_PLM_ADMIN_LOCK_OPTION "lockOption"

#define SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK "trylock"

#define SA_PLM_ADMIN_LOCK_OPTION_FORCED "forced"

5.2.3 Parameter restartOption for the Restart Administrative Operation

#define SA_PLM_ADMIN_RESTART_OPTION "restartOption"

#define SA_PLM_ADMIN_RESTART_OPTION_ABRUPT "abrupt"

5.3 Interface to the Information Model Management Service

As explained earlier, the administrative API shall be exposed by the IMM Service 
library.

The administrative APIs are described with the assumption that the PLM Service is 
an object implementer (runtime owner) for the various administrative operations that 
will be initiated as a consequence of invoking the 
saImmOmAdminOperationInvoke_3() or 
saImmOmAdminOperationInvokeAsync_3() functions (see [5]) with the appro-
priate operationId (described in Section 5.2.1) on the entity designated by the 
name to which objectName points.

The return values explained in the following sections for various administrative opera-
tions shall be passed by the operationReturnValue parameter, which is provided 
by the invoker of the saImmOmAdminOperationInvoke_3() or 
saImmOmAdminOperationInvokeAsync_3() functions to obtain return codes 
from the object implementer, which in this case is the PLM Service.

5.4 Administrative Operations
A fair number of administrative operations involve the manipulation of the administra-
tive state. Possible values for the administrative state are unlocked, locked, locked-
instantiation, and shutting-down for EEs and unlocked, locked, locked-inactive, and 
shutting-down for HEs.

For more details on the administrative states of HEs and EEs, see 
Section 3.1.3.1.2 on page 31 and Section 3.1.3.2.2 on page 39 respectively.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.2.2 115



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
To aid in the description of the administrative operations, FIGURE 9 illustrates the 
various administrative states and the various operations that are applicable on an EE 
when it is in a particular administrative state. The abbreviations used in this figure and 
their meaning are:

• UL = SA_PLM_ADMIN_UNLOCK
• L = SA_PLM_ADMIN_LOCK
• ULI = SA_PLM_ADMIN_UNLOCK_INSTANTIATION
• LI = SA_PLM_ADMIN_LOCK_INSTANTIATION
• SD = SA_PLM_ADMIN_SHUTDOWN

The dotted line in the figure represents the internal (spontaneous) transition corre-
sponding to the completion of the shutting down operation; this transition moves the 
entity into locked state without further external intervention.

FIGURE 9 Administrative States and Related Operations for PLM EE Entities

UL

L

UL

SD
Complete

LSD ULI

unlocked

shutting-down

locked

locked-instantiation

LI
116 SAI-AIS-PLM-A.01.02 Section 5.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
FIGURE 10 illustrates the various administrative states and the various operations 
that are applicable on an HE when it is in a particular administrative state. This figure 
uses the same abbreviations as for FIGURE 9, except for A and DA, which replace LI 
and ULI respectively:

• A = SA_PLM_ADMIN_ACTIVATE
• DA = SA_PLM_ADMIN_DEACTIVATE

FIGURE 10 Administrative States and Related Operations for PLM HE Entities

UL

L

UL

SD
Complete

LSD A

unlocked

shutting-down

locked

locked-inactive

DA
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4 117



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
5.4.1 SA_PLM_ADMIN_UNLOCK

Parameters

operationId = SA_PLM_ADMIN_UNLOCK, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the logical entity (HE or EE) to be 
unlocked. The name is expressed as a LDAP DN.

Description

This administrative operation sets the administrative state of the logical entity (HE or 
EE) designated by the name to which objectName points to unlocked. For more 
details regarding the respective status of the logical entities that results as a conse-
quence of invoking this administrative operation on these entities, refer to 
Section 3.1.3 on page 25.

This administrative operation can be issued on any logical entity, even if the entity is 
not present in the system (for instance, a hardware element is currently not present or 
an entity is not instantiated because its parent is locked).

If this operation is invoked on an entity that is already unlocked, there is no change in 
the status of such an entity, that is, it remains in unlocked state, and the caller is 
returned a benign SA_AIS_ERR_NO_OP error code.

If this operation is invoked on an entity that is in the locked-inactive or locked-instanti-
ation state, there is no change in the status of such an entity, that is, it remains in the 
locked-inactive or locked-instantiation state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.
118 SAI-AIS-PLM-A.01.02 Section 5.4.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in unlocked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_LOCK, SA_PLM_ADMIN_SHUTDOWN
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.1 119



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
5.4.2 SA_PLM_ADMIN_LOCK

Parameters

operationId = SA_PLM_ADMIN_LOCK, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the logical entity (HE or EE) to be 
locked. The name is expressed as a LDAP DN.

params - [in] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor is shown next, and its format is specified in [5].

SaStringT operationOption;

operationOption = SA_PLM_ADMIN_LOCK_OPTION_FORCED;

or

operationOption = SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK;

params[0]->paramName = SA_PLM_ADMIN_LOCK_OPTION;

params[0]->paramType = SA_IMM_ATTR_SASTRINGT;

params[0]->paramBuffer = &operationOption;

This parameter descriptor specifies the kind of LOCK operation to be carried out on 
the object referred to by objectName.
The SA_PLM_ADMIN_LOCK_OPTION parameter is an optional parameter. If it is not 
specified, that is, the NULL-terminated array of pointers has NULL in the first ele-
ment, this administrative function will execute the default LOCK operation (see 
below).
The types SA_PLM_ADMIN_LOCK_OPTION, 
SA_PLM_ADMIN_LOCK_OPTION_FORCED, and 
SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK are defined in Section 5.2.2.

Description

This administrative operation sets the administrative state of the logical entity (HE or 
EE) designated by the name to which objectName points to locked.

When this operation is applied to an entity that is in-service, the PLM Service informs 
clients of the readiness track API about changes of the readiness state of affected 
entities. The number of steps in which readiness track callbacks (see 
Section 3.5.2 on page 85) are invoked depends on the params parameter. If 
SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK is specified, consumers may reject the 
120 SAI-AIS-PLM-A.01.02 Section 5.4.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
LOCK operation. In that case, the administrative operation will be rejected, and all 
affected entities remain in their previous states.

The detailed actions of the LOCK administrative operation are:

• PLM generates a list of all PLM entities that are affected by the LOCK operation.
• The following action is performed if the 

SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK option is selected: PLM calls readi-
ness track callbacks to validate the operation and to check whether it is possible 
to evacuate services from the entity before it is locked. If services cannot be relo-
cated, the LOCK request may be rejected. If so, the administrative operation is 
rejected with SA_AIS_ERR_FAILED_OPERATION; otherwise, the action is per-
formed.

• If the LOCK operation was accepted in the validation step by all users, or the 
operation was invoked with the default option, PLM calls the readiness track call-
backs to start the evacuation of all services. As a result, for example, CLM calls 
its track callback and AMF switches over the services as necessary. This action 
is performed if the trylock or the default option is selected.

• When all responses have been received for the START step, or the LOCK oper-
ation was invoked with the SA_PLM_ADMIN_LOCK_OPTION_FORCED option, the 
LOCK operation is completed at PLM level by placing the entity into locked state, 
which includes the termination of all EEs that are children of a locked EE or that 
depend on a locked hardware element.

• All affected objects are taken out-of-service (readiness state).
• PLM calls readiness track callbacks to inform clients about all entities whose 

readiness state changed to out-of-service.

This administrative operation can be issued on any logical entity, even if the entity is 
not present in the system (for instance, a hardware element is currently not present, 
or an entity is not instantiated because its parent is locked).

If this operation is invoked on an entity that is already locked, there is no change in 
the status of such an entity, that is, it remains in the locked state, and a benign error 
value SA_AIS_ERR_NO_OP is returned to the client to convey that the entity in ques-
tion designated by the name to which objectName points is already in locked state.

If this operation is invoked on an entity that is in the locked -inactive or locked-instan-
tiation state, there is no change in the status of such an entity, that is, it remains in the 
locked-inactive or locked-instantiation state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.

Appendix B.1 on page 167 illustrates a scenario in which a computing blade is physi-
cally extracted from the system. The shown sequence is a superset of the actions 
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.2 121



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
necessary for processing a LOCK administrative operation, and it is intended as an 
aid in understanding PLM actions for a LOCK operation.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_INVALID_PARAM - The SA_PLM_ADMIN_LOCK_OPTION parameter is 
not set correctly.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in locked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

SA_AIS_ERR_FAILED_OPERATION - The LOCK request was specified with the 
SA_PLM_ADMIN_LOCK_OPTION_TRYLOCK option, and at least one of the applica-
tions rejected the LOCK request. The administrative operation has no effect on the 
current state of the logical entity.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_UNLOCK, SA_PLM_ADMIN_SHUTDOWN
122 SAI-AIS-PLM-A.01.02 Section 5.4.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.3 SA_PLM_ADMIN_SHUTDOWN

Parameters

operationId = SA_PLM_ADMIN_SHUTDOWN, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the logical entity (HE or EE) to be shut 
down. The name is expressed as a LDAP DN.

Description

This operation is only applicable to entities that have an administrative state of 
unlocked. Note, however, that an entity may have an administrative state of unlocked, 
but a readiness state of stopping, because an ancestor or an entity upon which this 
entity depends is already in the shutting down state.

When this operation is applied to an entity (HE or EE) with a readiness state of out-of-
service, the PLM Service sets the administrative state of the entity immediately to 
locked. No further processing is required.

When this operation is applied to an entity with a readiness state of in-service or stop-
ping, the administrative state is set to shutting down and the readiness state to stop-
ping, if not already set. If the readiness state is changed, the PLM Service propagates 
that change through entities that are dependent on the one being shut down and 
invokes track callbacks in the COMPLETED step for all entity groups that contain 
entities whose readiness state changed from in-service to stopping.

After this initial state change, the PLM Service invokes track callbacks in the START 
step for all entity groups that contain entities whose readiness state will change to 
out-of-service when this shutdown is complete. PLM then waits for the processes 
receiving those callbacks to respond with the saPlmReadinessTrackResponse() 
function.

This waiting period ends when one of the following conditions is met:

• responses are received for all callbacks,
• the readiness state of the target entity has changed to out-of-service due to other 

changes in the system, or
• the SHUTDOWN operation is canceled by a subsequent UNLOCK administra-

tive operation.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.3 123



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
At this point, if the SHUTDOWN operation was canceled, no further processing is 
required; otherwise, the administrative state is changed to locked, and the readiness 
state is changed to out-of-service, if required. If the readiness state was changed as a 
result of the administrative state changing to locked, then that readiness state change 
is propagated through entities that are dependent on the one being shut down, and 
track callbacks in the COMPLETED step are invoked for all entity groups that contain 
entities whose readiness state changed to out-of-service.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in shutting-down state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is in the locked or locked-instantiation administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_UNLOCK, SA_PLM_ADMIN_LOCK
124 SAI-AIS-PLM-A.01.02 Section 5.4.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION

Parameters

operationId = SA_PLM_ADMIN_LOCK_INSTANTIATION, as defined in 
Section 5.2.1.

objectName - [in] A pointer to the name of the EE logical entity to be set in the 
locked-instantiation administrative state. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation sets the administrative state of the EE 
logical entity designated by the name to which objectName points to locked-instanti-
ation, provided that the EE was in the locked administrative state.

The effect of this operation can only be reversed by issuing an 
SA_PLM_ADMIN_UNLOCK_INSTANTIATION operation on the entity.

The operation can be issued on EEs only. If this operation is issued on an HE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

This administrative operation can be issued on any EE, even if it has a presence 
state of SA_PLM_EE_PRESENCE_UNINSTANTIATED (for instance, because its par-
ent is locked).

If this operation is invoked by a client on a logical entity that is already in the locked-
instantiation state, the status of such an entity does not change, that is, the entity 
remains in that state, and a benign error value SA_AIS_ERR_NO_OP is returned to 
the client to convey that the state of the concerned entity in question did not change.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change, 
that is, the entity remains in the respective state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.4 125



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity and it remains in the current state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_LOCK, SA_PLM_ADMIN_UNLOCK_INSTANTIATION
126 SAI-AIS-PLM-A.01.02 Section 5.4.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.5 SA_PLM_ADMIN_UNLOCK_INSTANTIATION

Parameters

operationId = SA_PLM_ADMIN_UNLOCK_INSTANTIATION, as defined in 
Section 5.2.1.

objectName - [in] A pointer to the name of the EE logical entity to be unlocked for 
instantiation. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation sets the administrative state of the EE 
logical entity designated by the name to which objectName points to locked.

If the current administrative state of the target entity is 
SA_PLM_ADMIN_LOCKED_INSTANTIATION, the invocation of this operation 
changes the administrative state to SA_PLM_ADMIN_LOCKED. If the entity has an 
operational state of enabled, and the readiness states of all ancestors and of all other 
required dependency objects are in-service, the presence state of the target entity is 
changed to instantiating, and PLM takes actions to cause the EE to start up. Because 
the administrative state is locked, the readiness state of the target entity remains out-
of-service, and the presence states of contained and dependent EEs remain unin-
stantiated.

The operation can be issued on EEs only. If this operation is issued on an HE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

This operation is only valid for an EE entity that is currently in the locked-instantiation 
administrative state.

If this operation is invoked by a client on a logical entity that is already locked, the sta-
tus of such an entity does not change, that is, it remains in the locked state, and a 
benign error value SA_AIS_ERR_NO_OP is returned to the client to convey that the 
entity (designated by the name to which objectName points) is already in locked 
state.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change, 
that is, the entity remains in the respective state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.5 127



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in locked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_LOCK, SA_PLM_ADMIN_LOCK_INSTANTIATION
128 SAI-AIS-PLM-A.01.02 Section 5.4.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.6 SA_PLM_ADMIN_RESTART

Parameters

operationId = SA_PLM_ADMIN_RESTART, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the EE logical entity to be restarted. The 
name is expressed as a LDAP DN.

params - [in] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor is shown next, and its format is specified in [5].

SaStringT operationOption;

operationOption = SA_PLM_ADMIN_RESTART_OPTION_ABRUPT;

params[0]->paramName = SA_PLM_ADMIN_RESTART_OPTION;

params[0]->paramType = SA_IMM_ATTR_SASTRINGT;

params[0]->paramBuffer = &operationOption;

This parameter descriptor specifies the kind of restart operation to be carried out on 
the object referred to by objectName.
The SA_PLM_RESTART_OPTION parameter is an optional parameter. If it is not spec-
ified, that is, the NULL-terminated array of pointers has NULL in the first element, this 
administrative function will execute the default (graceful) restart.
The types SA_PLM_ADMIN_RESTART_OPTION and 
SA_PLM_ADMIN_RESTART_OPTION_ABRUPT are defined in Section 5.2.3.

Description

The invocation of this administrative operation involves the termination and immedi-
ate re-instantiation of the target EE. This operation is intended to be used as a repair 
action for the service running on the EE. The processing depends on whether the 
SA_PLM_RESTART_OPTION parameter is specified:

⇒ SA_PLM_ADMIN_RESTART_OPTION_ABRUPT is specified:

If SA_PLM_ADMIN_RESTART_OPTION_ABRUPT is specified for an EE, the PLM 
Service uses a specific operation of the parent entity to abruptly terminate and 
reboot the target EE.
The execution of the operation depends on the capabilities of the parent: If the 
target EE's parent is an HE, the PLM Service typically uses an HPI operation to 
reset the HE. If the parent is a virtualization monitor, the PLM Service uses the 
implementation-specific operation of the virtualization monitor to reboot the tar-
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.6 129



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
get EE. This operation should be carried out such that none of the siblings of the 
target EE are affected. After initiating the restart operation, the PLM Service sets 
the target EE's presence state to instantiating and its readiness state to out-of-
service. Additionally, the presence states in dependent EEs are set to uninstanti-
ated and their readiness states to out-of-service. The PLM Service then invokes 
the saPlmReadinessTrackCallback() callback of all processes that 
requested this callback for the target EE or dependent EEs that change readi-
ness state. The callback is invoked with the step parameter set to 
SA_PLM_CHANGE_COMPLETED and cause set to 
SA_PLM_CAUSE_EE_RESTART.

⇒ No parameter is specified:

If no parameter is specified, the PLM Service executes a graceful termination 
and a reboot of the target EE. As opposed to the abrupt restart operation, which 
uses an operation on the parent entity to force the restart, a graceful termination 
of an EE is initiated by using an appropriate operation on the target entity itself. 
That is, the PLM Service instructs the target EE to reboot itself.

As a result of rebooting the target EE, dependent EE entities will necessarily be 
terminated. Before initiating the reboot operation, the PLM Service sets the pres-
ence state of the target EE to terminating and keeps this state until all dependent 
entities are terminated. As each dependent EE terminates, the PLM Service sets 
the presence state of the dependent EE to uninstantiated and its readiness state 
to out-of-service. When the target EE begins to reboot, the PLM Service sets the 
target EE’s presence state to instantiating and its readiness state to
out-of-service.

It is implementation-specific how these termination and reboot operations are 
initiated and coordinated. As the readiness state of any affected EE changes, 
the PLM Service invokes the saPlmReadinessTrackCallback() callback of 
all processes that requested this callback for the appropriate EE. The callback is 
invoked with the step parameter set to SA_PLM_CHANGE_COMPLETED and 
cause set to SA_PLM_CAUSE_EE_RESTART.

For both abrupt and graceful restarts, when the start-up of the target EE is completed, 
its presence state becomes instantiated. If there is not some other reason for it to 
remain out-of-service, its readiness state is changed to in-service, and the PLM Ser-
vice invokes the saPlmReadinessTrackCallback() callback of all processes 
that requested this callback for the target EE. The callback is invoked with the step 
parameter set to SA_PLM_CHANGE_COMPLETED and cause set to 
SA_PLM_CAUSE_EE_INSTANTIATED.
130 SAI-AIS-PLM-A.01.02 Section 5.4.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
Subsequently, the PLM Service also ensures that all dependent entities are instanti-
ated, as required. When each dependent entity reaches the instantiated presence 
state, its readiness state becomes in-service, unless there is some other reason 
causing it to remain out-of-service. If the readiness state of a dependent EE changes, 
the PLM Service invokes the saPlmReadinessTrackCallback() callback of all 
processes that requested this callback for the EE being set in-service. The callback is 
invoked with the step parameter set to SA_PLM_CHANGE_COMPLETED and cause 
set to SA_PLM_CAUSE_EE_INSTANTIATED.

After the target EE and all dependent EEs that are to be instantiated reach a pres-
ence state of instantiated, the operation returns with SA_AIS_OK. If at least one EE 
was unable to start up within the configured time (specified by the 
saPlmEEInstantiateTimeout attribute of the SaPlmEE object class, shown in 
FIGURE 7 on page 111), the operation returns with 
SA_AIS_ERR_FAILED_OPERATION.

This administrative operation is applicable only to those entities whose presence 
state is instantiated. 

This operation can be issued on EEs only. If this operation is issued on an HE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation. This error code is also returned when the 
PLM Service was unable to initiate the restart operation because the management-
lost readiness flag is set for the entity.

SA_AIS_ERR_INVALID_PARAM - The SA_PLM_ADMIN_RESTART_OPTION parame-
ter is not set correctly.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.6 131



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_OPERATION - The target logical entity for this operation identified 
by the name to which objectName points could not be restarted for various reasons 
like the presence state of the entity to be restarted being other than instantiated.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_FAILED_OPERATION - The requested operation was accepted and 
applied to the object; however, not all affected EEs were successfully restarted.

See Also

None
132 SAI-AIS-PLM-A.01.02 Section 5.4.6 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.7 SA_PLM_ADMIN_DEACTIVATE

Parameters

operationId = SA_PLM_ADMIN_DEACTIVATE, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the HE logical entity whose administra-
tive state is to be transitioned to locked-inactive. The name is expressed as a LDAP 
DN.

Description

The invocation of this administrative operation sets the administrative state of the HE 
logical entity designated by the name to which objectName points to locked-inac-
tive, provided that the logical entity’s administrative state was locked.
When setting the administrative state of an HE to locked-inactive, the PLM Service 
will initiate the required actions to deactivate the hardware entity mapped to that HE, 
if its presence state is not already inactive or not present.

The operation can be issued on HEs only. If this operation is issued on an EE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

The effect of this operation on a logical entity can be reversed only by issuing an 
SA_PLM_ADMIN_ACTIVATE operation on the logical entity.

This administrative operation can be issued on any HE logical entity, even if its pres-
ence state is set to not present.

If this operation is invoked by a client on a logical entity that is already in the locked-
inactive state, the status of such an entity does not change, that is, the entity remains 
in that state, and a benign error value SA_AIS_ERR_NO_OP is returned to the client 
to convey that the state of the concerned entity in question did not change.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change, 
that is, the entity remains in the respective state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.7 133



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity and it remains in the current state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_LOCK, SA_PLM_ADMIN_ACTIVATE
134 SAI-AIS-PLM-A.01.02 Section 5.4.7 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.8 SA_PLM_ADMIN_ACTIVATE

Parameters

operationId = SA_PLM_ADMIN_ACTIVATE, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the HE logical entity whose administra-
tive state is to be transitioned to locked. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation transitions the administrative state of 
the HE logical entity designated by the name to which objectName points to locked.

This administrative operation is only valid when the current administrative state of the 
target entity is locked-inactive. When this operation is processed, the administrative 
state of the target entity is set to locked, and the PLM Service takes any required 
actions to begin activation of a hardware entity mapped to the addressed HE entity, 
as well as contained entities, provided they do not have an administrative state of 
locked-inactive. Generally, this will result in a change of the presence state of the 
affected entities to activating, and eventually to active. However, the readiness states 
will remain out-of-service, because the new administrative state of the target entity is 
locked.

The operation can be issued on HEs only. If this operation is issued on an EE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

This administrative operation can be issued on any HE logical entity, even if its pres-
ence state is set to SA_PLM_HE_PRESENCE_NOT_PRESENT.

If this operation is invoked by a client on a logical entity that is already locked, the sta-
tus of such an entity does not change, that is, it remains in the locked state, and a 
benign error value SA_AIS_ERR_NO_OP is returned to the client to convey that the 
entity (designated by the name to which objectName points) is already in locked 
state.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change, 
that is, the entity remains in the respective state, and the caller is returned an 
SA_AIS_ERR_BAD_OPERATION error value.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.8 135



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in locked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

SA_PLM_ADMIN_LOCK, SA_PLM_ADMIN_DEACTIVATE
136 SAI-AIS-PLM-A.01.02 Section 5.4.8 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.9 SA_PLM_ADMIN_RESET

Parameters

operationId = SA_PLM_ADMIN_RESET, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the HE logical entity to be reset. The 
name is expressed as a LDAP DN.

Description

The invocation of this administrative operation is intended to be used to bring a failed 
entity back to a known state.

The PLM Service typically uses the saHpiResourceResetStateSet() HPI func-
tion to perform a reset on the target entity. The operation also results in dependent 
EEs becoming uninstantiated and subsequently re-instantiated. If the target entity 
can be activated, and all dependent EEs are successfully instantiated, the success of 
the administrative operation is signalized with SA_AIS_OK.

When the reset is initiated, the PLM Service sets the presence state of the target HE 
to inactive and its readiness state to out-of-service. Additionally, the presence state of 
dependent entities become inactive or uninstantiated, and their readiness states 
become out-of- service. The PLM Service invokes the 
saPlmReadinessTrackCallback() callback function of all processes that 
requested this callback for any of the entities that changed readiness state. The call-
back is invoked with the step parameter set to SA_PLM_CHANGE_COMPLETED and 
cause set to SA_PLM_CAUSE_HE_RESET.

When the target entity has restarted, the PLM Service sets its presence state to 
active and its readiness state to in-service, if there is no other reason to have it out-of-
service. Additionally, the presence states and readiness states of dependent HE enti-
ties are changed to active and in-service, as appropriate. The PLM Service invokes 
again the saPlmReadinessTrackCallback() callback function of all processes 
that requested this callback for any of the entities that changed readiness state to in-
service. The callback is invoked with the step parameter set to 
SA_PLM_CHANGE_COMPLETED and cause set to SA_PLM_CAUSE_HE_ACTIVATED.
Subsequently, the PLM Service also ensures that dependent EE entities are instanti-
ated, as required. When each dependent EE reaches the instantiated presence state, 
its readiness state becomes in-service, unless there is some other reason causing it 
to remain out-of-service. If the readiness state changes, the PLM Service invokes the 
saPlmReadinessTrackCallback() callback function of all processes that 
requested this callback for the EE being set in-service. The callback is invoked with 
the step parameter set to SA_PLM_CHANGE_COMPLETED, cause set to 
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.9 137



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_PLM_CAUSE_HE_ACTIVATED, and with rootCauseEntity identifying the tar-
get HE that was reset.

This administrative operation is applicable only to those entities whose presence 
state is active; otherwise, SA_AIS_ERR_BAD_OPERATION is returned.

This operation can be issued on HEs only. If this operation is issued on an EE, it is 
rejected with the SA_AIS_ERR_NOT_SUPPORTED error code.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation. This error code is also returned when the 
PLM Service was unable to initiate the reset operation due to circumstances for 
which the management-lost readiness flag was set for the entity.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_BAD_OPERATION - The target logical entity for this operation identified 
by the name to which objectName points could not be reset for various reasons like 
the presence state of the entity to be reset being inactive.

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

See Also

None
138 SAI-AIS-PLM-A.01.02 Section 5.4.9 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.10 SA_PLM_ADMIN_REPAIRED

Parameters

operationId = SA_PLM_ADMIN_REPAIRED, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the logical entity (EE or HE) to be 
repaired. The name is expressed as a LDAP DN.

Description

This administrative operation is used to clear the disabled operational state of a PLM 
entity (HE or EE), after it has been successfully mended to declare it as repaired. The 
administrator uses this command to indicate that the PLM Service should try to take 
the entity back to service.

This operation can be used, for instance, to reverse the effect of the call of the func-
tion saPlmEntityReadinessImpact() by an application to report a failure condi-
tion.

If the PLM Service does not detect a pending fault condition, it sets the operational 
state of the entity to enabled and clears the isolate-pending and the imminent-failure 
readiness flags. The administrative operation than returns with SA_AIS_OK.

If all other preconditions are met, the PLM Service brings the entity in-service and ini-
tiates the appropriate actions. The PLM Service invokes the 
saPlmReadinessTrackCallback() callback function of all processes that 
requested this callback with the step parameter set to 
SA_PLM_CHANGE_COMPLETED and cause set to 
SA_PLM_CAUSE_FAILURE_CLEARED.
If PLM still detects a pending fault condition, it returns 
SA_AIS_ERR_BAD_OPERATION.

This administrative operation can be issued on any configured entity, even if the 
entity is inactive.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.10 139



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already enabled.

SA_AIS_ERR_BAD_OPERATION - The invocation of this administrative operation was 
unsuccessful because there is still an error condition. The operational state could not 
be set to enabled.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

None
140 SAI-AIS-PLM-A.01.02 Section 5.4.10 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administration API
5.4.11 SA_PLM_ADMIN_REMOVED

Parameters

operationId = SA_PLM_ADMIN_REMOVED, as defined in Section 5.2.1.

objectName - [in] A pointer to the name of the logical entity (HE or EE) that has 
been removed. The name is expressed as a LDAP DN.

Description

This administrative operation is used when an entity has been removed from the sys-
tem, while the PLM Service has no management capabilities to detect the removal. It 
is applicable only to those logical entities (HE or EE) for which the management-lost 
readiness flag is set.

This operation will set the HE identified by the name to which objectName points 
and its child HEs to out-of-service, not-present and all its child-EEs to out-of-service, 
uninstantiated.
The operation issued on an EE identified by the name to which objectName points 
will set the EE and all its child-EEs to out-of-service, uninstantiated. Readiness flags 
of all affected entities are cleared. Users of the track interface are called as appropri-
ate.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the 
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client 
may retry later. This error generally should be returned when the requested action is 
valid but not currently possible, probably because another operation is acting upon 
the logical entity on which the administrative operation is invoked. Such an operation 
can be another administrative operation.

SA_AIS_ERR_NO_MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative operation is not supported by 
the type of entity denoted by the name to which objectName points.

SA_AIS_ERR_BAD_OPERATION - The management-lost readiness flag is not set for 
the target logical entity that is identified by the name to which objectName points.
AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.11 141



Service AvailabilityTM Application Interface Specification
Administration API

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect 
on the current state of the logical entity, as it is already in not-present or uninstanti-
ated state.

SA_AIS_ERR_DEPLOYMENT - The requested operation was accepted and applied at 
the information model level. However, its complete deployment in the running system 
may not be guaranteed at the moment because the management-lost readiness flag 
is set for the entity.

See Also

None
142 SAI-AIS-PLM-A.01.02 Section 5.4.11 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6   PLM Service Alarms and Notifications
The Platform Management Service produces alarms and notifications to convey 
important information regarding the operational and functional state of the objects 
under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require 
an operator intervention, and notifications which signify important state or object 
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service AvailabilityTM Forum (abbreviated as NTF, see [4]), and hence the 
various notifications are partitioned into categories, as described in this service.

In some cases, this specification uses the word “Unspecified” for values of attributes 
that the vendor is at liberty to set to whatever makes sense in the vendor’s context, 
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see 
[10]).

6.1 Setting Common Attributes
The following attributes of the notifications presented in Section 6.2 are not shown in 
their description, as the generic description presented here applies to all of them:

• Notification Id - Depending on the Notification Service function used to send the 
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

• Notifying Object - DN of the entity generating the notification. This name must 
conform to the SA Forum AIS naming convention and must contain at least the 
safApp RDN value portion of the DN set to the specified standard RDN value of 
the SA Forum AIS Service generating the notification, that is, safPlmService. 
For details on the AIS naming convention, refer to [2].

• Event Time - This attribute contains the time when the Platform Management 
Service detected the event leading to the notification.

• Correlated Notifications - Correlation ids are supplied to correlate notifications 
that have been generated because of a related cause. The correlated notifica-
tions attribute should include
• in the first position the root notification identifier of the related tree of notifica-

tions as described in the Notification Service specification (see [4]),
• in the second position the parent notification identifier of the same tree,
AIS Specification SAI-AIS-PLM-A.01.02 Chapter 6 143



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
• in the third position the notification identifier of the sibling notification, if any. 
This sibling notification is the opening pair of the current notification such as 
the alarm that is being cleared or the start of an administrative operation or a 
configuration change that has ended.

If any of these notifications is unknown, the SA_NTF_IDENTIFIER_UNUSED 
value must be used. This value may be omitted in trailing positions.

The following note applies to all notifications presented in Section 6.2:

• Notification Class Identifier - The vendorId field of the SaNtfClassIdT data 
structure must be set to SA_NTF_VENDOR_ID_SAF, and the majorId field must 
be set to SA_SVC_PLM (as defined in the SaServicesT enumeration in [2]) for 
all notifications that follow the standard formats described in this specification. 
The minorId field will vary based on the specific notification.

An implementation of the Platform Management Service may also produce noti-
fications with an implementation-specific format. In particular, HPI event notifica-
tions may use implementation-specific data formats. For these implementation-
specific notifications, the vendorId portion of the SaNtfClassIdT data struc-
ture must be set to a value that identifies the vendor defining the format. The val-
ues of majorId and minorId will vary as defined by the vendor.

The PLM Service should provide close-to-source notification suppression, as 
described in [4]. That is, the PLM Service should save the efforts necessary to con-
struct currently suppressed notifications.
144 SAI-AIS-PLM-A.01.02 Section 6.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2 Platform Management Service Notifications
The following sections describe a set of notifications that a PLM Service implementa-
tion shall produce.

6.2.1 Platform Management Service Alarms

6.2.1.1 Hardware Element Alarm

Description

By using its interface to HPI or by other implementation-specific means, the PLM Ser-
vice has detected that an alarm condition (for instance, a hardware fault) exists for a 
hardware entity modeled as a PLM hardware element (HE) object.

Clearing Method
(1) By exchanging faulty hardware, or taking other repair procedure or
(2) manual

• by taking an appropriate administrative action,
• by taking other appropriate action, or

(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-
tion with SA_NTF_SEVERITY_CLEARED perceived severity to convey that the 
PLM Service has detected that the alarm condition no longer exists. For 
instance, the PLM Service has detected that the faulty hardware entity ha been 
removed.
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2 145



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 3 Hardware Element Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_EQUIPMENT

Notification Object Mandatory LDAP DN of the HE object associated with the 
hardware entity

Notification Class Identifier NTF-Internal minorId = SA_PLM_NTFID_HE_ALARM

Additional Text Optional "Hardware element <LDAP DN of HE> alarm"

Additional Information Optional infoId = SA_PLM_AI_ENTITY_PATH
infoType = SA_NTF_VALUE_STRING
infoValue = HPI entity path, that is, the con-
tents of HE object’s 
saPlmHECurrEntityPath attribute

Probable Cause Mandatory Applicable value from enum 
SaNtfProbableCauseT in [4]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum 
SaNtfSeverityT in [4] 

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified 
146 SAI-AIS-PLM-A.01.02 Section 6.2.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2.1.2 Execution Environment Alarm

Description

By using implementation-specific means, the PLM Service has detected that an 
alarm condition (for instance, a fault condition) exists for an execution environment 
(EE) object.

Clearing Method
(1) By using a problem-specific repair procedure,
(2) manual,

• by taking an appropriate administrative action,
• by taking other appropriate action, or

(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-
tion with SA_NTF_SEVERITY_CLEARED perceived severity to convey that the 
PLM Service has detected that the alarm condition no longer exists. 
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.2 147



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 4 Execution Environment Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_ENVIRONMENT

Notification Object Mandatory LDAP DN of the EE object

Notification Class Identifier NTF-Internal minorId = SA_PLM_NTFID_EE_ALARM

Additional Text Optional "Execution environment <LDAP DN of EE> 
alarm"

Additional Information Optional Unspecified

Probable Cause Mandatory Applicable value from enum 
SaNtfProbableCauseT in [4]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum 
SaNtfSeverityT in [4] 

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified 
148 SAI-AIS-PLM-A.01.02 Section 6.2.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2.1.3 Hardware Element Security Alarm

Description

By using its interface to HPI or by other implementation-specific means, the PLM Ser-
vice has detected that a security alarm condition exists for a hardware entity modeled 
as a PLM hardware element (HE) object.

Clearing Method
(1) Manual, after taking the appropriate administrative action or
(2) issue a subsequent security alarm notification with 

SA_NTF_SEVERITY_CLEARED perceived severity to convey that the PLM Ser-
vice has detected that the security alarm condition no longer exists.
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.3 149



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 5 Hardware Element Security Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_PHYSICAL_VIOLATION

Notification Object Mandatory LDAP DN of the HE object associated with the 
hardware entity

Notification Class Identifier NTF-Internal minorId = SA_PLM_NTFID_HE_SEC_ALARM

Additional Text Optional "Hardware element <LDAP DN of HE> security 
alarm"

Additional Information Optional infoId = SA_PLM_AI_ENTITY_PATH
infoType = SA_NTF_VALUE_STRING
infoValue = HPI entity path, that is, the con-
tents of HE object’s 
saPlmHECurrEntityPath attribute.

Cause Mandatory Applicable value from enum 
SaNtfProbableCauseT in [4]

Severity Mandatory Applicable value from enum SaNtfSeverityT 
in [4] 

Detector Mandatory This field should uniquely indicate how the vio-
lation was detected. It can contain, for example, 
a string identifying an HPI sensor.

Service User Mandatory This field must represent the identity of the SA 
Forum Service user. When the identity of the 
user cannot be determined, the value 'Unidenti-
fied', represented as a string, must be used.

Service Provider Mandatory Typically, HPI detected the violation:
"safApp=safHpiService"
In other cases, PLM reports the detecting ser-
vice or:
"safApp=safPlmService".
150 SAI-AIS-PLM-A.01.02 Section 6.2.1.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2.1.4 Execution Environment Security Alarm

Description

By using implementation-specific means, the PLM Service has detected that a secu-
rity alarm condition exists for an operating environment modeled as a PLM execution 
environment (EE) object.

Clearing Method
(1) Manual, after taking the appropriate administrative action or
(2) issue a subsequent security alarm notification with 

SA_NTF_SEVERITY_CLEARED perceived severity to convey that the PLM Ser-
vice has detected that the security alarm condition no longer exists.
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.4 151



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 6 Execution Environment Security Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OPERATION_VIOLATION

Notification Object Mandatory LDAP DN of the EE object.

Notification Class 
Identifier

NTF-Internal minorId = SA_PLM_NTFID_EE_SEC_ALARM

Additional Text Optional "Execution environment <LDAP DN of EE> security 
alarm"

Additional Informa-
tion

Optional Unspecified

Cause Mandatory Applicable value from enum 
SaNtfProbableCauseT in [4]

Severity Mandatory Applicable value from enum SaNtfSeverityT in [4] 

Detector Optional This field should uniquely indicate how the violation 
was detected. It can contain, for example, a string 
identifying the program that detected the violation.

Service User Optional This field must represent the identity of the SA Forum 
Service user. When the identity of the user cannot be 
determined, the value 'Unidentified', represented as a 
string, must be used.

Service Provider Optional Typically, PLM detects the violation:
"safApp=safPlmService".
In other cases, PLM reports the DN of the detecting 
service.
152 SAI-AIS-PLM-A.01.02 Section 6.2.1.4 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2.1.5 Unmapped Hardware Entity Alarm

Description

The PLM Service, through its interface with HPI or other implementation-specific 
means, has discovered the presence of a hardware entity that is not mappable to any 
configured hardware element (HE).

It is possible that a group of HPI entities such as a computing blade plus contained 
components on that blade, are all mapped to a single HE. Therefore, it is not required 
for PLM to generate an “unmapped hardware entity” alarm for every discovered HPI 
entity path that does not map directly to an entity path in an HE. This notification 
should be issued only when a hardware entity is discovered that is not associated 
with any HE in the PLM configuration.

Similarly, when this notification is issued for a particular hardware entity, it is not 
required, nor recommended, that it be issued for all contained entities. For example, if 
a notification is issued reporting that a discovered computing blade is unmapped, it is 
not required to issue notifications reporting that individual components on that blade 
are also unmapped.

The probable cause and perceived severity attributes in the notification may be set to 
appropriate values determined by the PLM implementation. In most cases, it is 
expected that the probable cause will be 
SA_NTF_CONFIGURATION_OR_CUSTOMIZATION_ERROR and the perceived sever-
ity will be SA_NTF_SEVERITY_INDETERMINATE.

Clearing Method
(1) By removing hardware of a wrong types or by changing the configuration such 

that the hardware can be mapped, or
(2) manual, by taking other appropriate action, or
(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-

tion with SA_NTF_SEVERITY_CLEARED perceived severity to convey that the 
PLM Service has resolved the mapping issue. For example, the PLM Service 
detected that the unmapped hardware entity has been removed from the system 
or that a reconfiguration of HE objects has been made such that the hardware 
entity now can be mapped to an HE.
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.5 153



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 7 Unmapped Hardware Entity Alarm

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_ALARM_EQUIPMENT

Notification Object Mandatory LDAP DN of the nearest HE object that is a 
candidate parent of the unmapped entity, or if 
there is no candidate parent, the LDAP DN of 
the PLM Domain object. An HE object is a 
candidate parent if the 
saPlmHECurrEntityPath attribute of the 
HE object matches the tail of the entity path of 
the unmapped hardware entity.

Notification Class Identifier NTF-Internal minorId = 
SA_PLM_NTFID_UNMAPPED_HE_ALARM

Additional Text Optional "Unmapped hardware entity"

Additional Information Optional infoId = SA_PLM_AI_ENTITY_PATH
infoType = SA_NTF_VALUE_STRING
infoValue = HPI entity path for unmapped 
hardware entity

Probable Cause Mandatory Applicable value from enum 
SaNtfProbableCauseT in [4]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum 
SaNtfSeverityT in [4] 

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified 
154 SAI-AIS-PLM-A.01.02 Section 6.2.1.5 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
6.2.2 Platform Management Service State Change Notifications

6.2.2.1 PLM Entity State Change Notification

Description

The administrative, HA, operational, presence, or readiness state or flags of an HE or 
EE object has changed. If multiple states of an object change together, a single notifi-
cation including all associated state changes shall be generated for that object. For 
example, if the operational state for an HE object that has a readiness state of 
SA_PLM_READINESS_IN_SERVICE changes to 
SA_PLM_OPERATIONAL_DISABLED, the readiness state changes to 
SA_PLM_READINESS_OUT_OF_SERVICE as part of the same operation. These two 
state changes should be included in a single state change notification.

An object changes state either as the result of an administrative operation, a detected 
or reported status change, or as a result of a change in state of another PLM entity 
object, either an ancestor PLM entity or a PLM entity with a configured dependency 
relationship. A change of state of an object due to an ancestor or dependency object 
changing state is indicated in the notification with a specific notification class identifier 
(NCI) and with the inclusion of the LDAP name of the 'root' state change object in the 
additional information field. The 'root' state change object is not necessarily the direct 
parent or dependency PLM entity for the object changing state; it is the 'initial' PLM 
entity that changed state resulting in this state change, that is, the object that 
changed state for some reason other than the fact that an ancestor or a dependency 
object changed state.

Table 8 PLM Entity State Change Notification

NTF Attribute Name Mandatory/Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the PLM entity object whose 
state changed

Notification Class Iden-
tifier

NTF-Internal minorId = 
SA_PLM_NTFID_STATE_CHANGE_ROOT 
for root state change notification, or
minorId = 
SA_PLM_NTFID_STATE_CHANGE_DEP for 
child or dependent state change notification

Additional Text Optional Unspecified
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.2 155



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Additional Information Mandatory when 
NCI minorId = 
SA_PLM_NTFID_
STATE_CHANGE_DEP

infoId = SA_PLM_AI_ROOT_OBJECT
infoType = SA_NTF_VALUE_LDAP_NAME
infoValue = LDAP DN of root state 
change PLM entity object

Source Indicator Mandatory Applicable value from enum 
SaNtfSourceIndicatorT in [4]. When 
the state change is due to an ancestor or 
dependency object changing state, the 
Source Indicator is the same as the value in 
the notification generated for the root object 
for the state change.

numStateChanges 
field of 
SaNtfStateChange
NotificationT in [4]

Mandatory Number of state values that changed 
together in this object. For example, the 
value 2 is used if both the operational and 
the readiness states changed as the result 
of a failure.

changedStates array 
of SaNtfStateChange
NotificationT in [4]

Mandatory Array of SaNtfStateChangeT structures 
(see [4]) for each state in the object that 
has changed, each entry including the four 
next attributes

Changed State Attribute 
Identifier (stateId 
field of 
SaNtfStateChangeT)

Mandatory Applicable value from enum SaPlmStateT 
(see Section 3.3.15.3) to identify which 
state has changed

Table 8 PLM Entity State Change Notification (Continued)

NTF Attribute Name Mandatory/Optional Specified Value
156 SAI-AIS-PLM-A.01.02 Section 6.2.2.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
Old Attribute Value 
Present
(oldStatePresent 
field of 
SaNtfStateChangeT)

Mandatory Boolean value indicating whether or not the 
old attribute value is included in the 
SaNtfStateChangeT structure

Old Attribute Value
(oldState field of 
SaNtfStateChangeT)

Optional Applicable value from enum 
SaPlmHEAdminStateT (Section 3.3.2),
SaPlmEEAdminStateT (Section 3.3.3), 
SaPlmOperationalStateT 
(Section 3.3.4),
SaPlmHEPresenceStateT 
(Section 3.3.5),
SaPlmEEPresenceStateT 
(Section 3.3.6), SaPlmReadinessStateT 
(Section 3.3.7), or 
SaPlmReadinessFlagsT (Section 3.3.8), 
depending on the value of the stateId 
field. When reporting the value of readiness 
flags, all readiness flags which were origi-
nally set are included.

New Attribute Value
(newState field of 
SaNtfStateChangeT)

Mandatory Applicable value from enum 
SaPlmHEAdminStateT (Section 3.3.2),
SaPlmEEAdminStateT (Section 3.3.3), 
SaPlmOperationalStateT 
(Section 3.3.4),
SaPlmHEPresenceStateT 
(Section 3.3.5),
SaPlmEEPresenceStateT 
(Section 3.3.6), SaPlmReadinessStateT 
(Section 3.3.7), or
SaPlmReadinessFlagsT (Section 3.3.8), 
depending on the value of the stateId 
field. When reporting the value of readiness 
flags, all readiness flags which were origi-
nally set are included.

Table 8 PLM Entity State Change Notification (Continued)

NTF Attribute Name Mandatory/Optional Specified Value
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.2.1 157



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
6.2.3 HPI Events Notifications

In addition to the notifications described above, a PLM implementation may produce 
HPI event notifications for events received from HPI implementations. These notifica-
tions are intended to provide only an audit-trail of the detail of HPI events received by 
PLM, and should not be expected to be a replacement for any of the required notifica-
tions described in the previous sections.

For example, when a HPI Hot Swap event is received by a PLM implementation, an 
HPI event notification may be generated to record the reception of that event. How-
ever, the processing of that event will normally result in the associated PLM HE 
object changing its hot swap state. A byproduct of this state change is the generation 
of a state change notification. This state change notification is the "primary" notifica-
tion that other processes should use to track hot swap activity. Similarly, processes 
wanting to be informed of hardware alarm conditions should receive PLM alarm noti-
fications rather than HPI event notifications for sensor changes.

HPI event notifications are formatted as described next.
158 SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
Event Type

The event type parameter in HPI event notifications is derived from the HPI event 
type in the received event. HPI event types are mapped to notification event types, so 
that various subsets of HPI event notifications may be identified for filtering or sup-
pression. HPI event types are mapped to notification event types as defined in
Table 10.

Table 9 HPI Event Notification

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory Defined below

Notification Object Mandatory LDAP DN for HPI implementation. See 
below for more details.

Notification Class Identifier NTF-Internal If using a standard data format:
vendorId = SA_NTF_VENDOR_ID_SAF
majorId = SA_SVC_PLM
minorId = applicable value defined below 
for data format.

If using an implementation-specific data for-
mat:
vendorId = <identifier for vendor defining 
data format>
majorId = <defined by vendor>
minorId = <defined by vendor>. 

Additional Text Optional Unspecified

Additional Information Mandatory + 
Optional

Two to four fields, as defined below, for 
domain Id, event data, RDR data, and RPT 
data, formatted as identified via NCI
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.3 159



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
Table 10 Mapping HPI Event Type to Notification Event Type

Notification Object

The notification object parameter in HPI event notifications identifies the HPI imple-
mentation that generated the event. That is, the LDAP DN will be: 

"safApp=safHpiService[:<varAppName>]"

The optional ":<varAppName>" string can be used to distinguish between multiple 
instances of HPI implementations.

Notification Class Identifier

The notification class identifier parameter in HPI event notifications defines the format 
of the HPI event and related data included in the additional information field. Three 
formats are defined, any of these may be used. These formats are identified by use of 
the appropriate notification class identifier defined below. Other formats may be 
defined by specific implementations. When an implementation-specific format is 
used, the notification class identifier should include an appropriate vendorId for the 
implementation.

HPI Event Type Notification Event Type

SAHPI_ET_RESOURCE
SAHPI_ET_HOTSWAP

SA_NTF_HPI_EVENT_RESOURCE

SAHPI_ET_SENSOR
SAHPI_ET_SENSOR_ENABLE_CHANGE

SA_NTF_HPI_EVENT_SENSOR

SAHPI_ET_WATCHDOG SA_NTF_HPI_EVENT_WATCHDOG

SAHPI_ET_DIMI SA_NTF_HPI_EVENT_DIMI

SAHPI_ET_FUMI SA_NTF_HPI_EVENT_FUMI

All Other HPI Event Types SA_NTF_HPI_EVENT_OTHER
160 SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
Additional Information

The additional information parameter in HPI event notifications is used to hold the 
data received from HPI for the event.
Two mandatory data fields and two optional data fields may be included as additional 
information.

One mandatory additional information field holds the domain Id of the domain from 
which the event was received. This is the domain with which the HPI session that 
retrieved the event was opened. If the session was opened using 
SAHPI_UNSPECIFIED_DOMAIN_ID, the actual domain Id of the domain accessed 
by the session must be retrieved by calling saHpiDomainInfoGet(). For more 
details, see [3]. The domain Id additional information field is defined with an 
SaNtfAdditionalInfoT structure with:

infoType = SA_NTF_VALUE_UINT32

infoId = SA_PLM_AI_HPI_DOMAIN_ID

The other mandatory additional information field holds the data returned in the 
SaHpiEventT structure passed to the saHpiEventGet() function, and the two 
optional additional information fields hold the data returned in the optional 
SaHpiRdrT and SaHpiRptEntryT structures passed to the saHpiEventGet() 
function. Each of these fields is defined with an SaNtfAddtionalInfoT structure 
with:

infoType = SA_NTF_VALUE_BINARY

infoId = SA_PLM_AI_HPI_EVENT_DATA, 

 SA_PLM_AI_HPI_RDR_DATA, or

SA_PLM_AI_HPI_RPT_DATA 

The format of the binary data block in each of these three fields is defined by the noti-
fication class identifier. Three preferred formats are defined by this specification. An 
implementation-specific format may be used with an appropriate notification class 
identifier defined by the implementation.

It is expected that the data structures returned by HPI in most implementations will 
follow one of the first two formats described below. If this is the case, the implementa-
tion may copy the HPI data structure directly into the additional data field and use the 
appropriate notification class identifier. If the data in the HPI structures does not fol-
low one of these formats, the implementation may define an implementation-specific 
notification class identifier to describe the format for the data, or it may translate the 
data into one of the three standard formats.
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.3 161



Service AvailabilityTM Application Interface Specification
Alarms and Notifications

1

5

10

15

20

25

30

35

40
The standard formats are:

Normal Binary, MSB First
Notification Class Identifier:

vendorId = SA_NTF_VENDOR_ID_SAF

majorId = SA_SVC_PLM

minorId = SA_PLM_NTFID_HPI_NORMAL_MSB

Data is binary, and the fields are ordered as listed in the HPI structure definition in 
SaHpi.h. Each field takes the number of bytes recommended in that header, pre-
ceded by pad bytes as required to achieve the recommended alignment. That is, 

• SaHpiUint8T and SaHpiInt8T types use 1 byte and have 1-byte alignment.
• SaHpiUint16T and SaHpiInt16T types use 2 bytes and have 2-byte align-

ment.
• SaHpiUint32T and SaHpiInt32T types use 4 bytes and have 4-byte align-

ment.
• SaHpiUint64T and SaHpiInt64T types use 8 bytes and have 8-byte align-

ment.
• SaHpiFloat64T types use 8 bytes and have 8-byte alignment.
• enum types use 4 bytes and have 4-byte alignment.

Floating point fields are represented as IEEE 754 double-precision values with high-
order sign bit, followed by 11 bits of exponent, and 52 bit mantissa.

All multi-byte fields are stored most-significant-byte first (that is, big-endian).

Structures and unions are preceded by pad bytes to achieve the same alignment 
required for their most restrictive (that is, largest) element. Each structure or union is 
followed by pad bytes as required such that the total length of the structure or union is 
a multiple of its required alignment.
162 SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Alarms and Notifications
Normal Binary, LSB First
Notification Class Identifier:

vendorId = SA_NTF_VENDOR_ID_SAF

majorId = SA_SVC_PLM

minorId = SA_PLM_NTFID_HPI_NORMAL_LSB

Data format is the same as in the previous description, except all multi-byte fields are 
stored least-significant-byte first (that is, little-endian).

XDR
Notification Class Identifier:

vendorId = SA_NTF_VENDOR_ID_SAF

majorId = SA_SVC_PLM

minorId = SA_PLM_NTFID_HPI_XDR

Data format is based on XDR (see [14]).
AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.3 163





1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Appendices
Appendix A   Mapping of PLM State Model to CCITT X.731
If a system needs to provide state management as defined in CCITT Recommenda-
tion X.731 (see [11]) to the outside world, the PLM state model can be mapped as fol-
lows:

⇒ Administrative state
The values locked, unlocked, and shutting-down map directly on X.731.
Locked-inactive of hardware elements should be shown as locked plus availabil-
ity status power-off.
Locked-instantiation of execution environments in X.731 should be shown as 
locked plus the availability status being not-installed.

⇒ Readiness state can be mapped to the X.731 operational state:
• Ιn-service => enabled
• Out-of-service => disabled
• There is a semantic difference between out-of-service and disabled: An 

administrative LOCK operation affects the readiness state, but not the X.731 
operational state. If an object in PLM is locked/out-of-service/enabled, and the 
readiness flag dependency is not set, the X.731 should show this as locked/
enabled. If the dependency flag is set, or the PLM operational state is dis-
abled, X.731 should show locked/disabled.

• Stopping cannot be directly mapped to X.731; it could be shown through the 
procedural status terminating.

⇒ Operational state of the SA Forum maps on a flag in X.731 availability status:
• Disabled => Failed is set
• Enabled => Failed is not set

⇒ Presence State for HEs should be shown in X.731 availability status, procedural 
status, and lifecycle status (see [12]):
• not-present => life cycle status planned and availability status not-installed
• inactive => life cycle status installed, availability status power-off, and proce-

dural status not-initialized
• activating => life cycle status installed and procedural status initializing
• active => life cycle status installed and procedural status empty
• deactivating => life cycle status installed and procedural status terminating
AIS Specification SAI-AIS-PLM-A.01.02 Appendix A 165



Service AvailabilityTM Application Interface Specification
Appendices

1

5

10

15

20

25

30

35

40
⇒ Presence State for EEs maps similarly on flags in X.731 availability status or 
procedural status and lifecycle status:
• instantiated => life cycle status installed
• uninstantiated => life cycle status planned and availability status not-installed
• terminating => procedural status terminating
• instantiating => procedural status initializing
• instantiation-failed => procedural status initializing and availability status failed
• termination-failed => procedural status terminating and availability status failed

⇒ Readiness Flags
• management-lost => unknown status attribute
• dependency => availability status dependency
• admin-operation-pending, isolate-pending, imminent-failure and dependency-

imminent-failure cannot be shown in X.731
166 SAI-AIS-PLM-A.01.02 Appendix A AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
Appendix B   Basic Operational Scenarios
The following basic operational scenarios explain in principle the necessary actions. 
These basic operational scenarios do not mandate a certain sequence of actions or 
specific function calls. They are only examples of how an implementation could 
behave, and they intend only to explain the main principles.

B.1  Extraction of a Computing Blade
There are many different use cases for hardware extraction, depending on the type of 
hardware and the way it is extracted. The scenarios presented here show the typical 
extraction of a computing blade. They illustrate the interworking of the PLM Service 
with HPI and other AIS Services. The provided sequences are just examples of how 
an implementation could behave. For simplification, no other dependencies are 
assumed.

The first scenario applies when the blade supports the managed hot swap model. In 
the second scenario, the hardware supports the unmanaged hot swap model. In the 
latter case, the hardware does not allow graceful termination of all services on the 
blade, since it cannot remain in the extraction-pending state.

B.1.1  Extraction of a Computing Blade with Managed Hot Swap

As typical for bladed architectures, extraction is done in two steps: the operator 
opens some latches, HPI recognizes this extraction request and sends events. The 
PLM Service has subscribed with HPI and starts all necessary actions for a graceful 
deactivation. When the deactivation is completed, LEDs are switched to indicate a 
successful deactivation to the operator. When the operator now physically removes 
the blade from the chassis, again appropriate actions are triggered in the system.

The blade in this example supports the managed hot swap model and is modeled as 
an HE. It runs one single operating system, modeled as an EE, on which a CLM node 
is running. Some applications controlled by the Availability Management Framework 
run on the AMF node that is mapped to this CLM node. In the beginning of the 
sequence, all entities are in-service; no entities are administratively locked.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B 167



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
The sequence of actions in this scenario is described next. For the reader’s conve-
nience, the steps shown in Section 3.1.3.1.1 in the description of the deactivating 
presence state (graceful case, on page 30) are reproduced here in a shortened way. 
To each of these steps (represented by numbers enclosed in curly brackets), the cor-
responding actions in the scenario (represented by numbers enclosed in parenthe-
ses) are given.

{1} PLM sets the presence state of the HE to deactivating. 
See steps (1) through (7).

{2} PLM checks the readiness state of the HE being deactivated and all depen-
dent PLM entities.
See step (8).

{3a} If the deactivation policy is SA_PLM_DP_REJECT_NOT_OOS, the deactiva-
tion is rejected.
See step (9).

{3b} If the deactivation policy is SA_PLM_DP_VALIDATE, track callbacks are 
invoked for the SA_PLM_CHANGE_VALIDATE step.
See steps (9) through (15).
A sequence diagram for these first steps is in FIGURE 11.

{3c} If the deactivation policy is SA_PLM_DP_UNCONDITIONAL, or after all pro-
cesses receiving VALIDATE callbacks accept the deactivation, track call-
backs are invoked for the SA_PLM_CHANGE_START step.
See steps (16) through (27) and FIGURE 12.

{4} PLM initiates the necessary actions using HPI interfaces to actually deacti-
vate the hardware.
See step (28).

{5} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked 
for the SA_PLM_CHANGE_COMPLETED step.
See steps (29) through (33).

A sequence diagram for these steps is in FIGURE 13.

Additionally to the deactivation steps, the sequence shows:

{6} The operator actually extracts the blade
See steps (34) through (42) and FIGURE 14
168 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
(1) Operator opens latches.
(2) Detection by HPI, PLM receives HPI hot swap-event.

To do this, PLM must have an open session to the domain, managing the entity, 
and be subscribed for the events.
The HPI event for this case is:

EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_EXTRACTION_PENDING
PreviousHotSwapState= SAHPI_HS_STATE_ACTIVE
CauseOfStateChange = SAHPI_HS_CAUSE_OPERATOR_INIT

(3) PLM generates a notification for the HPI event. The notification id is used as root 
correlation id in all further notifications.

(4) PLM maps HPI event to HE in the IMMS object model.
HPI entity path is included in HE attributes, search is possible by following the 
containment.

(5) PLM calls saHpiHotSwapPolicyCancel() to stop HPI from taking automatic 
actions.
Note that PLM will not call this function if the event does not map to a PLM man-
aged object. In such a case, HPI would act according to its policies.

(6) PLM changes the presence state of the HE of the blade to 
SA_PLM_HE_PRESENCE_DEACTIVATING.

(7) PLM generates a state change notification for the blade HE presence state 
changing to SA_PLM_HE_PRESENCE_DEACTIVATING.

(8) PLM checks containment of the affected HE and dependencies. PLM generates 
a list of all PLM objects (HEs and EEs) that need to terminate their services.
In this example, only the blade HE and the EE are affected.

(9) PLM checks the configured deactivation policy.
• If this attribute is SA_PLM_DP_REJECT_NOT_OOS, and there are entities 

that are not out-of-service, the extraction processing is stopped.
• If this attribute is SA_PLM_DP_UNCONDITIONAL, steps (10) to (15) are 

skipped.
The following sequence shows the case of SA_PLM_DP_VALIDATE.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 169



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
(10) PLM starts to inform subscribed users for the track callbacks:
PLM calls for every subscriber of an affected HE or EE:
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_HE_DEACTIVATION,
DN_extracted_blade,
rootCorrelationId,
List_affected_objects,
SA_PLM_CHANGE_VALIDATE,
return_value);

CLM should be subscribed for track callbacks on all EEs on which CLM nodes 
run. So in this example, CLM is called for the affected EE and will now evaluate 
whether it is safe to terminate that CLM node.
Other services may be subscribed on EEs or HEs additionally and can take 
separate validation actions.

(11) In this example, a CLM node in the membership is affected. CLM invokes simi-
larly the saClmClusterTrackCallback_4() callbacks of its consumers in the 
validate step to evaluate the extraction request.
The Availability Management Framework should be subscribed for CLM track 
callbacks. So the Availability Management Framework will now evaluate 
whether all active HA assignments can be moved to other nodes, that is, to 
nodes not affected by the list of affected objects.

(12) The Availability Management Framework checks the redundancy configura-
tion. If it detects that active HA assignments cannot be moved to redundant 
entities on other nodes, it will reject the extraction by responding to CLM with 
SA_CLM_CALLBACK_RESPONSE_REJECTED.

(13) The Availability Management Framework calls saClmResponse_4() and 
returns SA_CLM_CALLBACK_RESPONSE_OK to CLM to indicate that it is safe to 
extract the entity.

(14) CLM calls saPlmReadinessTrackResponse() and returns 
SA_PLM_CALLBACK_RESPONSE_OK to PLM to indicate that it is safe to extract 
the entity.

(15) After PLM receives a positive response from all track callbacks for all affected 
objects, PLM decides to allow the extraction.

(16) PLM changes the presence state of the affected EE to 
SA_PLM_EE_PRESENCE_TERMINATING.
170 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
(17) PLM now requests all subscribed users to terminate their services, that is, PLM 
calls for every subscriber of an affected HE or EE:
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_HE_DEACTIVATION,
DN_extracted_blade,
rootCorrelationId,
List_affected_objects,
SA_PLM_CHANGE_START,
return_value);

CLM should be subscribed for the EE and will now evict the affected node.
Other services that are subscribed can take separate actions.

(18) CLM invokes the saClmClusterTrackCallback_4() callbacks of its consum-
ers in the start step, and passes all needed information in the call.

(19) The Availability Management Framework should be subscribed for CLM track 
callbacks as above. So if an AMF node has running services, and the corre-
sponding CLM node terminates, the Availability Management Framework will 
now change HA assignments according to its redundancy configuration.

(20) The Availability Management Framework terminates all components and ser-
vice units on the affected nodes.

(21) The Availability Management Framework calls saClmResponse_4() and 
returns SA_CLM_CALLBACK_RESPONSE_OK to CLM to indicate that the node may 
now leave the membership.

(22) As soon as all track callbacks have returned, CLM removes the affected nodes 
from the membership.

(23) CLM invokes the saClmClusterTrackCallback_4() callbacks of its consum-
ers in the completed step, and passes all needed information in the call.

(24) CLM calls saPlmReadinessTrackResponse() and returns 
SA_PLM_CALLBACK_RESPONSE_OK to PLM.

(25) After PLM receives a positive response from all track callbacks, PLM termi-
nates that EE (OS shutdown or similar operation).

(26) PLM changes the presence state of the EE to 
SA_PLM_EE_PRESENCE_UNINSTANTIATED and its readiness state to 
SA_PLM_READINESS_OUT_OF_SERVICE and generates a state change notifi-
cation using the correlation id.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 171



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
(27) PLM may informs the subscribers of the track interface that subscribed only for 
the EE already now with the completed step.
Note that from HPI’s perspective, the process is not yet completed; however, 
these users are only interested in the EE readiness state.
PLM calls for every subscriber of the affected EE:
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_HE_DEACTIVATION,
DN_extracted_blade,
rootCorrelationId,
List_affected_objects,
SA_PLM_CHANGE_COMPLETED,
return_value);

(28) PLM allows HPI to execute the hot swap extraction policy by calling 
saHpiResourceInactiveSet() for the blade. This function will initiate all 
necessary hardware actions to deactivate the entity.

(29) PLM receives HPI events for the completion of the hot swap requests.
The HPI event for this case is:

EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_INACTIVE
PreviousHotSwapState= SAHPI_HS_STATE_EXTRACTION_PENDING
CauseOfStateChange = SAHPI_HS_CAUSE_EXT_SOFTWARE

(30) PLM detects that the event is related to the running extraction processing.
(31) PLM generates a notification for the HPI event using the correlation id.
(32) PLM changes the presence state of the related HE to 

SA_PLM_HE_PRESENCE_INACTIVE and its readiness state to 
SA_PLM_READINESS_OUT_OF_SERVICE and generates a state change notifi-
cations using the correlation id.
172 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
(33) PLM informs the subscribers of the track interface for the HE with the com-
pleted step.
PLM calls for every subscriber of the affected HE (CLM should not be sub-
scribed here):
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_HE_DEACTIVATION,
DN_extracted_blade,
rootCorrelationId,
List_affected_objects,
SA_PLM_CHANGE_COMPLETED,
return_value);

(34) The Operator extracts the blade.
(35) HPI notifies about the extraction.

The HPI event for this case is:
EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_NOT_PRESENT
PreviousHotSwapState= SAHPI_HS_STATE_INACTIVE
CauseOfStateChange = SAHPI_HS_CAUSE_OPERATOR_INIT

(36) PLM generates a notification for the HPI event. This event is a new root cause. 
The new notification id is used in all further calls to allow correlation.

(37) PLM maps the HPI event to HE in the IMMS object model and checks the 
states.

(38) PLM changes the presence state of the affected HE object to 
SA_PLM_HE_PRESENCE_NOT_PRESENT.

(39) PLM generates a state change notification for the presence state of the HE 
changing to SA_PLM_HE_PRESENCE_NOT_PRESENT.

(40) PLM checks containment and dependencies of the affected HE. All contained 
HEs are extracted together and should already be out-of-service. All contained 
and dependent EEs should also already be out-of-service.

(41) PLM changes the presence state of all contained HEs to 
SA_PLM_HE_PRESENCE_NOT_PRESENT and generates state change notifica-
tion (using the correlation identifier).
Note that no track callbacks are called in this case. All affected entities are 
already out-of-service. Any software that needs to know about the physical 
extraction will need to listen to notifications.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 173



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
(42) PLM clears active alarms of the HE and all contained HEs.
Alarms in the domain alarm table are cleared by HPI itself.
However, PLM has to send a notification with severity "cleared" for hardware-
related alarms that it had issued for these HEs.

The next figures show the actions taken when a computing blade is extracted.

FIGURE 11 Extraction of a Computing Blade (Deactivation Part 1)

HPI PLMNTF

2. HPI hot swap event

CLM AMF

4.Map to HE5.saHpiHotSwapPolicyCancel ()

12.AMF checks redundancy

10.PLM track callbacks : VALIDATE

13.Return SA_AIS_OK

1.Operator opens latches

3.HPI event notification

8.Generate list of affected entities

9.Check Deactivation Policy

11.CLM track callback: VALIDATE

14.Return SA_AIS_OK

15.PLM decides to allow extraction

6.Presence state blade object deactivating7.State change notification
174 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
FIGURE 12 Extraction of a Computing Blade (Deactivation Part 2)

HPI PLMNTF CLM AMF

16.EE presence state terminating

19.AMF change CSI assignments

17.PLM track callbacks : START

21.Return SA_AIS_OK

18.CLM track callback: START

24.Return SA_AIS_OK

20.AMF terminate components

22.Remove node from membership

25.Terminate EE

26.EE presence state terminated and readiness state out-of-serviceState change notification

Now all services are terminated.

23.CLM track callback: COMPLETED

27.PLM track callbacks : EE COMPLETED
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 175



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 13 Extraction of a Computing Blade (Deactivation Part 3)

HPI PLMNTF CLM AMF

PLM waits for HPI event

28.saHpiResourceInactiveSet()

30.Relates to this extraction

32.Blade presence state inactive and readiness state out-of-service

29.HPI hot swap events blade inactive

31.HPI event notification

State change notification

33.PLM track callbacks : COMPLETED
176 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
FIGURE 14 Actual Extraction of a Computing Blade

HPI PLMNTF CLM AMF

34.Operator extracts the blade

35.HPI hot swap events blade not present

36.HPI event notification

37.Map to HE and check states

38.Blade presence state not present39.State change notification

40.Check containment and dependencies

41.Presence state of contained and depending entitiesState change notification

42.Clear alarms of entities that are not present
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 177



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
B.1.2  Extraction of a Computing Blade with Unmanaged Hot Swap

In the case of unmanaged hot swap, the hardware cannot stay in the extraction-pend-
ing state, that is, the auto-extraction-policy cannot be stopped. The blade in this 
example is again modeled as an HE that runs a single operating system, which is 
modeled as an EE, on which in turn a CLM node is running. Some applications con-
trolled by the Availability Management Framework run on the AMF node that is 
mapped to this CLM node. In the beginning of the sequence, all entities are in-ser-
vice; no entities are administratively locked.

Note that an operator wanting graceful deactivation can use the administrative LOCK 
administrative operation to terminate the services gracefully.

The sequence of actions in this scenario is described next. For the reader’s conve-
nience, the steps shown in Section 3.1.3.1.1 in the description of the deactivating 
presence state (abrupt case, on page 31) are reproduced here in a shortened way. To 
each of these steps (represented by numbers enclosed in curly brackets), the corre-
sponding actions in the scenario (represented by numbers enclosed in parentheses) 
are given.

{1} PLM sets the presence state to deactivating.
See steps (1) through (6).

{2} PLM monitors the hardware as it deactivates.
Wait for step (7) to happen.

{3} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked 
for the SA_PLM_CHANGE_COMPLETED step.
See steps (8) through (16).

FIGURE 15 shows a sequence diagram for these steps.

The actual extraction is done in the same way as in the previous use-case.

(1) Operator opens latches.
(2) Detection by HPI, PLM receives HPI a hot swap event.

To receive this event, PLM must have an open session to the domain managing 
the entity and be subscribed for the events.
The HPI event for this case is:

EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_EXTRACTION_PENDING
PreviousHotSwapState= SAHPI_HS_STATE_ACTIVE
CauseOfStateChange = SAHPI_HS_CAUSE_OPERATOR_INIT
178 SAI-AIS-PLM-A.01.02 Appendix B.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
(3) PLM generates a notification for the HPI event. The notification id is used as root 
correlation id in all further notifications.

(4) PLM maps the HPI event to an HE in the IMMS object model.
The HPI entity path is included in the HE attributes, search is possible by follow-
ing the containment.
PLM knows hardware capabilities, so it will not call 
saHpiHotSwapPolicyCancel(). HPI will continue to deactivate the hard-
ware.

(5) PLM changes the presence state of the HE of the blade to 
SA_PLM_HE_PRESENCE_DEACTIVATING.

(6) PLM generates a state change notification for the blade HE presence state 
changing to SA_PLM_HE_PRESENCE_DEACTIVATING.

(7) PLM receives an HPI event for the completion of the deactivation.
The HPI event for this case is:

EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_INACTIVE
PreviousHotSwapState= SAHPI_HS_STATE_EXTRACTION_PENDING
CauseOfStateChange = SAHPI_HS_CAUSE_EXT_SOFTWARE

(8) PLM detects that the event is related to the running extraction processing.
(9) PLM generates a notification for the HPI event using the correlation id.
(10) PLM changes the presence state of the related HE to 

SA_PLM_HE_PRESENCE_INACTIVE and its readiness state to 
SA_PLM_READINESS_OUT_OF_SERVICE and generates a state change notifi-
cations using the correlation id.

(11) PLM checks the containment of the affected HE and dependencies. PLM gen-
erates a list of all PLM objects (HEs and EEs) that need to be informed about 
the abrupt deactivation.
In this example, only the blade HE and the EE are affected.

(12) PLM changes the presence state of the EE to 
SA_PLM_EE_PRESENCE_UNINSTANTIATED and its readiness state to 
SA_PLM_READINESS_OUT_OF_SERVICE and generates a state change noti-
fication using the correlation id.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.2 179



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
(13) PLM informs subscribers of the track interface with the completed step.
PLM calls for every subscriber of the affected HE and EE:
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_HE_DEACTIVATION,
DN_extracted_blade,
rootCorrelationId,
List_affected_objects,
SA_PLM_CHANGE_COMPLETED,
return_value);

(14) CLM should be subscribed for the EE and will remove the affected node from 
membership.
Note that CLM may already have detected that the node has unexpectedly left 
the cluster, so some of the following steps may have already happened.
Other services that are subscribed can take separate actions.

(15) CLM invokes the saClmClusterTrackCallback_4() callbacks of its cli-
ents in the completed step and passes all needed information in the call.

(16) The Availability Management Framework should be subscribed for CLM track 
callbacks as above. So if an AMF node has running services, these services 
need to failover according to its redundancy configuration.

Some hardware may not support the extraction-pending step at all. In this case, steps 
(2) to (6) do not apply, and the first HPI event reports a direct state change from 
active to inactive.
180 SAI-AIS-PLM-A.01.02 Appendix B.1.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
FIGURE 15 Extraction of a Computing Blade Supporting Unmanaged Hot Swap

HPI PLMNTF CLM AMF

4.Map to HE

1.Operator opens latches

3.HPI event notification

5.Blade presence state deactivating6.State change notification

7.HPI Hot Swap Event: INACTIVE

2.HPI hot swap event EXTRACTION-PENDING

8.Relates to this extraction9.HPI Event notification

10.Blade presence state inactive and readiness state out-of-serviceState change notification

13.PLM track callbacks : COMPLETED

11.Generate list of affected entities

12.EE presence state terminated and readiness state out-of-serviceState change notification

15.CLM track callback: COMPLETED

14.Remove node from membership

16.Service failovers
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.2 181



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
B.2  Fault of a Computing Blade

This use-case shows the processing of the PLM Service when a fault of a computing 
blade is detected. The PLM Service can detect the fault by analyzing HPI events or if 
an application reports the error by invoking the saPlmEntityReadinessImpact() 
function.

The blade in this example is again modeled as an HE; the HE runs one single operat-
ing system, which is modeled as an EE on which a CLM node is running. Some appli-
cations controlled by the Availability Management Framework run on the AMF node 
that is mapped to this CLM node. In the beginning of the sequence, all entities are in-
service, and no entities are administratively locked. It is assumed that no other enti-
ties are affected.

The sequence of actions is described next. A sequence diagram is in FIGURE 16.

(1) An application reports the fault:
saPlmEntityReadinessImpact( plmHandle,

DN_faulty_blade,
SA_PLM_RI_FAILURE,
correlationIds);

(2) PLM checks containment of the affected HE and dependencies. PLM generates 
a list of all PLM objects (HEs and EEs) that are affected. It may be necessary to 
isolate multiple entities.
In this example, only the blade HE and the EE are affected. The EE does not 
need a separate isolation, it terminates automatically when the HE is isolated.

(3) PLM uses HPI to deactivate the blade by calling 
saHpiResourceInactiveSet() for the blade. This function will initiate all 
necessary hardware actions to deactivate the entity.

(4) PLM receives HPI events for the completion of the hot swap requests.
The HPI event for this case is:

EventType = SAHPI_ET_HOTSWAP
HotSwapState = SAHPI_HS_STATE_INACTIVE
PreviousHotSwapState= SAHPI_HS_STATE_ACTIVE
CauseOfStateChange = SAHPI_HS_CAUSE_EXT_SOFTWARE

(5) PLM detects that the event is related to the isolation of the faulty HE.
(6) PLM generates a notification for the HPI event using the correlation ids.
182 SAI-AIS-PLM-A.01.02 Appendix B.2 AIS Specification



1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios
(7) PLM changes the presence state of the HE of the blade to 
SA_PLM_HE_PRESENCE_INACTIVE, its operational state to 
SA_PLM_OPERATIONAL_DISABLED, its readiness state to 
SA_PLM_READINESS_OUT_OF_SERVICE, and generates a state change notifi-
cation using the correlation id.

(8) PLM changes the presence state of the affected EE to 
SA_PLM_EE_PRESENCE_UNINSTANTIATED, sets the readiness flag 
SA_PLM_RF_DEPENDENCY for this EE, sets the readiness state of the EE to 
SA_PLM_READINESS_OUT_OF_SERVICE, and generates a state change notifi-
cation using the correlation id.

(9) PLM informs the subscribers of the track interface for the HE and EE for the 
completed step.
PLM calls for every subscriber of HE or EE:
saPlmReadinessTrackCallback( my_objGrpHandle,

my_trackCookie,
my_invocation,
SA_PLM_CAUSE_FAILURE,
DN_faulty_blade,
rootCorrelationId,
list_affected_objects,
SA_PLM_CHANGE_COMPLETED,
return_value);

(10) CLM should be subscribed for the EE, and CLM thus removes the affected 
node from the cluster membership.
Note that CLM may already have detected that the node has unexpectedly left 
the cluster, so some of the following steps may already have happened.
Other services that are subscribed can take separate actions.

(11) CLM invokes for the completed step the 
saClmClusterTrackCallback_4() callback functions of its clients and 
passes all needed information in the corresponding invocations.

(12) The Availability Management Framework should be subscribed for CLM track 
callbacks as above. So if an AMF node had running services, these services 
need to failover according to the redundancy configuration.
AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.2 183



Service AvailabilityTM Application Interface Specification
Basic Operational Scenarios

1

5

10

15

20

25

30

35

40
FIGURE 16 Fault of a Computing Blade

HPI PLMNTF CLM AMF

4.HPI Hot Swap Event: INACTIVE

5.Relates to this extraction6.HPI event notification

7.Blade states inactive , disabled, out-of-serviceState change notification

9.PLM track Callbacks: COMPLETED

2.Generate list of affected entities

8.EE states uninstantiated, out-of-serviceState change notification

11.CLM track callback: COMPLETED

10.Remove node from membership

12.Service failovers

1.saPlmEntityReadinessImpact ()

3.saHpiResourceInactiveSet()
184 SAI-AIS-PLM-A.01.02 Appendix B.2 AIS Specification



Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
Index of Definitions
A
aborted track interface option 54
abrupt deactivation 29
activating presence state 28
active presence state 28
administrative state of an EE 39
administrative state of an HE 31
admin-operation-pending readiness flag of an EE 44
admin-operation-pending readiness flag of an HE 36
all-of-a-group dependency 24
ancestor 20
C
child EEs 20
completed track interface option 54
D
deactivating presence state 29
dependencies 24
dependency readiness flag of an EE 43
dependency readiness flag of an HE

HE
readiness flags

dependency 35
dependency-imminent-failure readiness flag of an EE 44
dependency-imminent-failure readiness flag of an HE 36
disabled operational state of an EE 40
disabled operational state of an HE 33
E
EE 20

administrative state 39
locked 39
locked-instantiation 39
shutting-down 40
unlocked 39

child EEs 20
dependencies 24

all-of-a-group dependency 24
n-of-a-group dependency 25
one-of-a-group dependency 24
one-on-one dependency 24
on-the-parent dependency 24

isolation 53
operational state 40

disabled state 40
enabled state 40

parent EEs 20
presence state 37

instantiated state 38
instantiating state 37
instantiation-failed state 38
terminating state 38
termination-failed state 39
uninstantiated state 37

readiness flags 42
admin-operation-pending 44
dependency 43

dependency-imminent-failure 44
imminent-failure 43
isolate-pending 44
management-lost 42

readiness state 41
in-service state 41
out-of-service state 41
stopping state 41

enabled operational state of an EE 40
enabled operational state of an HE 32
execution environments see EE
G
graceful deactivation 29
H
hardware elements see HE
HE 19, 22

administrative state
locked state 31
locked-inactive state 32
shutting-down state 32
unlocked state 31

isolation 52
operational state 32

disabled state 33
enabled state 32

presence state
activating state 28
active state 28
deactivating state 29
inactive state 27
not-present state 26

readiness flags 34
admin-operation-pending 36
dependency-imminent-failure 36
imminent-failure 36
isolate-pending 37
management-lost 34

readiness state 33
in-service state 33
out-of-service state 33
stopping state 34

HE presence state 26
health state monitoring 47
hypervisors 49
I
imminent-failure readiness flag of an EE 43
imminent-failure readiness flag of an HE 36
inactive presence state 27
in-service readiness state of an EE 41
in-service readiness state of an HE 33
instantiated presence state of an EE 38
instantiating presence state of an EE 37
instantiation-failed presence state of an EE 38
isolate-pending readiness flag of an EE 44
isolate-pending readiness flag of an HE 37
isolation 52
isolation of EEs 53
isolation of HEs 52
AIS Specification SAI-AIS-PLM-A.01.02 185



Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
L
locked administrative state of an EE 39
locked administrative state of an HE 31
locked-inactive administrative state of an HE 32
locked-instantiation administrative state of an EE 39
M
management-lost readiness flag of an EE 42
management-lost readiness flag of an HE 34
mandatory dependency 25
N
n-of-a-group dependency 25
not-present presence state 26
O
one-of-a-group dependency 24
one-on-one dependency 24
on-the-parent dependency 24
operational state of an EE 40
operational state of an HE 32
out-of-service readiness state of an EE 41
out-of-service readiness state of an HE 33
P
parent 20
parent EEs 20
PLM state model 25
presence state of an EE 37
R
readiness flags of an EE 42
readiness flags of an HE 34
readiness state of an EE 41
readiness state of an HE 33
readiness status 54
S
service 26
shutting-down administrative state of an EE 40
shutting-down administrative state of an HE 32
start track interface option 54
stopping readiness state of an EE 41
stopping readiness state of an HE 34
T
terminating presence state of an EE 38
termination-failed presence state of an EE 39
track interface 54

aborted option 54
completed option 54
start option 54
validate option 54

U
uninstantiated presence state of an EE 37
unlocked administrative state of an EE 39
unlocked administrative state of an HE 31
V
validate track interface option 54
virtual machine monitor 49
virtual machines 49
VM 49

VMM 49
186 SAI-AIS-PLM-A.01.02 AIS Specification


	Table of Contents
	List of Figures
	List of Tables
	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials


	2 Overview
	2.1 Platform Management Service

	3 Platform Management Service API
	3.1 Platform Management Service Model
	3.1.1 Role of PLM in the Overall Architecture
	3.1.2 PLM Information Model
	3.1.2.1 Hardware Elements
	3.1.2.2 Execution Environments
	3.1.2.3 Dependencies

	3.1.3 PLM State Model
	3.1.3.1 HE States
	3.1.3.1.1 HE Presence State
	3.1.3.1.2 Administrative State
	3.1.3.1.3 Operational State
	3.1.3.1.4 Readiness State
	3.1.3.1.5 Readiness Flags

	3.1.3.2 EE States
	3.1.3.2.1 EE Presence State
	3.1.3.2.2 Administrative State
	3.1.3.2.3 Operational State
	3.1.3.2.4 Readiness State
	3.1.3.2.5 Readiness Flags

	3.1.3.3 Mapping Between PLM and HPI Objects
	3.1.3.4 Recommendation for HE Modeling
	3.1.3.5 Hardware Health Monitoring
	3.1.3.6 Other Aspects of Interworking with HPI

	3.1.4 EE Management
	3.1.4.1 Recommendation for EE Modeling
	3.1.4.2 PLM Virtualization Support

	3.1.5 Verification of the System Configuration
	3.1.5.1 Verification of the Hardware Configuration
	3.1.5.2 Verification of Execution Environments

	3.1.6 Isolation of Entities
	3.1.7 Overview of the PLM Interfaces
	3.1.8 PLM Service and Cluster Membership

	3.2 Include File and Library Names
	3.3 Type Definitions
	3.3.1 PLM Handles
	3.3.1.1 SaPlmHandleT
	3.3.1.2 SaPlmEntityGroupHandleT

	3.3.2 HE Administrative State
	3.3.3 EE Administrative State
	3.3.4 Operational State
	3.3.5 HE Presence State
	3.3.6 EE Presence State
	3.3.7 Readiness State
	3.3.8 Readiness Flags
	3.3.9 Readiness Status
	3.3.10 Readiness Impact
	3.3.11 HE Deactivation Policy
	3.3.12 Entity Groups
	3.3.13 State Tracking
	3.3.13.1 SaPlmGroupChangesT
	3.3.13.2 SaPlmChangeStepT
	3.3.13.3 SaPlmTrackCauseT
	3.3.13.4 SaPlmReadinessTrackedEntityT
	3.3.13.5 SaPlmReadinessTrackedEntitiesT

	3.3.14 Callback Response
	3.3.15 Notification Related Types
	3.3.15.1 SaPlmNotificationMinorIdT
	3.3.15.2 SaPlmAdditionalInfoIdT
	3.3.15.3 SaPlmStateT

	3.3.16 SaPlmCallbacksT

	3.4 Library Life Cycle
	3.4.1 saPlmInitialize()
	3.4.2 saPlmSelectionObjectGet()
	3.4.3 saPlmDispatch()
	3.4.4 saPlmFinalize()

	3.5 PLM Operations
	3.5.1 Entity Group Management
	3.5.1.1 saPlmEntityGroupCreate()
	3.5.1.2 saPlmEntityGroupAdd()
	3.5.1.3 saPlmEntityGroupRemove()
	3.5.1.4 saPlmEntityGroupDelete()

	3.5.2 Readiness Status Tracking
	3.5.2.1 saPlmReadinessTrack()
	3.5.2.2 SaPlmReadinessTrackCallbackT
	3.5.2.3 saPlmReadinessTrackResponse()
	3.5.2.4 saPlmReadinessTrackStop()
	3.5.2.5 saPlmReadinessNotificationFree()

	3.5.3 Entity Readiness Impact
	3.5.3.1 saPlmEntityReadinessImpact()



	4 PLM Service UML Information Model
	4.1 Notes on the Conventions Used in UML Diagrams
	4.2 DN Formats for PLM Service UML Classes
	4.3 PLM Classes and Other Services’ Classes
	4.4 PLM Instances and Types View
	4.5 PLM HE Classes Diagram
	4.5.1 Matching Configured HEs to Hardware Entities
	4.5.1.1 Hardware Entity Location Check
	4.5.1.2 HPI Entity Characteristics Check


	4.6 PLM EE Classes Diagram
	4.7 PLM Other Classes Diagram

	5 PLM Service Administration API
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 SaPlmAdminOperationIdT
	5.2.2 Parameter lockOption for the LOCK Administrative Operation
	5.2.3 Parameter restartOption for the Restart Administrative Operation

	5.3 Interface to the Information Model Management Service
	5.4 Administrative Operations
	5.4.1 SA_PLM_ADMIN_UNLOCK
	5.4.2 SA_PLM_ADMIN_LOCK
	5.4.3 SA_PLM_ADMIN_SHUTDOWN
	5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION
	5.4.5 SA_PLM_ADMIN_UNLOCK_INSTANTIATION
	5.4.6 SA_PLM_ADMIN_RESTART
	5.4.7 SA_PLM_ADMIN_DEACTIVATE
	5.4.8 SA_PLM_ADMIN_ACTIVATE
	5.4.9 SA_PLM_ADMIN_RESET
	5.4.10 SA_PLM_ADMIN_REPAIRED
	5.4.11 SA_PLM_ADMIN_REMOVED


	6 PLM Service Alarms and Notifications
	6.1 Setting Common Attributes
	6.2 Platform Management Service Notifications
	6.2.1 Platform Management Service Alarms
	6.2.1.1 Hardware Element Alarm
	6.2.1.2 Execution Environment Alarm
	6.2.1.3 Hardware Element Security Alarm
	6.2.1.4 Execution Environment Security Alarm
	6.2.1.5 Unmapped Hardware Entity Alarm

	6.2.2 Platform Management Service State Change Notifications
	6.2.2.1 PLM Entity State Change Notification

	6.2.3 HPI Events Notifications


	Appendix A Mapping of PLM State Model to CCITT X.731
	Appendix B Basic Operational Scenarios
	B.1 Extraction of a Computing Blade
	B.1.1 Extraction of a Computing Blade with Managed Hot Swap
	B.1.2 Extraction of a Computing Blade with Unmanaged Hot Swap

	B.2 Fault of a Computing Blade

	Index of Definitions



