Service Availability™ Forum
Application Interface Specification

Platform Management Service SAI-AIS-PLM-A.01.02

SERVICE
AVAILABILITY

FORUM

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Legal Notice

FORUM

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.
The Artistic License 2.0
Copyright (c) 2000-2006, The Perl Foundation.
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble
This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

AIS Specification SAI-AIS-PLM-A.01.02 3

10

15

20

25

30

35

40

http://www.saforum.org

Service Availability-'-'vI Application Interface Specification

SERVICE
Legal Notice AVAILABILITY

FORUM

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under
(i) the Original License or

(i) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4 SAI-AIS-PLM-A.01.02 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Table of Contents

FORUM

Table of Contents

1 Document INtroduCtion 11
1.1 DOCUMENE PUIPOSE . .ttt ot et et e e e e e e e e e 11
1.2 AIS Documents Organization ottt 11
L B HISIOrY . 11

L3 L NEW TOPICS vttt 11
1.3, 2 Clarifications e e e 11
1.3.3 Deleted TOPICS . . . oo ottt et e 13
1.3.4 Other Changesot e 13
1.3.5 Superseded and Superseding FUNCLIONSt et e 14
1.3.6 Changes in Return Values of APl and Administrative Functions 14
LA RO OIENCES .« . . ot 14
1.5 How to Provide Feedback on the Specification 15
1.6 How to Join the Service Availability™ Forum i 15
1.7 Additional Information 15
1.7.1 Member COMPANIESottt et e e e et e e e 15
17,2 Press Materials e e 15

2 VIV W . .ottt e 17
2.1 Platform Management SErVICet e 17

3 Platform Management Service APl 19
3.1 Platform Management Service Model 19

3.1.1 Role of PLM in the Overall Architecture i e 19
3.1.2PLM Information Model e 22
312 L Hardware Elements 22
3.1.2.2 EXECULION ENVIFONMENESt e 22

3 L. 2.3 DEPENABNCIES . vt vttt e e 24
A3 PLM State Model e 25
S L 3 L HE StaleS . . oottt 26
3.1.3. L. L HE Presence Stateottt e 26

3.1.3.1.2 AdMINIStrative STateot 31
3.1.3.1.30perational State 32

3.1.3.1.4 ReadiNgSS Staleottt 33

3.1.3. 1.5 ReadiNgSS Flagsottt 34

3.3 2 EE SHaleS . .ottt 37
3.1.3.2. L EE Presence Stateottt 37

3.1.3.2.2 AdMINIStrative Stateottt 39

3.1.3.2.3 0perational State 40

3.1.3.2.4 ReadINESS Staleottt 41

3.1.3.2.5 ReadingsS Flagsottt 42

3.1.3.3 Mapping Between PLM and HPI Objectso e 45
3.1.3.4 Recommendation for HE Modeling i e 46

AIS Specification SAI-AIS-PLM-A.01.02 5

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification SERVICE

Table of Contents AVAILABILITY
FORUM

3.1.3.5 Hardware Health MONItOriNg i e 47
3.1.3.6 Other Aspects of Interworking with HPL 48
3.4 EE Management 48
3.1.4.1 Recommendation for EE Modeling oo 48
3.1.4.2 PLM Virtualization SUPPOItot e 49
3.1.5 Verification of the System Configuration e 51
3.1.5.1 Verification of the Hardware Configuration i i, 51
3.1.5.2 Verification of Execution ENVIrONMENtS o 51
3.L.61s0lation Of ENLItIeSo 52
3.1.7 Overview of the PLM Interfaces o e 54
3.1.8 PLM Service and Cluster Membership i e e e e 55
3.2 Include File and Library Names e e 56
3.3 TYpe DefinitioNnSo 56
3.3 L PLM HaNdIeso 56
3.3 L L SaPIMHANAIET . 56
3.3.1.2 SaPImENtityGroupHandleT 56
3.3.2 HE Administrative State 56
3.3.3 EE Administrative State 57
3.3.4.0perational STate 57
3.3 D HE Presence State oot 57
3.3.6 EE Presence Stateo 58
3.3.7 Readiness State 58
3.3.8 Readiness Flagso e 58
3.3.9 Readiness StatUSo 59
3.3.10 ReadiNeSS IMPACT oottt e e e 59
3.3. 11 HE Deactivation POlICY o 60
3.3 12 ENLitY GrOUDPS o oottt e 61
3.3.13 State TraCKINg . ..ot e e e 62
3.3.13.1 SaPIMGIroupChanges T . .. oo 62
3.3.13.2 SaPIMChANgES DT . . . oot 63
3.3.13.3 SAPIMTIraCKCaAUSET . . . oottt 64
3.3.13.4 SaPImReadinessTrackedENtity T o 67
3.3.13.5 SaPImReadinessTrackedENtitieST 68
3.3.14 Callback ReSPONSEot e 68
3.3.15 Notification Related Types i 69
3.3.15.1 SaPImNotificationMinorldT 69
3.3.15.2 SaPImAdditionalInfoldT o 70
33,053 SAPIM S A T . . oot 70
3.3.16 SaPIMCallbacksT 70
34 Library Life CyCle 71
3.4.15aPIMINItialize()o e 71
3.4.2 saPImSelectionObjectGet()o e 73
3.4.35aPIMDispatCh()o 75
344 5aPIMFINAlize() ... oo 76
35 PLM OPEratiONSottt e 78
3.5.1 Entity Group Management i e 78
3.5.1.1 saPIMENtityGroupCreate()ttt e 78

6 SAI-AIS-PLM-A.01.02 AIS Specification

SERVICE Service Availability™ Application Interface Specification

AVAILABILITY Table of Contents
FORUM

3.5.1.2 saPIMENtityGroupAdd()o o 79

3.5.1.3 saPIMENtityGroupREMOVE() oot 82

3.5.1.4 saPImEntityGroupDelete()t 83

3.5.2 Readiness Status TraCKingttt 85

3.5.2.1 5aPIMReadinesSTrack()ot 87

3.5.2.2 SaPImReadinessTrackCallbackTt e e 92

3.5.2.3 saPIMReadinessTraCkRESPONSE() . . . v vttt e e e 95

3.5.2.4 saPIMReadinessTrackStop()o vttt 96

3.5.2.5 saPImReadinessNotificationFree()ot 98

3.5.3 Entity Readiness IMpPactt 99

3.5.3.1 saPImEntityReadinessImpact()t 99

4 PLM Service UML Information Model 101

4.1 Notes on the Conventions Used in UML Diagramscou ... 101

4.2 DN Formats for PLM Service UML Classesi i 102

4.3 PLM Classes and Other Services” Classeso 103

4.4 PLM Instances and TYPES VIBW oottt e e e 104

4.5 PLM HE Classes Diagramttt e e e 105

4.5.1 Matching Configured HEs to Hardware Entities i, 106

4.5.1.1 Hardware Entity Location Check 107

4.5.1.2 HPI Entity Characteristics Check e e e 108

4.6 PLM EE Classes Diagramottt et e e 110

4.7 PLM Other Classes Diagram e e 112

5PLM Service Administration APl e 113

5.1 Include File and Library Name oo 114

5.2 Type Definitions e 114

5.2.1 SaPImAdmInOperationldT 114

5.2.2 Parameter lockOption for the LOCK Administrative Operation 115

5.2.3 Parameter restartOption for the Restart Administrative Operation 115

5.3 Interface to the Information Model Management Service 115

5.4 Administrative Operationst 115

5.4.1SA PLM_ADMIN_UNLOCK e e 118

5.42 SA_ PLM_ADMIN_LOCK e e 120

543 SA_PLM_ADMIN_SHUTDOWN e e e 123

5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION ... e 125

5.45SA PLM_ADMIN_UNLOCK INSTANTIATION e 127

5.4.6 SA_PLM_ADMIN_RESTART ...\ttt e 129

547 SA_ PLM_ADMIN_DEACTIVATE e 133

548 SA_PLM_ADMIN_ACTIVATE ... e 135

549 SA PLM_ADMIN _RESET ... 137

5.4.10 SA_PLM_ADMIN_REPAIRED e 139

5411 SA PLM_ADMIN_REMOVED e 141

6 PLM Service Alarms and Notifications i, 143

AIS Specification SAI-AIS-PLM-A.01.02 7

10

15

20

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification SERVICE }

Table of Contents AVAILABILITY
FORUM

6.1 Setting Common AttributeS 143

6.2 Platform Management Service Notifications, 145

6.2.1 Platform Management Service Alarms e 145

6.2.1.1 Hardware Element Alarm 145

6.2.1.2 Execution Environment Alarm 147

6.2.1.3 Hardware Element Security Alarm 149

6.2.1.4 Execution Environment Security Alarm 151

6.2.1.5 Unmapped Hardware Entity Alarm 153

6.2.2 Platform Management Service State Change Notifications 155

6.2.2.1 PLM Entity State Change Notification e 155

6.2.3 HPI Events Notificationso e e 158

Appendix A Mapping of PLM State Model to CCITT X.731 165

Appendix B Basic Operational Scenarios, 167

B.1 Extraction of aComputing Blade 167

B.1.1 Extraction of a Computing Blade with Managed Hot Swap 167

B.1.2 Extraction of a Computing Blade with Unmanaged Hot Swap 178

B.2 FaultofaComputing Blade 182

Index of DefinitioNS 185

8 SAI-AIS-PLM-A.01.02 AIS Specification

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Table of Contents

FORUM

List of Figures

Figure 1: Relating HPI Entities with the Rest of the Information Model Through PLM Objects 21
Figure 2: Mapping Between PLM Objects and Objects of Other SA Forum Services 45
Figure 3: Virtualized Architectures in the PLM Information Model 50
Figure 4: CIUSTEr VIBW . . . o e e 103
Figure 5: PLM Instances and TYPeS VIBW oottt e e e 104
Figure 6: PLM HE ClaSSeSo e e 106
Figure 7: PLM EE ClaSSes oottt e e e e 111
Figure 8: PLM Other Classesottt e e e e e 112
Figure 9: Administrative States and Related Operations for PLM EE Entities 116
Figure 10: Administrative States and Related Operations for PLM HE Entities 117
Figure 11: Extraction of a Computing Blade (DeactivationPart1) 174
Figure 12: Extraction of a Computing Blade (DeactivationPart2) 175
Figure 13: Extraction of a Computing Blade (DeactivationPart3) 176
Figure 14: Actual Extraction of a ComputingBlade, 177
Figure 15: Extraction of a Computing Blade Supporting Unmanaged Hot Swap 181
Figure 16: Fault of a Computing Blade e e 184

List of Tables

Table 1: DN FOrmMatso 102
Table 2: IDR Names and Values e e 109
Table 3: Hardware Element Alarm. 146
Table 4: Execution Environment Alarm. e 148
Table 5: Hardware Element Security Alarm. 150
Table 6: Execution Environment Security Alarm. 152
Table 7: Unmapped Hardware Entity Alarm 154
Table 8: PLM Entity State Change Notification. 155
Table 9: HPI Event NoOtification. e e e 159
Table 10: Mapping HPI Event Type to Notification Event Type. 160

AIS Specification SAI-AIS-PLM-A.01.02 9

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Document Introduction

FORUM

1 Document Introduction

1.1 Document Purpose

This document defines the Platform Management Service of the Application Interface
Specification (AlIS) of the Service Availability™ Forum (SA Forum). It is intended for
use by implementers of the Application Interface Specification and by application
developers who would use the Application Interface Specification to develop applica-
tions that must be highly available. The AIS is defined in the C programming lan-
guage and requires substantial knowledge of the C programming language.

Typically, the Service Availability™ Forum Application Interface Specification will be
used in conjunction with the Service Availability™ Forum Hardware Platform
Interface Specification (HPI).

1.2 AIS Documents Organization

The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History

The first and only previous release of the Platform Management Service specification
¥

SAI-AlIS-PLM-A.01.01

This section presents the changes of the current release, SAI-AIS-PLM-A.01.02, with
respect to the SAI-AIS-PLM-A.01.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.

1.3.1 New Topics

None

1.3.2 Clarifications

= In Section 3.1.1 on page 19 on the role of PLM in the overall architecture, in a
paragraph on page 20, the text fragment “modeled as objects of the SaPl nEE
object class” has replaced the fragment “modeled as an object class*. In the
same paragraph, the word “directly” has been added to the second sentence.
Note also a few editorial changes in the paragraph following this one.

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 1 11

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Document Introduction AVAILABILITY

FORUM

= The title of FIGURE 1 on page 21 has changed.

= In the first paragraph of the description of the not-present state in
Section 3.1.3.1.1 on page 26 on the HE presence state, a reference to
Section 4.5.1 has been added.

= The first paragraph in the description of the management-lost readiness flag of
an HE in Section 3.1.3.1.5 and the first paragraph in the description of the man-
agement-lost readiness flag of an EE in Section 3.1.3.2.5 have been clarified.

= In Section 3.1.3.1.5 on the readiness flags of an HE, the first paragraph in the
description of the admin-operation-pending flag and the first paragraph in the
description of the isolate-pending flag have been clarified. The same clarification
has been added to the description of the SA_ Al S ERR_TRY_AGAI N error code
of the administrative operation with SA_ PLM ADM N_RESET as oper ati onl din
Section 5.4.9.

= In Section 3.1.3.2.1 on the EE presence state, in the paragraph on page 38
describing the instantiation-failed state, “failed” was mistakenly used instead of
“disabled”.

= The last bullet in the explanation of the in-service readiness state of an EE in
Section 3.1.3.2.4 on page 41 has been clarified.

= In Section 3.1.3.2.5 on page 42 on the readiness flags, in the second bullet
describing the admin-operation-pending flag, the text fragment “has applied the
administrative state” has replaced the text fragment “has performed the adminis-
trative operation®. In the same section, a few clarifications have been added to
the first paragraph in the description of the management-lost flag.

= The first bullet in Section 3.1.4.2 on page 49 on the PLM Virtualization Support
has been slightly rephrased.

= In Section 3.1.5.1 on page 51 on the verification of the hardware configuration, it
been clarified that the PLM Service may issue the Unmapped Hardware Entity
Alarm.

= In Section 3.3.13.3 on page 64, additional clarification is provided in the descrip-
tion of the SA_PLM CAUSE_MANAGEMENT_LOST and
SA PLM CAUSE_NMANAGEMENT REGAI NED values.

= The behavior of the saPl nFi nal i ze() function in Section 3.4.4 on page 76
has been clarified in the second paragraph of the description section of this func-
tion.

= The behavior of the saPl nEnti t yG oupDel et e() function in
Section 3.5.1.4 on page 83 has been clarified in the description section of this
function.

= A sentence has been added the end of the description subsection of
Section 3.5.3.1 on page 99 on the saPl nEnt i t yReadi nessl npact () function.

12

SAI-AIS-PLM-A.01.02 Section 1.3.2 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Document Introduction

FORUM

1.3.3 Deleted Topics

None

1.3.4 Other Changes
= Throughout the document, the term “isolation-pending flag” has been changed to

=

=

=

“isolate-pending flag”.

In Section 3.3.13.3 on page 64, the new value SA PLM CAUSE_STATUS | NFO
has been added to the SaPl mlr ackCauseT enumeration. The meaning of this
new value is explained in the mentioned section; this value is intended to be
used, for instance, in connection with the track flag SA_ TRACK CURRENT. This
modification has led to a change to the description of the r oot Correl ati onl d
parameter of the SaPl nReadi nessTr ackCal | backT function in

Section 3.5.2.2 on page 92.

In the previous release, references to the

saPl nReadi nessTrackResponse() function were mistakenly written as
saPl nResponse() . These corrections apply to Section 3.3.14, Section 3.5.2,
Section 5.4.3, and in Appendix B.1.1, enumerations (14) and (24).

In Section 4.2, Table 1 on page 102 has been updated to add a root,

"saf App=saf Pl nSer vi ce", to the distinguished names for

SaPl nEEBaseType, SaPl nEEType, SaPl nHEBaseType, and SaPl mHEType
objects classes.

= The object class SaPl nEnt i t y has been made abstract. This is reflected in

FIGURE 4 on page 103 by showing the SaPl nEnt i t y in italics.

= The SaPl nDependency object class has changed from an association class to

a “regular” object class. In the previous version, only 1:1 dependencies between
PLM entities were possible. This new definition allows for 1:N dependencies.
Note also that the relationship between the SaPl nEnti ty and

SaPl nDependency object classes has changed. These changes are shown in:

. Section 4.4, FIGURE 5 on page 104 depicting the PLM Instances and Types
View and in

. Section 4.7, FIGURE 8 on page 112 depicting the PLM Other Classes dia-
gram.

= The code snippets for the par ans parameter in Section 5.4.2 on page 120 on

=

the SA_PLM ADM N_LOCK and in Section 5.4.6 on page 129 on the
SA PLM ADM N_RESTART administrative operations have been changed to use
correct C syntax.

In Table 5 on page 150 (Section 6.2.1.3) on the Hardware Element Security
Alarm and in Table 6 on page 152 (Section 6.2.1.4) on the Execution Environ-
ment Security Alarm, the descriptions of the attributes Detector, Service User,

AIS Specification

SAI-AlS-PLM-A.01.02 Section 1.3.3 13

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Document Introduction AVAILABILITY

FORUM

and Service Provider have changed. Note that a typo in the title of
Table 5 on page 150 has also been corrected.

= The place of the first quote in the LDAP DN of the notification object on page 160
has been corrected.

1.3.5 Superseded and Superseding Functions

None

1.3.6 Changes in Return Values of APl and Administrative Functions

None

1.4 References
The following documents contain information that is relevant to the specification:
[1] Service Availability™ Forum, Service Availability Interface, Overview,
SAIl-Overview-B.05.02

[2] Service Availability™ Forum, Service Availability Interface, C Programming
Model, SAI-AIS-CPROG-B.05.02

[3] Service Availability™ Forum, Hardware Platform Interface Specification,
SAI-HPI-B.03.02

[4] Service Availability™ Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.03.01

[5] Service Availability™ Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.03.01

[6] Service Availability™ Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.04.01

[7] Service Availability™ Forum, Application Interface Specification, Security Ser-
vice, SAI-AIS-SEC-A.01.01

[8] Service Availability™ Forum, SA Forum Information Model in XML Metadata
Interchange (XMI) v2.1 format, SAI-IM-XMI-A.04.02.xml.zip

[9] Service Availability™ Forum, Application Interface Specification, Availability
Management Framework, SAI-AIS-AMF-B.04.01

[10] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

[11] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Func-
tion

[12] CCITT Recommendation X.731 | ISO/IEC 10164-2 : 1992/Amd.2 : 2001

14 SAI-AIS-PLM-A.01.02 Section 1.3.5 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Document Introduction

FORUM

[13] Virtualization: State of the Art, Published by SCOPE Alliance,
http://www.scope-alliance.org

[14] RFC 4506, XDR: External Data Representation Standard,
http://www.rfc-archive.org/getrfc.php?rfc=4506

References to these documents are made by placing the number of the document in
square brackets.

1.5 How to Provide Feedback on the Specification

If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum Web site (http://www.saforum.orq).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum

The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the SA Forum Web site (http://www.saforum.orq).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the SA Forum
Web site (http://www.saforum.org).

AIS Specification SAI-AIS-PLM-A.01.02 Section 1.5 15

10

15

20

25

30

35

40

http://www.rfc-archive.org/getrfc.php?rfc=4506
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.scope-alliance.org

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Overview

FORUM

2 Overview

This specification defines the Platform Management (PLM) Service within the Appli-
cation Interface Specification (AlS).

2.1 Platform Management Service

The PLM Service provides a logical view of the hardware and low-level software of
the system. Low-level software in this sense comprises the operating system and vir-
tualization layers that provide execution environments for all kinds of software.

This logical view is presented in the Service Availability™ Forum Information Model
by a set of objects that

. allow for the management of hardware entities and execution environments,

. allow other software to keep track of status changes of the hardware and execu-
tion environments, and

allow the mapping of the HPI (see [3]) data to objects represented in the SA
Forum Information Model.

The PLM Service typically uses HPI to derive all necessary information from the hard-
ware. HPI discovers existing hardware and notifies its users about events (see [3]).
The PLM Service may use implementation-specific means to derive hardware infor-
mation which cannot be accessed via HPI.

The PLM Service not only provides the hardware information in the Service Availabil-
ity™ Forum Information Model through the IMM Service (see [5]), but also provides
objects that are administratively configurable. Additionally, the PLM Service is
responsible for matching the configuration with the discovered hardware.

The main logical entities implemented by the PLM Service are:

. Execution Environment (EE)
An EE is a logical entity that represents an environment capable of running soft-
ware. An EE may or may not host one CLM node. In most cases, a CPU blade or
an SMP machine runs one operating system modeled as an EE.
When a hypervisor provides hardware virtualization, the hypervisor itself and
each operating system running under its control are modeled as separate EEs.

. Hardware Element (HE)
An HE is a logical entity that represents any kind of hardware entity, which can
be, for instance, a chassis, a blade, or an 1/O device.
Typically, all FRUs (Field Replaceable Units) are modeled as HEs. If necessary,
the system architect may model in the PLM Information Model additional entities

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 2 17

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

Overview

SERVICE
AVAILABILITY’

FORUM

that are part of a FRU as hardware elements, for example, 1/0O ports, CPU cores,
and so on.

The PLM Service maintains the state information of HE entities. For this purpose, it
retrieves as necessary any information about the health of the hardware. The PLM
Service may also map HPI events to notifications distributed by the Service Availabil-
ity™ Forum Notification Service (see [4]) and generate these notifications.

Similarly, the PLM Service retrieves all necessary information about the health of the
operating system and any available virtualization layer to maintain states of EE enti-
ties and generate necessary notifications about events of the EE entities.

The PLM Service allows application processes to register a callback function to
receive notifications when PLM Service entities start or stop to provide service. This
mechanism also allows application processes to gracefully shut down their own ser-
vices when a PLM Service entity is about to terminate, for instance, when an extrac-
tion or an administrative LOCK operation is requested for the entity.

18

SAI-AIS-PLM-A.01.02 Section 2.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

3 Platform Management Service API

3.1 Platform Management Service Model

3.1.1 Role of PLM in the Overall Architecture

The Platform Management Service merges the software world of AlS and the hard-
ware world of HPI (Hardware Platform Interface, see [3]) to provide a homogeneous
system view. It plugs the system view presented by the hardware platform interface
into the information model used by AIS.

The system view of HPI represents the physical reality. HPI discovers the hardware
entities that are present in the system and reflects them together with their states.

On the other side, AIS uses a preconfigured information model to represent the sys-
tem. This view not only considers entities currently present, but also entities that are
planned or entities that should be present but currently are not. So this configured
system model exists regardless of whether the hardware is present or not.

It is the responsibility of the PLM Service to connect those views.

On the hardware side, the PLM Service typically uses HPI to determine the discov-
ered system view. HPI discovers which hardware is actually present, independently
from the configuration of the information model. HPI also reports hardware types and
capabilities and provides means to assess the health states of hardware.

PLM provides a model to describe the desired or planned system configuration, that
is, it provides object classes allowing the system architect to create object instances
that represent the various pieces of hardware. This configuration is maintained by the
SA Forum AIS Information Model Management Service (IMMS, see [5]). PLM is
responsible for matching this configuration to the discovered hardware view. PLM
checks whether the present hardware is of the right type and version, as specified in
the SA Forum Information Model.

PLM represents a piece of hardware by a hardware element (HE) object. As the
hardware architecture is typically organized in a hierarchical way, PLM reflects this
organization with a containment tree of HE objects in the SA Forum Information
Model. However, the mapping of HPI entities to HE objects is not necessarily one to
one. It is left to the discretion of the system architect to decide which HPI entity or
group of entities are mapped onto an HE object. Since PLM uses these objects in dif-
ferent maintenance tasks, it is strongly recommended to model at least every field

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 3 19

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAlFlni\uBM"-lT\'"

replaceable unit (FRU) as a separate HE object. For more details, see
Section 3.1.3.4 on page 46.

Any software needs some sort of operating system or such an environment to orga-
nize the execution of the software. The PLM Service represents this environment with
a logical entity, the execution environment (EE). Execution environments may or
may not provide the capability to run SA Forum AIS middleware.

AIS Services need a CLM cluster node (see [6]) to run on, and every CLM cluster
node needs an execution environment.

EEs are modeled as objects of the SaPl nEE object class in the SA Forum Informa-
tion Model. An operating system running directly on an HE is thus represented by an
EE object, its parent in the containment tree being the HE object.

EE objects are also used to model virtualized architectures in the PLM Information
Model. In this case, there is also a containment hierarchy of EE objects. Virtual
machine monitors (VMM), which are sometimes called hypervisors, are repre-
sented by parent EEs, virtual machines or guest operating systems by child
EEs.

Note: In this document, the term “parent” of an object X means the object Y of which
X is a (direct) child in the containment tree. A parent object may also have
another parent. Thus, these parent objects form a list, and any parent in this
list is termed an “ancestor” of X.

Similarly, the terms parent and ancestor are also used for logical entities: a
logical entity Y is the parent (or an ancestor, respectively) of a logical entity X
if— in the SA Forum Information Model—, the object corresponding to Y is
the parent (or an ancestor, respectively) of the object corresponding to X.

Thus, the PLM Information Model connects the discovered hardware entities (mod-
eled in HPI) with the AIS objects in the SA Forum Information Model as shown in
FIGURE 1. The diagram shows in a simplified way the relationship of PLM and its
objects with CLM and AMF on one side and with HPI on the other side.

SAI-AIS-PLM-A.01.02 Section 3.1.1 AIS Specification

10

15

20

25

30

35

40

SERVIC
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

FIGURE 1

Relating HPI Entities with the Rest of the Information Model Through PLM Objects

HPI PLM CLM AMF
E : Service-
i i Unit
. Execution Cluster- i AMF-
i | Environment Node ; Node
. Execution .
i| | Environment |
i l Only in case of i
! Virtualization !
HPI- i Hardware i
Entity i Element i
HPI- i Hardware
Entity i Element i

PLM also provides a state model for these entities and the necessary administrative

operations. PLM is also responsible for maintaining these states. For HE entities,

PLM needs to listen to HPI events and perform all necessary actions to retrieve from

HPI the information about the hardware. For EE entities, implementation-specific
interactions with the operating systems and virtualization facilities are needed.

Some operations on PLM entities may have a wide impact on services being pro-

vided. In many cases, when an operator or administrator performs maintenance oper-

ations, such as issuing a LOCK administrative operation or requesting a hot swap

extraction, it is difficult to know whether the system provides sufficient redundancy to
avoid a service outage. Therefore, the PLM Service not only informs its users about

state changes of PLM Service entities, but it also provides the means to validate

operations on hardware elements or execution environments before these operations
are executed. The PLM Service also provides the means to force a LOCK administra-
tive operation in urgent cases, accepting the service outage.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 3.1.1

21

10

15

20

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.1.2 PLM Information Model

3.1.2.1 Hardware Elements

PLM uses the SaPl nHE object class for all kinds of hardware entities:

. container entities such as shelves, racks, or even slots;

. computing entities such as single board computer blades which are able to
directly host an execution environment;

. resources of computing entities such as interfaces, chip-sets, memory, and
CPUs;

. resources of the equipment such as fans and power-entry-modules.

Hardware elements are modeled in containments and should reflect the physical
architecture of the hardware. For the highest containment level, the PLM Service pro-
vides the SaPl nDomai n object class. The PLM Service implements a single instance
of this class.

Since PLM maintains the state information and allows for administrative operations
on hardware at the granularity of the HE objects, it is recommended to represent
every FRU (field replaceable unit) by a separate HE. It is also possible to model the
hardware in finer granularity.

PLM uses the SaPl nHEType and SaPl nHEBaseType object classes to support
easy modeling of hardware units of the same hardware type or of similar hardware
types and also to support hardware upgrade. HE types are also used to validate the
configuration against the hardware entities that are present in the system (see
Section 3.1.5 on page 51).

For a complete description of the classes and attributes that are used to configure an
HE, refer to Section 4.5 on page 105.

3.1.2.2 Execution Environments

Without virtualization, a computing HE can run exactly one EE at a time.

With virtualization, a computing HE can run multiple EEs concurrently. Typically,
when such an HE boots, a hypervisor or virtual machine monitor starts. This hypervi-
sor or virtual machine monitor can control multiple operating systems, which consti-
tute EEs that may run concurrently. There may be multiple instances of the same type
of operating system or even of different types.

Many different architectures for virtual machine monitors are possible. In all cases,
the PLM Service represents the virtual machine monitor by an EE as direct child of an
HE. This EE is parent to all EEs representing the virtual machines. Note that a hyper-

22

SAI-AIS-PLM-A.01.02 Section 3.1.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

visor EE can run multiple child EEs concurrently, whereas an HE, directly, can run
only one EE at a time.

Thus, the following kinds of EEs are considered:

= EEs running directly on an HE, which can be:

. Payload operating system (if there is no virtualization).
The payload operating system may or may not have a configured CLM node.

. Parent EEs hosting child operating systems (with virtualization).
The virtualization monitor (sometimes called hypervisor), running directly on
an HE, may or may not also have a configured CLM node.

= Child operating systems, which may run as virtual machines controlled by a virtu-
alization monitor.
Child EEs may or may not run a configured CLM node.

In virtualized architectures, the containment tree shall reflect the relationships of virtu-
alization monitors and virtual machines as parent—child relationships. In this version,
the PLM Service does not support dynamic migration of virtual machines.

More details on virtualization can be found in Section 3.1.4.2.

All EEs are modeled using the SaPl nEE class. Every EE directly running on an HE is
modeled as a child of this HE in the containment tree.

PLM uses the SaPl nEEType and SaPl nEEBaseType object classes to support
easy modeling of multiple EEs of the same type and also to support upgrade of oper-
ating systems.

The EE types contain attributes that can be used by the PLM Service to validate the
configuration against the types of execution environments that are present and
installed in the system (see Section 3.1.5 on page 51).

For a complete description of the object classes and attributes that are used to con-
figure an EE, refer to Section 4.6 on page 110.

For best practices on operating systems providing the notion of node name, it is rec-
ommended that the name of an EE be derived from the operating system node name
(EE RDN: saf EE=0s_node_name). For details on haming issues, refer to [2].

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.2.2 23

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.1.2.3 Dependencies

There may be dependencies between PLM Service entities, that is, an entity cannot
provide service without another entity being present and in-service. For instance, the
outage of an entity may directly cause other entities to fail, or it may imply that PLM
should actively terminate another entity. Dependencies may be caused by physical
hardware conditions or by the way the system is configured. For instance, an EE may
depend on a disk (which is located somewhere else in the system), because the disk
is used as the system disk by the operating system.

These dependencies between PLM entities are reflected by dependencies between
the objects representing these entities in the PLM Information Model. Some of the
dependencies are expressed implicitly by the containment tree of the model. Other
dependencies need to be explicitly specified.

Thus, a PLM object can only be in-service if all objects on which it depends are in-
service. The dependency influences the readiness state. For the readiness state of
HEs and EEs, see Section 3.1.3.1.4 and Section 3.1.3.2.4 respectively.

All objects depend implicitly on their ancestors, that is, if any ancestor gets out-of-ser-
vice, all its children objects become out-of-service.

The following dependencies can be modeled explicitly in PLM, and PLM will react
according to these dependencies and will also provide correlation of events of these
objects.

HEs may depend on HEs.
EEs may depend on HEs and EEs.

Different “kinds” of dependencies are possible:

on-the-parent
Implicit dependency of an object on its parent or on any other ancestor.

. One-on-one
Direct dependency of one object on another.

. one-of-a-group
Dependency on one object of a set of objects.
When the readiness state of at least one object in the dependency set is in-ser-
vice, the readiness state of the entity that depends on the set can be in-service.

. all-of-a-group
Dependency on all objects of a set of objects.
When the readiness state of any object in the dependency set becomes out-of-
service, the readiness state of the object that depends on the set also must be
out-of-service.

24

SAI-AIS-PLM-A.01.02 Section 3.1.2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

n-of-a-group

Dependency on a subset of a set of objects.

When fewer than n objects in the dependency set have their readiness state in-
service, the readiness state of the object that depends on the set must not be in-
service.

For instance, object A needs at least two of the objects B, C, D, and E. Any two
of them may be out-of-service while A can still be in-service. However, if a third
object gets out-of-service, A will also be brought out-of-service by PLM.

Note also that one-on-one, one-of-a-group, and all-of-a-group are just special cases
of n-of-a-group. The term mandatory dependency is used to identify any of the
above dependencies if the readiness state of the depending entity would need to
transition to out-of-service if the readiness state of an object the entity depends upon
transitions to out-of-service.

Dependencies are modeled using the SaPl nDependency object class defined in
Section 4.7 on page 112. An HE or EE object instance may be parent to any number
of SaPl nDependency objects. An SaPl nDependency object specifies

in its saPl nDepNanes attribute the list of objects on which this particular depen-
dency relies and

. inthe saPl nDepM nNunber attribute the minimum number of objects that must
be in-service in order to satisfy the dependency.

3.1.3 PLM State Model

The PLM state model is harmonized with the state model of the SA Forum™ AIS Ser-
vices. In addition, the PLM state model includes readiness flags to qualify the readi-
ness state.

The PLM state model defines the following types of states:

. Presence State
The presence state is defined differently for HEs and EEs.

Administrative State
The administrative state is defined differently for HEs and EEs.

Operational State
Readiness State
Readiness Flags

If a system needs to provide state management as defined in CCITT Recommenda-
tion X.731 (see [11]) to the outside world, the PLM state model can be mapped as
described in Appendix A on page 165.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3 25

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

Each PLM entity is typically designed to provide one or several functions; these func-
tions are called the service provided by the HE or EE.

An HE may include other parts providing, for example, control and management inde-
pendently of the service the HE provides.

An EE typically provides its service when it is able to run application software.

All states and flags introduced in the next sections reflect—from different
perspectives—the ability of an entity to provide its service.

In some cases, PLM disallows an entity to provide its service. This may be done with
or without termination, power-off, or other operations on the entity itself. In fault situa-
tions, the PLM Service must isolate the faulty entity by using appropriate operations
like hot swap or power down. Details on isolation of faulty entities and the necessary
operations are described in Section 3.1.6 on page 52. PLM also provides administra-
tive operations to isolate an entity.

3.1.3.1 HE States

3.1.3.1.1 HE Presence State

The HE presence state is used to manage physical presence of hardware. It resem-
bles the HPI hot swap state in many ways but is not always identical. Possible values
of the HE presence state of an HE are active, inactive, activating, deactivating, and
not-present.

= not-present

In the system, there is no hardware entity that matches the characteristics of this
HE (see Section 4.5.1 on page 106 about mapping hardware entities to HES).

For example, the following situations are reflected by this state:

The hardware entity that is represented by the HE has been removed from
the system. HPI has reported this fact to PLM by a state change of the entity
to not-present hot swap state.

. Thereis no hardware entity in the system with an HPI entity path that can be
matched to the saPl mHEENt i t yPat hs configuration attribute of the HE (in
most cases, this means the location is empty).

. There are hardware entities in the system with an HPI entity path that can
be matched to the saPl mHEENnt i t yPat hs configuration attribute of the
HE, but none of these hardware entities match the characteristics of the HE,
as specified by the saPl nHet | dr attribute in the HE’s SaPl nHETy pe
object.

26

SAI-AIS-PLM-A.01.02 Section 3.1.3.1 AIS Specification

10

15

20

25

30

35

40

SERVIC

Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

. There are hardware entities in the system with an HPI entity path that can
be matched to the saPl nHEENt i t yPat hs configuration attribute of the
HE, and these hardware entities match the characteristics of the HE, as
specified by the saPl nHet | dr attribute in the HE's SaPl nHEType object,
but they were not mapped to any HE at the time the PLM Service performed
the mapping (see Section 4.5.1 on page 106), as they were redundant.

If an HE is not-present, any child HE must also be not-present, and any child EE
must have a presence state of uninstantiated.

PLM also needs to transition an HE to not-present if the management-lost readi-
ness flag was set for the entity, and the operator issued a
SA PLM ADM N_REMOVED administrative operation (see Section 5.4.11).

Note that the saPl mCur r HEType and saPl nHECur r Ent i t yPat h attributes
are not valid if an HE is not-present.

= inactive

The hardware entity that is represented by the HE is physically located in the sys-
tem but is functionally inactive and logically isolated from the platform.

The meaning of HE isolation is described in detail in Section 3.1.6 on page 52.

For example, PLM generally sets the presence state of an HE to inactive if one of
the following conditions is met:

. The hardware entity supports hot swap, and its HPI hot swap state is inac-
tive.

. The hardware entity supports power management and the entity is powered
off.

The entity supports reset management and reset state is asserted.

Another hardware specific appropriate way is used to prevent the entity
from providing service.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.1.1 27

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

ERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

Typically, the HE presence state is inactive in the following situations:

. The HE is in administrative state locked-inactive.t
. The HE is isolated because it is faulty.

. The HE assumes the inactive state when PLM successfully completed an
extraction request by opening the ejector latch (for instance,
advancedTCA® and compactPCI™).

If an HE is inactive, any child HE must also be inactive or not-present, and any
child EE must have a presence state of uninstantiated.

= activating

This value is used as a transitional state when the presence state of the HE was
inactive and should become active.

For example, the following situations are reflected by this state:

. When HPI notifies the PLM Service that an entity entered the hot swap
insertion-pending state, the PLM Service—after performing implementa-
tion-specific checks—sets the HE presence state of the entity to activating
and allows the entity to power on and become an active entity in the system.

. When the entity was inactive and is activated by software, for instance, by
executing the SA_PLM ADM N_ACTI VATE (see Section 5.4.8) or
SA PLM ADM N_REPAI RED (see Section 5.4.10) administrative operations,
the PLM Service also needs to transition the HE presence state of the entity
to activating.

Note that PLM may also apply this state to HES representing hardware that does
not support the managed hot swap model.

= active
From the hardware viewpoint, the entity is now an active member of the system.
If the hardware entity supports hot swap, its HPI hot swap state should be active.

Generally, the entity must be powered on, and not have the reset state asserted
or be prohibited from providing service by other means.

1. For the administrative state of HEs see Section 3.1.3.1.2 on page 31.

28 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

= deactivating

This value is used as a transitional state when an HE was active and should
become inactive or later not-present. When the presence state of an HE is set to
deactivating, the hardware element may be undergoing a graceful deactivation
or an abrupt deactivation.

Whether the deactivation is graceful or abrupt is not directly reflected in the state
attributes of the HE, but PLM needs to handle these situations differently.

The deactivating state may be set as a result of a hardware state change or of an
administrative operation.

PLM can detect whether a hardware entity is undergoing a graceful or abrupt
deactivation by examining the hardware state communicated by HPI. For more
details, see [3].

Generally, a graceful deactivation is detected when:
(a) A FRU that supports managed hot swap enters the EXTRACTION PENDING
state, and PLM successfully cancels the HPI auto extraction policy.

(b) PLM detects a platform-specific status that indicates that a hardware entity is
requesting a deactivation, and PLM has means to control the timing of the
deactivation or to prevent the deactivation from happening.

An abrupt deactivation is detected when:
(a) A FRU that supports unmanaged hot swap enters the EXTRACTION PEND-
ING state.

(b) A FRU that supports managed hot swap enters the EXTRACTION PENDING
state, but PLM cannot cancel its auto extraction policy.

(c) PLM detects a platform-specific status that indicates that a hardware entity
has begun a deactivation that cannot be interrupted.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.1.1 29

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAlFlni\uBM"-lT\'"

When PLM detects a graceful deactivation of an HE, a number of actions are per-
formed:

{1} PLM sets the presence state of the HE to deactivating.

{2} PLM checks the readiness state of the HE being deactivated and all depen-
dent PLM entities. If all are already out-of-service, processing continues with
step {4}, below. If any are not out-of-service, the deactivation policy (see
Section 3.3.11) determines how processing continues.

{3a} If the deactivation policy is SA PLM DP_REJECT_NOT_QCS, the deactiva-
tion is rejected; PLM signals HPI to change the entity back to an ACTIVE
state and changes the HE presence state to active.

{3b} If the deactivation policy is SA_ PLM DP_VALI DATE, track callbacks are
invoked for the SA_ PLM CHANGE VALI DATE step to determine if the deac-
tivation may proceed. If all processes receiving callbacks accept the deacti-
vation, or if none of the entities that will be placed out-of-service by the
deactivation are being tracked for the VALIDATE step, processing continues
with step {3c}. If one or more processes reject the deactivation, the deacti-
vation is rejected; PLM signals HPI to change the entity back to an ACTIVE
state and changes the HE presence state to active, generating the appropri-
ate state change notification, and track callbacks are invoked for the
SA PLM CHANGE_ABORTED step.

Note: In the remainder of this document, saying that a track user accepted a track
callback means that the track user agreed that the pending operation be per-
formed, as it responded to the track callback by invoking the
saPl nReadi nessTr ackResponse() function with the r esponse parame-
ter set to SA_PLM CALLBACK RESPONSE_OXK.

{3c} If the deactivation policy is SA_ PLM DP_UNCONDI Tl ONAL, or after all pro-
cesses receiving VALIDATE callbacks accept the deactivation, track call-
backs are invoked for the SA_PLM CHANGE_START step. When all
processes receiving callbacks at this step respond, processing continues at
step {4}.

{4} If all PLM entities affected by the deactivation are out-of-service, or after all

processes receiving START callbacks have responded, PLM initiates the
necessary actions using HPI interfaces to actually deactivate the hardware.

1. Dependent PLM entities are the children and entities with a configured dependency relationship. The readi-
ness state of an entity with a configured dependency is affected when—after the deactivation—fewer than
saPl nDepM nNunber entities have a readiness state of in-service or stopping.

30 SAI-AIS-PLM-A.01.02 Section 3.1.3.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE

Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

{5} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked
for the SA PLM CHANGE COVPLETED step.

When PLM detects an abrupt deactivation of a hardware element, no intervention
by PLM or application programs is possible during the deactivation process. For
abrupt deactivations, these actions are taken:

{1} PLM sets the presence state to deactivating.
{2} PLM monitors the hardware as it deactivates.

{3} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked
for the SA_ PLM_CHANGE _COMPLETED step.

PLM also sets the presence state to deactivating when a

SA PLM ADM N_DEACTI VATE administrative operation (see Section 5.4.7) is
processed. The HE must be locked before SA PLM ADM N_DEACTI VATE can
be issued, so processing in PLM continues as with an abrupt deactivation,
described above.

3.1.3.1.2 Administrative State

Like other AIS Services, the PLM Service defines the administrative state of an HE
using an extension of the administrative state specified by ITU (see [11]). Possible
values are locked, unlocked, locked-inactive, and shutting-down.

The administrative state for an HE has the following meaning:

= unlocked

=

The HE has not been directly prohibited from providing service by the administra-
tor.

locked

The administrator has prevented the HE from providing service, which also
means that children of the HE may not provide service. The HE and its children
may be active from the hardware viewpoint, but their readiness states report out-
of-service. Other objects that have a mandatory dependency on this HE are also
prevented from providing service. Hardware diagnostics can be started on the
HE, but a configured EE is not allowed to execute.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.1.2 31

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

= locked-inactive

The administrator has prevented the HE from providing service by appropriate
hardware means. PLM sets the hardware entity represented by the HE in a con-
dition that causes its presence state to become inactive.

If the hardware does not provide appropriate means to support the presence
state inactive, this administrative state may be not supported for an HE.

= shutting-down

The administrator has prevented the hardware element and its contained and
depending entities from providing service to new users. The hardware element's
administrative state becomes locked as soon as all services it provides as well as
all services provided by its contained and depending entities become unused by
all their current users.

3.1.3.1.3 Operational State

The PLM Service defines the operational state as in other AlS specifications, which is
different from the way ITU uses this term. As defined by the PLM Service, the opera-
tional state indicates whether or not an entity is faulty. Possible values are enabled
and disabled.

The PLM Service detects failure conditions of HEs by analyzing the state of health of
the hardware, listening to HPI events, and reading HPI state information. Additionally,
PLM Service users can detect hardware failure conditions and report these condi-
tions by invoking the saPl nEnt i t yReadi nessl npact () function (see

Section 3.5.3.1).

= enabled

The hardware entities represented by the HE are healthy and PLM is not aware
of any failure conditions that would prevent the intended use of these entities.
The operational state of an HE transitions from disabled to enabled when a suc-
cessful repair action has been performed on the HE. Repair actions are reported
to PLM with the saPl nEnt i t yReadi nessl npact () interface (see

Section 3.5.3.1) or with the SA_PLM_ADM N_REPAI RED administrative operation
(see Section 5.4.10). The operational state may transition from disabled to
enabled without a repair action being reported if PLM detects that the failure con-
dition has cleared.

32

SAI-AIS-PLM-A.01.02 Section 3.1.3.1.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

= disabled

The operational state of an HE transitions to disabled if a failure condition is
detected by analyzing the state of health of the hardware, by listening to HPI

events, by reading HPI state information, or if a failure condition was reported
with the saPl nEnt i t yReadi nessl npact () interface (see Section 3.5.3.1).

3.1.3.1.4 Readiness State

As for other AIS Services, the readiness state summarizes values of a set of states.
Possible values are in-service, out-of-service, and stopping.

The readiness state indicates whether the HE provides its service. This state collects
information from all other states, from the ancestor objects, and from mandatory
dependencies.

= out-of-service

The entity represented by the HE object does not provide service due to one or
more of the following conditions:

Its HE administrative state is locked or locked-inactive.
Its HE presence state is neither active nor deactivating.
Its operational state is disabled.

The readiness state of the direct parent or of any other ancestor in the con-
tainment tree is out-of-service.

The readiness state of a mandatory dependency is out-of-service, that is,
fewer than saPl nDepM nNunber entities of a dependency have a readi-
ness state of in-service or stopping.

If the readiness state transitions to out-of-service, because any of the preceding
conditions change, PLM must actively terminate the entity. In case of the last two
conditions, the dependency readiness flag is also set.

= in-service

The readiness state of an HE is in-service if the entity can provide its service. So
all of the following conditions must be met:

Its administrative state is unlocked.

Its HE presence state is active or deactivating.
Its operational state is enabled.

The readiness state of all ancestors is in-service.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.1.4 33

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

. For each dependency, at least saPl mDepM nNunber entities are in-service.
= stopping

The readiness state of an HE transitions from in-service to stopping when one of
the following conditions is met:

. Its administrative state is set to shutting-down.
. The readiness state of an ancestor is set to stopping.

. The readiness state of an entity in a dependency is stopping, and the num-
ber of remaining in-service entities is lower than saPl mDepM nNurnber
while still saPl nrDepM nNunber entities of that dependency are not out-of-
service

The readiness state cannot transition from out-of-service to stopping.

3.1.3.1.5 Readiness Flags

The readiness flags complement the readiness state of an object by providing addi-
tional information. A flag is defined for each of the following situations:

= management-lost

The PLM Service has management capability over an entity when the PLM Ser-
vice is able to monitor and control the entity sufficiently to accurately model the
entity via an HE or EE object that represents the entity. When the PLM Service
loses some or all of its management capabilities such that this is not possible, the
PLM Service sets the management-lost readiness flag for the entity to reflect this
situation. In this case, the value of the operational, administrative, presence, and
readiness states of the HE or EE object may or may not reflect the actual state of
the entity.

The following applies when the management-lost readiness flag is set for the
entity:

. Its administrative state may vary as a consequence of an administrative opera-
tion. If the PLM Service processes an administrative operation on the entity
and attempts to change the administrative state of the entity but cannot per-
form all the necessary actions to apply the administrative state or cannot
determine whether all these actions were completed, the administrative state
of the entity is set to the intended value, and the PLM Service additionally sets
the admin-operation-pending readiness flag for the entity.

The PLM Service returns SA_Al S ERR_DEPLOYMENT error code to the corre-
sponding administrative operation on the entity.

34

SAI-AIS-PLM-A.01.02 Section 3.1.3.1.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

. Its operational state may vary as a consequence of a failure detected by the
PLM Service or reported by a PLM user with the invocation of the
saPl nEnt i t yReadi nessl npact () function (see Section 3.5.3.1). If the
failure of the entity is detected, and the PLM Service is not able to isolate the
failed entity, the flag isolate-pending is additionally set. This flag is cleared by
the PLM Service when it regains its management capability for the entity, or if
the failure is cleared by an invocation of the
saPl nEnti t yReadi nessl npact () function (see Section 3.5.3.1) or by the
execution of the SA PLM _ADM N_REPAI RED administrative operation
(see Section 5.4.10).

. lItsreadiness state may vary as a consequence of changes in its administrative
or operational states or as a consequence of changes in the readiness state of
entities it depends upon.

. Its presence state is the last value known by the PLM Service, that is, the
value of the presence state before the management-lost readiness flag was
set for the entity.

When the PLM Service regains its capability to monitor and control the state of an
entity for which the management-lost readiness flag was set, the PLM Service
automatically clears this flag and updates the value of the operational, presence,
and readiness states of the entity to reflect the current state of the entity. If the
admin-operation-pending flag is set, the PLM Service must perform the pending
administrative operation and must clear the flag. If the isolate-pending flag is set,
and the operational state of the entity is still disabled, the PLM Service must iso-
late the failed entity.

When the operator issues an SA_PLM _ADM N_REMOVED administrative opera-
tion (see Section 5.4.11) on the HE, PLM transitions the presence state of the HE
to not-present and clears all readiness flags.

= dependency

The dependency flag is set for an entity when one of its ancestors is not in-ser-
vice, or fewer than saPl nDepM nNunber entities of one of its dependencies are
not in-service. That is, this flag indicates that the entity is not in-service, at least
in part due to the readiness state of an ancestor or of an entity upon which it is
dependent.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.1.5 35

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

= imminent-failure

This flag is set for an entity when its operational state is enabled, and an immi-
nent failure on the entity has been detected by the PLM Service or reported to
the PLM Service with the saPl nEnt i t yReadi nessl npact () function (see

Section 3.5.3.1).

The PLM Service clears this flag if the operational state of the entity is disabled or
if the imminent-failure condition is cleared. The PLM Service may detect that the
imminent-failure condition is cleared by analyzing the hardware state, or a user
may report that an imminent-failure condition is cleared by calling

saPl nEnti t yReadi nessl npact () or by issuing the

SA PLM ADM N_REPAI RED administrative operation; however, if a user reports
that an imminent-failure condition is cleared, the flag may remain set if PLM
determines that the imminent-failure condition still exists.

= dependency-imminent-failure

This flag is set for an entity when its operational state is enabled, but the immi-
nent-failure or dependency-imminent-failure readiness flag is set for an ancestor
or in enough entities upon which this entity depends, so that if they failed would
cause the failure of this entity. In other words, this flag indicates that this entity is
at risk of failure due to the failure of other entities that are known to be at risk of
imminent-failure.

This flag is cleared if the operational state of the entity becomes disabled, or if
the imminent-failure and dependency-imminent-failure readiness flags are
cleared for all ancestor entities and for at least saPl mDepM nNunber entities
that are not out-of-service in each of its dependencies.

= admin-operation-pending

This flag is used together with the management-lost readiness flag, as has been
explained previously. It indicates that the PLM Service was not able to perform all
the actions necessary to apply the administrative state or could not determine
whether all the actions were completed on the entity due to circumstances for
which the management-lost readiness flag was set for the entity.

The admin-operation-pending flag is removed when

. the management-lost readiness flag has been removed, and

. the PLM Service has performed the administrative operation, or the operator
has successfully executed the SA_ PLM ADM N_REMOVED administrative oper-
ation.

36

SAI-AIS-PLM-A.01.02 Section 3.1.3.1.5 AIS Specification

10

15

20

25

30

35

40

SERVICE

Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

=

isolate-pending

This flag is used together with the management-lost readiness flag, as has been
explained previously. It indicates that the PLM Service was not able to issue the
actions necessary to isolate the entity or could not determine whether the actions
were completed on the entity due to circumstances for which the management-
lost readiness flag was set for the entity.

The isolate-pending flag is removed when

. the management-lost readiness flag has been removed, and

. the PLM Service has isolated the entity, or the operator has successfully exe-
cuted the SA_PLM _ADM N_REMOVED administrative operation.

3.1.3.2 EE States

3.1.3.21EE

Presence State

The presence state of the EE represents its life-cycle. Possible values are instanti-
ated, uninstantiated, terminating, instantiating, instantiation-failed, and termination-
failed.

= uninstantiated

=

The presence state of an EE is set to uninstantiated when the operating system
or other software that provides the operating environment for that EE is not exe-
cuting. Typically, this will be due to one or more of the following conditions:

. the administrative state of the EE is locked-instantiation;

. the operational state of the EE is disabled, so PLM has isolated the EE (the
meaning of EE isolation is described in Section 3.1.6 on page 52 in detail);

. the readiness state of an ancestor or dependency object is out-of-service.

PLM also needs to set the presence state of the EE to uninstantiated if the man-
agement-lost readiness flag was set for the entity, and the operator issued an
SA PLM ADM N_REMOVED administrative operation (see Section 5.4.11).

instantiating

This value is used as a transitional state when an EE was uninstantiated and
should become instantiated.
For example, the following situations may be reflected by this state:

. The parent HE just entered the active presence state, so the EE starts boot-
ing.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 3.1.3.2 37

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

. The administrative state of the EE was changed from locked-instantiation to
locked, allowing the EE to boot.

The administrative state of the EE was changed from locked to unlocked
and the implementation requires a reboot of the operating system.

. The readiness state of the EE or of one of its ancestors or a dependency
changed, allowing the presence state of the EE to transition from uninstanti-
ated to instantiated.

The EE or one of its ancestors was restarted by the RESTART or RESET
administrative operations, and the boot process for the EE started.

= instantiated

The presence state of an EE is set to instantiated when the start-up of the EE
completed, and the EE is able to provide its service.

= instantiation-failed

If an EE cannot be instantiated within the configured time (specified by the
saPl nEEl nst ant i at eTi meout attribute of the SaPl nEE object class, shown
in FIGURE 7 on page 111), the presence state of the EE is set to instantiation-
failed, and its operational state is set to disabled.

= terminating

The presence state of an EE is set to terminating when the operating system (or
other software that provides the operating environment for that EE) was execut-
ing and is now in the process of stopping its execution. This value is used as a
transitional state when an EE was instantiated and transitions to uninstantiated.

For example, the following situations may be reflected by this state:

The parent HE just entered the deactivating presence state, and track users
have accepted the deactivation request, so PLM starts to terminate all services
and also terminates the EE.

The administrative state of the EE was changed from locked to locked-instanti-
ation, so PLM starts to terminate the EE.

A LOCK administrative operation was issued on one of the ancestors, and
track users have accepted the request, or the forced option was given, so PLM
starts to terminate all services and will also eventually terminate the EE.

A LOCK administrative operation on an entity upon which the EE depends will
cause that fewer than saPl nDepM nNunber entities of one of the EE's
dependencies will be in-service.

38

SAI-AIS-PLM-A.01.02 Section 3.1.3.2.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

. The readiness state of the EE, of one of its ancestors, or of an entity upon
which it depends changed to out-of-service (such that in the latter case fewer
than saPl nDepM nNunber entities of one of the EE's dependencies will be
in-service), so the EE must be terminated.

. A SHUTDOWN administrative operation was issued on the EE or on one of its
ancestors, and all services have been terminated, so PLM will start to termi-
nate the EE itself.

. PLM detects that the EE unexpectedly starts its termination process.
= termination-failed

If an EE is not able to successfully terminate within the configured time (specified
by the saPl nEETer m nat eTi neout attribute of the SaPl nmEE object class,
shown in FIGURE 7 on page 111), the presence state of the EE is set to termina-
tion-failed, and its operational state is set to failed.

3.1.3.2.2 Administrative State

As for other AIS Services, the PLM Service defines the administrative state of an EE
using an extension of the administrative state specified by ITU (see [11]). Possible
values for the administrative state of an EE are locked, unlocked, locked-instantia-
tion, and shutting-down.

The administrative state for an EE has the following meaning:

= unlocked
The EE has not been directly prohibited by the administrator from providing ser-
vice.

= locked
The administrator has prevented the EE from providing service.
The EE itself may be up and running, but none of its contained objects (for
instance, child-EEs and cluster nodes) are allowed to run.

Software diagnostics could be started on the EE, but configured applications and
AIS Services other than PLM are not allowed to execute.

= locked-instantiation
The administrator has forced the EE itself to be not running at all.

In case of an EE running directly on an HE, the appropriate means may be to
assert reset state of that EE.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2.2 39

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

In case of an EE running on a virtual machine, the PLM Service may use the vir-
tual machine monitor (VMM) to prevent the EE from executing.

= shutting-down

The administrator has prevented the execution environment and its contained
and depending entities from providing service to new users. The execution envi-
ronment's administrative state becomes locked as soon as all services the exe-
cution environment provides as well as all services provided by its contained and
depending entities become unused by all their current users. PLM provides the
API for the coordination with its clients (see Section 3.1.7).

3.1.3.2.3 Operational State

The PLM Service uses the operational state as in other AlS Services, which is differ-
ent from the way ITU uses the state with the same name. As defined by the PLM Ser-
vice, the operational state indicates whether or not an entity is faulty. Possible
values are enabled and disabled.

= enabled

The EE is healthy and capable of executing the intended software. PLM is not
aware of any failure conditions that would prevent any intended use.

The operational state of an EE transitions from disabled to enabled when a suc-
cessful repair action has been performed on the EE. Repair actions are reported
to PLM with the saPl nEnt i t yReadi nessl npact () interface (see

Section 3.5.3.1) or with the SA_PLM _ADM N_REPAI RED administrative operation
(see Section 5.4.10). The operational state may transition from disabled to
enabled without a repair action being reported if the EE becomes instantiated
again.

= disabled

The operational state of an EE transitions to disabled if a failure condition is
detected.

PLM detects failure conditions of EEs in different ways:

. PLM can detect EE failure conditions by EE-specific means.

. PLM declares an EE as failed if the EE's presence state was set to instanti-
ation-failed because the EE was unable to start up successfully.
PLM also declares an EE as failed if the EE's presence state was set to ter-
mination-failed because the EE was unable to terminate successfully.

40

SAI-AIS-PLM-A.01.02 Section 3.1.3.2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

. PLM users can detect failure conditions and report these conditions by
invoking the saPl nEnt i t yReadi nessl npact () function (see
Section 3.5.3.1).

3.1.3.2.4 Readiness State

As in other AIS Services, the readiness state summarizes values of a set of states.
Possible values are in-service, out-of-service, and stopping.

The readiness state indicates whether the EE provides its service. This state collects
information from all other states, from the ancestor objects, and from mandatory
dependencies.

= out-of-service

The entity represented by the EE object does not provide service due to one or
more of the following conditions:

. Its administrative state is locked or locked-instantiation.

. Its EE presence state is neither instantiated nor terminating.
. Its operational state is disabled.

. The readiness state of any ancestor is out-of-service.

. Fewer than the saPl nDepM nNunber entities of a dependency are in-ser-
vice or stopping.

In case of the last two conditions, the readiness flag “dependency” is also set.

=in-service

The readiness state of an EE is in-service if the entity can provide its service. So
all of the following conditions must be met:

. Its administrative state is unlocked.

. Its EE presence state is instantiated or terminating.
. Its operational state is enabled.

. The readiness states of all ancestors are in-service.

. For each of its dependencies, at least as many entities are in-service as the
required number specified by saPl nDepM nNunber.

= stopping

The readiness state of an HE transitions from in-service to stopping when one of
the following conditions occur:

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.2.4 41

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

. Its administrative state is set to shutting-down.
. The readiness state of an ancestor is set to stopping.

. the readiness state of an entity in a dependency is stopping, and the num-
ber of remaining in-service entities is lower than saPl nDepM nNunber
while still saPl mDepM nNunber entities of that dependencies are not out-
of-service.

The readiness state cannot transition from out-of-service to stopping.

3.1.3.2.5 Readiness Flags

The readiness flags complement the readiness state of an object by providing addi-
tional information. A flag is defined for each of the following situations:

= management-lost

The PLM Service has management capability over an entity when the PLM Ser-
vice is able to monitor and control the entity sufficiently to accurately model the
entity via an HE or EE object that represents the entity. When the PLM Service
loses some or all of its management capabilities such that this is not possible, the
PLM Service sets the management-lost readiness flag for the entity to reflect this
situation. In this case, the value of the operational, administrative, presence, and
readiness states of the HE or EE object may or may not reflect the actual state of
the entity.

The following applies when the management-lost readiness flag is set for the
entity:

Its administrative state may vary as a consequence of an administrative opera-
tion. If the PLM Service processes an administrative operation on the entity
and attempts to change the administrative state of the entity but cannot per-
form all the necessary actions to apply the administrative state or cannot
determine whether all these actions were completed, the administrative state
of the entity is set to the intended value, and the PLM Service additionally sets
the admin-operation-pending readiness flag for the entity.

The PLM Service returns SA_Al S ERR_DEPLOYMENT error code to the corre-
sponding administrative operation on the entity.

Its operational state may vary as a consequence of a failure detected by the
PLM Service or reported by a PLM user with the invocation of the

saPl nEnti t yReadi nessl npact () function (see Section 3.5.3.1). If the
failure of the entity is detected, and the PLM Service is not able to isolate the
failed entity, the flag isolate-pending is additionally set. This flag is cleared by
the PLM Service when it regains its management capability for the entity, or if

42

SAI-AIS-PLM-A.01.02 Section 3.1.3.2.5 AIS Specification

10

15

20

25

30

35

40

SERVICE

Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

the failure is cleared by an invocation of the

saPl nEnti t yReadi nessl npact () function (see Section 3.5.3.1) or by the
execution of the SA_ PLM ADM N_REPAI RED administrative operation (see
Section 5.4.10).

. Its readiness state may vary as a consequence of changes in its administrative
or operational states or as a consequence of changes in the readiness state of
entities it depends upon.

. Its presence state is the last value known by the PLM Service, that is, the
value of the presence state before the management-lost readiness flag was
set for the entity.

When the PLM Service regains its capability to monitor and control the state of an
entity for which the management-lost readiness flag was set, the PLM Service
automatically clears this flag and updates the value of the operational, presence,
and readiness states of the entity to reflect the current state of the entity. If the
admin-operation-pending flag is set, the PLM Service must perform the pending
administrative operation and must clear the flag. If the isolate-pending flag is set,
and the operational state of the entity is still disabled, the PLM Service must iso-
late the failed entity.

When the operator issues an SA_PLM _ADM N_REMOVED administrative opera-
tion (see Section 5.4.11) on the EE, PLM changes the presence state of the EE
to uninstantiated and clears all readiness flags.

= dependency

=

The dependency flag is set for an entity when one of its ancestors is not in-ser-
vice, or fewer than saPl mDepM nNunber entities of one of its dependencies are
not in-service. That is, this flag indicates that the entity is not in-service, at least
in part due to the readiness state of an ancestor or of an entity upon which it is
dependent.

imminent-failure

This flag is set for an entity when its operational state is enabled, and an immi-
nent failure on the entity has been detected by the PLM Service or reported to
the PLM Service with the saPl nEnt i t yReadi nessl npact () function (see

Section 3.5.3.1).

The PLM Service clears this flag if the operational state of the entity is disabled or
if the imminent-failure condition is cleared. The PLM Service may detect that the
imminent-failure condition is cleared by analyzing the hardware state, or a user
may report that an imminent-failure condition is cleared by calling

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.1.3.2.5 43

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

saPl nEnti t yReadi nessl npact () or by issuing the

SA PLM ADM N_REPAI RED administrative operation; however, if a user reports
that an imminent-failure condition is cleared, the flag should remain set if the
PLM Service determines that the imminent-failure condition still exists.

= dependency-imminent-failure

This flag is set for an entity when its operational state is enabled, but the immi-
nent-failure or dependency-imminent-failure readiness flag is set for an ancestor
or for enough entities upon which this entity depends, so that if they failed would
cause the failure of this entity. In other words, this flag indicates that this entity is
at risk of failure due to the failure of other entities that are known to be at risk of
imminent-failure.

This flag is cleared if the operational state of the entity becomes disabled, or if
the imminent-failure and dependency-imminent-failure readiness flags are
cleared for all ancestor entities, and at least saPl nDepM nNunber entities that
are not out-of-service in each of its dependencies.

= admin-operation-pending

This flag is used together with the management-lost readiness flag, as has been
explained previously. It indicates that the PLM Service was not able to perform all
the actions necessary to apply the administrative state or could not determine
whether all the actions were completed on the entity because the management-
lost readiness flag was set for the entity.

The admin-operation-pending flag is removed when

. the management-lost readiness flag has been removed, and

. the PLM Service has applied the administrative state, or the operator has suc-
cessfully executed the SA_ PLM ADM N_REMOVED administrative operation.

= isolate-pending

This flag is used together with the management-lost readiness flag, as has been
explained previously. It indicates that the PLM Service was not able to issue the
actions necessary to isolate the entity or could not determine whether the actions
were completed on the entity because the management-lost readiness flag was
set for the entity.

The isolate-pending flag is removed when

. the management-lost readiness flag has been removed, and

. the PLM Service has isolated the entity, or the operator has successfully exe-
cuted the SA_PLM _ADM N_REMOVED administrative operation.

44

SAI-AIS-PLM-A.01.02 Section 3.1.3.2.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

3.1.3.3 Mapping Between PLM and HPI Objects

FIGURE 2 illustrates how PLM objects and objects of other SA Forum Services map
to each other. Note that the multiplicities for HPI object classes below

SaHpi Managenent Capabi | i t y are not shown in the figure. For details on HPI
classes and objects, refer to [3].

FIGURE 2 Mapping Between PLM Objects and Objects of Other SA Forum Services

SaAmfApplication

0..*
1
SaPImDomain SaClmCluster Maps on [(Fsa amiCluster
HO,.l 0..1 /IR 1 0.1
1 Y. 1
0.*
SaPImEntity
0..* 0..*
0.1f sapimHE SaPimge | Maps on SaClmNode Maps on [T saamfNode
0.1 0.1 0.1 0.1 .1 0.1
SaHpiSession 0.1 0.1 0.*
0.*
0.4
Accesses Maps on
1
SaHpiDomain 0.1
o SaHpiEntity
Accesses
0. 1
SaHpiResource Manages
1%

L

*
L | SaHpiManagementCapability
Provides

4

| SaHpiManagementinstrument

SaHpiSensor

SaHpiControl

‘ SaHpiResourceCapability |

Y Y 4

SaHpiPower

SaHpiReset

]

SaHpiAnnunciator SaHpiHotSwap

SaHpiWatchdogTimer SaHpiLoadld

"
i

SaHpilnventoryDataRepository l_

SaHpiFirmwareUpgradeM|
SaHpiDiagnosticslnitiatorMI|

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.3 45

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

Each HE object is mapped to an HPI entity. In HPI, the entity may have multiple man-
agement capabilities. Each of these management capabilities is accessed through a
specific resource, and that resource is a member of zero or more domains. The PLM
Service will typically perform an HPI discovery operation, as described in [3], and
build a table of available management capabilities, organized by physical entity. This
table should note, for each capability, which HPI domain and resource to use to
access that capability for the entity.

3.1.3.4 Recommendation for HE Modeling

When system architects design a system, they need to create HE types for the differ-
ent levels of the hardware architecture. They also need to decide in which granularity
hardware is visible for software in the information model. Typically, every field
replaceable unit (FRU) is modeled as a separate HE object.

The PLM Service requires that an HE have at most one EE as a child. This is the EE
that is booted when an HE starts up. If the EE runs a virtual machine monitor, then
additional EEs for the virtual machines are modeled as children of that EE, rather
than as direct children of the HE.

It is strongly recommended that every hardware entity that should be managed as a
redundancy unit be modeled as an HE. That is, if there are maintenance procedures
to exchange hardware units, the PLM Service can reflect the maintenance proce-
dures to application software only if those FRUs are separately modeled as HEs.
Thus, the PLM Service also provides the administrative operations to support such
maintenance procedures.

This recommendation is also valid for HEs that are not parent to an EE. Even entities
like power supplies or fans, which do not directly contribute to the computing capabil-
ities of a system, should be modeled as separate HEs if they are FRUs. When enti-
ties are not modeled as HEs, the PLM Service must map alarms or notifications
associated with those entities to an HE associated with an entity containing the
affected entity; PLM should choose the HE closest to the entity in the containment
tree.

System architects can decide to model with a finer granularity than the granularity of
FRUSs. With this modeling, the PLM Service can do a more detailed mapping of hard-
ware alarms and other events.

The SaPl nHEBaseType object class can be used to represent the functionality of the
HE from a user’s perspective, and the SaPl mHEType object class reflects the imple-
mentation-specific control aspects. In other words, an object of the

SaPl mHEBaseType class groups together different objects of the SaPl mHEType

46

SAI-AIS-PLM-A.01.02 Section 3.1.3.4 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

class that represent different implementations of the same hardware functionality.
Thus, from the perspective of entities of other layers, such as EEs, CLM nodes, or
AMF nodes, HE entities referring to different HE types (objects of SaPl nHEType
class) of the same HE base type (an object of SaPl nHEBaseType object class)
should be transparently interchangeable.

In addition, at the SaPl mHEType level, the vendor should provide enough informa-
tion, so that PLM can correctly manage the specific hardware that is installed.

3.1.3.5 Hardware Health Monitoring

The PLM Service monitors the health state of hardware entities with the help of HPI.
HPI uses sensor states to represent the state of the hardware, and some sensors
indicate the state of health of the hardware. Changes of sensor states may be
reported by HPI using HPI events.

PLM needs to keep track of the relevant sensor states. Therefore, PLM needs to
actively read sensor states when a resource giving access to the sensor is added or
restored to a domain, or when PLM opens a new session to a domain. PLM needs to
analyze HPI events and take appropriate actions like reading sensors or enabling
sensor events.

PLM may need some specific sensors to monitor the state of health of the hardware.
If those sensors cannot be read, and PLM cannot retrieve the necessary information
by other means, PLM must set the management-lost readiness flag for the affected
HE.

Typically, a PLM implementation will provide a means to configure how sensor states
are evaluated. The user can configure which sensors of a hardware type are impor-
tant for health checking. The configuration will specify which state values are consid-
ered to indicate a hardware failure, an imminent failure, or an alarm for the HE
representing the hardwarel. PLM may enable the related sensor events in HPI or
may start polling sensors?. When PLM detects a sensor state changing to a value
that indicates, for instance, a failure (by HPI event or by reading the sensor), PLM will
assume that the hardware entity associated with the hardware entity monitored by
that sensor is faulty. There may also be more complex conditions, for instance, when
multiple sensors that can indicate failure, imminent failures, or alarm conditions need
to be considered together.

1. This configuration is implementation-specific.
2. There may be sensors that do not support events.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.3.5 47

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.1.3.6 Other Aspects of Interworking with HPI

HPI provides policies for automatic handling of extraction and insertion of entities
supporting the hot swap model. PLM will typically stop the auto insertion and auto
extraction policies to gain full control of the insertion and extraction process.

During start-up, the PLM Service needs to discover the present hardware, including
its state, and map the present hardware to the configured HEs.

The PLM Service uses HPI events to be notified about changes in the hardware as
fast as possible. The PLM Service needs to analyze all HPI events to detect their
impact on the system and determine state changes of the configured objects. The
PLM Service issues state change notifications (see Section 6.2.2 on page 155), as
defined by the Notification Service, see [4].

The PLM Service may additionally provide the capability to issue notifications for all
HPI events. These notifications cannot be used directly to indicate the hardware
states without detailed analysis. Their only goal is to log all relevant events in a sys-
tem at one place and output them if needed through the same channel. PLM should
provide local suppression for these notifications. For details on the format of these
notifications, refer to Section 6.2.3 on page 158.

3.1.4 EE Management

A PLM implementation should provide similar capabilities on EE level as provided on
hardware level. However, no standard interface for the management of operating sys-
tems and virtual machine monitors is available. Thus, EE management at this point is
implementation-specific and will vary for the operating systems and virtual machine
monitors that a PLM implementation supports. However, the PLM implementation
must provide appropriate administrative operations and implementation-specific
actions according to the state changes. For instance, PLM typically needs to control
the start-up of an operating system when the hardware element becomes in-service,
and it also needs to detect when the EE is instantiated and in-service.

3.1.4.1 Recommendation for EE Modeling

In virtualized architectures, it is recommended that system architects model all virtual
machines as separate EEs. In theory, it is also possible to map all software directly to
a hypervisor EE without representing each virtual machine in the model. However, in
that case, an administrative operation (for instance, restart) cannot be executed by
PLM for individual virtual machines.

48

SAI-AIS-PLM-A.01.02 Section 3.1.3.6 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

3.1.4.2 PLM Virtualization Support

Virtualization technologies provide means to aggregate multiple computing elements
into a single virtual environment or to partition a computing element to provide multi-
ple virtual environments. For an overview of virtualization architectures that are
important for high availability platforms, see [13].

All architectures can be represented by EE objects in the PLM Information Model.

. In case of aggregation, a single EE depends on multiple hardware entities, which
may be represented by HEs. The system architect could model this case by
choosing a reasonable high level HE to be the parent element of the EE.

Other dependencies must be modeled using dependency objects.

. In case of partitioning, EE objects are used to represent the virtual machine
monitors and also to represent the virtual machines, as described below in more
detail.

For other architectures, even a combination of aggregations and partitioning
may be used.

Virtualization is provided by a virtual machine monitor (VMM) or hypervisor, which

. may run directly on the physical hardware (bare-metal hypervisor) or
. requires an operating system to run on.

Usually, the VMM provides a set of virtual machines (VM). Every VM can run an oper-
ating system.

As explained above, the PLM Service uses EE objects in its information model to rep-
resent the VMM as well as the VMs. These object classes reflect the architecture of
VMM and VMs in the information model and also enable the PLM Service to manage
the corresponding entities.

There are several possible types of virtualization architectures.

. A VMM can directly run on the hardware element and provide VMs for operating
systems running under its control.

. AVMM can be integrated in an operating system, allowing VMs to run in parallel
with normal processes.

A VMM can run as an application under control of an operating system and still
provide VMs that run child operating systems.

The diagram in FIGURE 3 illustrates these architectures and how they are repre-
sented in the information model:

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.4.2 49

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
Platform Management Service API Specification

SERVICE
AVAILABILITY’

FORUM

FIGURE 3

Virtualized Architectures in the PLM Information Model

HE HE HE

EE:
Operating-System

EE: VMM

Lt
-

EE: VMM P
(OS integrated) el

CLM-node

EE:VMM
(OS hosted)

-
e
e
-
R

CLM-node

EE: EE: EE: EE: EE: EE:
Operating-System | _ | Operating-System Operating-System « | Operating-System Operating-System « | Operating-System

CLM-node CLM-node CLM-node CLM-node CLM-node CLM-node

FIGURE 3 also shows the possible CLM nodes. Note that an EE does not necessarily
host CLM nodes. Note also that CLM nodes are not nested, that is, every CLM node
runs directly on an EE. PLM uses interfaces specific to the operating systems and to
VMM implementations to provide management for the EE objects.

PLM thus hides the proprietary interfaces of VMMs and operating systems from AIS
middleware and higher layers. PLM reflects all changes in the virtual machines in its
information model and notifies its users about the changes using the track callback
interface. That way, AIS middleware configuration can be kept independent from the
VMM implementation and still be aware of changes in the cluster architecture.

At the same time, the information model shows dependencies that are important for
high availability. For instance, CLM nodes that run on the same HE, should not host
active and standby service units for the same service instance (for details, see [9]).
However, it is the task of the system configurator or of a configuration application to
avoid this situation. PLM only provides information about which EEs share the same
hardware or have dependencies to the same hardware entities.

50

SAI-AIS-PLM-A.01.02 Section 3.1.4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

3.1.5 Verification of the System Configuration

3.1.5.1 Verification of the Hardware Configuration

When attempting to match a hardware element with a hardware entity, the PLM Ser-
vice performs the following actions:

It checks that the hardware entity is located in one of the potential locations that
have been configured for the hardware element. The entity path of the hardware
entity is used by the PLM Service to perform this check.

. It checks that the characteristics of the hardware entity match the configured
characteristics of the hardware element. The entity type of the HPI entity and the
contents of its Inventory Data Repositories (IDR) are used by the PLM Service to
perform this check.

For more details, refer to Section 4.5.1 on page 106.

If there is no configured HE object for a hardware entity that is present in the system,
the PLM Service will ignore this entity. However, the PLM Service may issue the
Unmapped Hardware Entity Alarm, which is described in

Section 6.2.1.5 on page 153.

3.1.5.2 Verification of Execution Environments

The various attributes of the EE types and base types are used to validate the
installed and automatically booted operating system or virtualization monitor against
the configuration. These attributes include:

Vendor name

Product name

Release

Version

It is implementation-specific how the PLM Service uses these attributes to match an
execution environment with a particular operating system or virtualization monitor.

Details on the EE type (SaPl nEEType) and EE base type (SaPl nEEBaseType)
object classes are presented in Section 4.6.

If there is no configured EE object matching an execution environment that is present
in the system, the PLM Service will ignore this entity.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.5 51

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAlFlni\uBM"-lT\'"

3.1.6 Isolation of Entities

When a PLM entity is faulty (its operational state is set to disabled), the PLM Service
is responsible for isolating this entity from the system. An isolated entity cannot pro-
vide service and does not impact other parts of the system.

PLM may attempt automatic repair actions on a faulty entity, for instance, restart or
reset of the entity or even of its parent. These repair actions are implementation-spe-
cific.

Isolation is done in the same way for the following causes:

. Calltothe saPl nEnt i t yReadi nessl npact () function
(see Section 3.5.3.1).

. Analysis of HPI events
. Analysis of hardware states
. EE health monitoring

PLM must attempt to isolate the entity before PLM notifies track users about the fail-
ure of the entity. If PLM fails to isolate the entity because the management-lost readi-
ness flag is set for the entity, the isolate-pending flag is set in the readiness flag of the
entity.

PLM informs track users in the completed step of the track interface about the isola-
tion or pending isolation.

Isolation is not only applicable to faulty entities, PLM also provides an administrative
operation to allow the operator to isolate an entity. Hardware elements are isolated by
the SA_ PLM_ADM N_DEACTI VATE administrative operation (see Section 5.4.7), and
execution environments are isolated by the

SA PLM ADM N _LOCK | NSTANTI ATI ON operation (see Section 5.4.4).

Isolation of HEs:

When PLM isolates a hardware element, it forces the hardware element’s presence
state to become inactive. The actions taken depend on the hardware capabilities.
PLM will take actions such as the following ones:

Typically, if the hardware element provides managed hot swap capabilities, PLM
isolates the hardware element by hot swap management and forces the hard-
ware element to be set inactive (HPI hot swap state typically includes power off).

SAI-AIS-PLM-A.01.02 Section 3.1.6 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

. Hardware elements that do not support managed hot swap may still support
power management. PLM usually isolates these elements by powering them
down.

. On hardware elements that neither support hot swap nor power management,
PLM may attempt to assert the reset state.

. For hardware elements that do not support the aforementioned measures, PLM
may attempt other implementation-specific actions to isolate the entity.

If the hardware element hosts an EE, at least the EE must be terminated, that is, its
presence state must change to uninstantiated when the presence state of the hard-
ware element goes to inactive.

Isolation of EEs that are Directly Hosted by an HE

Again, isolation depends on the capabilities. At least the EE must be terminated and
its presence state set to uninstantiated. If it is not possible to terminate the EE, PLM
may assert reset state on the HE or isolate the HE.

Isolation of EEs Running in a Virtual Machine
Again, isolation depends on the capabilities. At least the EE must be terminated and

its presence state set to uninstantiated.

. PLM may use the hypervisor to terminate the EE.

. Ifitis not possible to terminate the EE, and other EEs on that HE are still active,
PLM should not isolate the HE.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.1.6 53

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.1.7 Overview of the PLM Interfaces

The PLM Service provides the following types of interfaces to its users, which can be
applications, AIS Services, and management applications:

Track Interface

The track interface allows users to subscribe and be notified when the readiness
status (that is, readiness state or readiness flags) of an entity changes.

PLM users can subscribe for groups of PLM objects and select the cases when
they are notified.

Administrative operations on PLM objects may affect several services, and—in
many cases—an operator does not know how the locking of a PLM entity or the
extraction of some hardware will impact the services being provided. To allow
users of the PLM track API to reject a particular operation or to relocate some
services before the operation is performed, the PLM track interface notifies its
users in several steps.

The track interface provides four options:
. Validate: subscribed users are asked to validate, that is, to accept or reject the
operation that will cause the change.

. Start: subscribed users should now take appropriate actions before the entity
is locked or deactivated. They can, for instance, relocate their services.

. Completed: subscribed users are notified that the operation has been per-
formed.

. Aborted: subscribed users are notified that the operation was rejected during
the validate step.

When calling the saPl mReadi nessTr ack() function, subscribers can choose
for which of the above steps they want to be notified.

For more details, refer to Section 3.5.2 on page 85. Operational scenarios illus-

trating how these options can be used are included in Appendix B on page 167.

Notifications

PLM users that need more detailed information about state changes of PLM enti-

ties can subscribe for notifications using the NTF Service (see [4]). For detalils,
refer to Section 6.2.2 on page 155.

54

SAI-AIS-PLM-A.01.02 Section 3.1.7 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

Administrative Operations

The PLM Service provides administrative operations to manage the administra-
tive state of its objects.

Additionally, administrative operations provide a means to restart an EE or reset
an HE. This interface can, for instance, be used during AMF repair procedures.
All administrative operations are described in Section 5.4 on page 115.

Error Reporting

Not all errors on PLM entities can be detected by PLM itself. AIS Services and

applications can also detect errors. The saPl nEnt i t yReadi nessl npact ()
interface is provided to report errors (see Section 3.5.3.1).

3.1.8 PLM Service and Cluster Membership

The PLM Service has no knowledge about cluster membership. It provides its service
independently from the Cluster Membership Service.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 3.1.8 55

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.2 Include File and Library Names

The following statement containing declarations of data types and function prototypes
must be included in the source of a process using the PLM Service API:

#i ncl ude <saPl m h>

To use the PLM Service API, a process must be bound with the following library:

i bSaPl m so

3.3 Type Definitions

The APIs of the PLM Service use the types described in the following sections.

3.3.1 PLM Handles
3.3.1.1 SaPImHandleT

t ypedef SaUi nt 64T SaPl nHandl eT;

The SaPl mHandl eT type is used for the handle to the PLM Service. A process
acquires this handle by invoking saPl mi niti al i ze() and uses it in subsequent
invocations of the functions of the PLM Service.

3.3.1.2 SaPImEntityGroupHandleT

t ypedef SaUi nt 64T SaPl nEntityG oupHandl eT;

The SaPl nEnt i t yG oupHandl eT type is used for the handle to a group of PLM
entities tracked through saPl nReadi nessTrack() .

3.3.2 HE Administrative State

t ypedef enum {
SA PLM HE_ADM N_UNLOCKED =
SA PLM HE_ADM N_LOCKED =
SA PLM HE_ADM N_LOCKED | NACTI VE =
SA PLM HE_ADM N_SHUTTI NG_DOWN =
} SaPl mHEAdmM nSt at eT;

AW N P

The SaPl mHEAdm nSt at eT type is used to represent the administrative state of a
PLM hardware element.

56 SAI-AIS-PLM-A.01.02 Section 3.2 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

3.3.3 EE Administrative State

t ypedef enum {

SA_PLM EE_ADM N_UNLOCKED
SA_PLM EE_ADM N_LOCKED

SA_PLM EE_ADM N_LOCKED_| NSTANTI ATI ON
SA_PLM_EE_ADM N_SHUTTI NG_DOMN

} SaPl nEEAdmM nSt at eT;

The SaPl mEEAdm nSt at eT type is used to represent the administrative state of a

PLM execution environment.

3.3.4 Operational State

t ypedef enum {

SA_PLM OPERATI ONAL_ENABLED = 1,
SA_PLM OPERATI ONAL_DI SABLED= 2

} SaPl mOper ati onal St at eT;

A W N P

The SaPl nOper at i onal St at eT type is used to represent the operational state of a
PLM entity.

3.3.5 HE Presence State

t ypedef enum {

SA PLM HE_PRESENCE_NOT PRESENT
SA_PLM HE_PRESENCE_| NACTI VE
SA_PLM HE_PRESENCE_ACTI VATI NG
SA_PLM HE_PRESENCE_ACTI VE
SA_PLM HE_PRESENCE_DEACTI VATI NG

} SaPl nHEPr esenceSt at eT,;

The SaPl mHEPr esenceSt at eT type is used to represent the presence state of a

PLM hardware element.

a b~ W0 DN PP

AIS Specification

SAI-AIS-PLM-A.01.02 Section 3.3.3

57

10

15

20

25

30

40

Service AvaiIabiIityT"’I Application Interface Specification

ERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.6 EE Presence State

t ypedef enum {
SA PLM EE_PRESENCE_UNI NSTANTI ATED =
SA PLM EE_PRESENCE | NSTANTI ATI NG =
SA PLM EE_PRESENCE_| NSTANTI ATED =
SA PLM EE_PRESENCE_TERM NATI NG =
SA PLM EE_PRESENCE_| NSTANTI ATI ON_FAI LED =
SA PLM EE_PRESENCE_TERM NATI ON_FAI LED

} SaPl nEEPr esenceSt at eT,;

o 0o~ ODN PP

The SaPl nEEPr esencesSt at eT type is used to represent the presence state of a
PLM execution environment.

3.3.7 Readiness State

t ypedef enum {
SA_PLM READI NESS_OUT_OF_SERVI CE 1,
SA _PLM READI NESS_| N_SERVI CE 2,
SA _PLM READI NESS_STOPPI NG
} SaPl nReadi nessSt at eT;

The SaPl nReadi nessSt at eT type is used to represent the readiness state of a
PLM entity.

3.3.8 Readiness Flags

#define SA PLM RF_MANAGEMENT LOST 0x00001
#define SA_PLM RF_ADM N_OPERATI ON_PENDI NG 0x00002
#define SA PLM RF_| SOLATE_PENDI NG 0x00004
#define SA_PLM RF_DEPENDENCY 0x00100
#define SA_PLM RF_| MM NENT_FAI LURE 0x00200

#defi ne SA_PLM _RF_DEPENDENCY_| MM NENT_FAI LURE 0x00400
t ypedef SaU nt 64T SaPl nReadi nessFl agsT,;

The SaPl nReadi nessFl agsT type complements the readiness state of an entity by
providing additional information regarding the readiness status of the entity.

58 SAI-AIS-PLM-A.01.02 Section 3.3.6 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

ERVICE
AVAlFlui\uBM"-lw Platform Management Service API Specification

3.3.9 Readiness Status

t ypedef struct {
SaPl mReadi nessSt at eT readi nessSt at e;
SaPl nReadi nessFl agsT readi nessFl ags;
} SaPl nReadi nessSt at usT,;

The SaPl nReadi nessSt at usT type holds both the readiness state and readiness
flags of a PLM entity.

3.3.10 Readiness Impact

t ypedef enum {
SA PLM Rl _FAI LURE 1,
SA PLM Rl _| MM NENT_FAI LURE 2,
SA PLM Rl _FAI LURE_CLEARED = 101,
SA PLM Rl _| MM NENT_FAI LURE_CLEARED 102
} SaPl nReadi nessl npact T;

The SaPl nReadi nessl npact T type is used to report an event that affects the
readiness status (readiness state and readiness flags) of a PLM entity. The values of
SaPl nReadi nessl npact T have the following interpretation:

. SA PLM Rl _FAI LURE
This value is used to report the failure of a PLM entity.

SA PLM Rl _| MM NENT_FAI LURE
This value is used to report an imminent failure of a PLM entity.

. SA PLM Rl _FAI LURE_CLEARED
This value is used to report that the failure of a PLM entity has been repaired.

. SA PLM Rl _| MM NENT_FAI LURE_CLEARED
This value is used to report that the imminent failure of a PLM entity has been
cleared.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.9 59

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.11 HE Deactivation Policy

t ypedef enum {

SA_PLM DP_REJECT_NOT_0OOS =1,
SA_PLM DP_VALI DATE = 2,
SA_PLM DP_UNCONDI TI ONAL =3

} SaPl mHEDeact i vati onPol i cyT,;

This type is used to configure the PLM policy used in conjunction with a graceful
deactivation of hardware elements.

The values of SaPl mHEDeact i vat i onPol i cyT have the following interpretation:

SA PLM DP_REJECT _NOT_ QOGS
If the readiness state of the HE to be deactivated is not
SA PLM READI NESS OUT_COF_ SERVI CE, PLM rejects the deactivation.

SA_PLM DP_VALI DATE

If the readiness state of the HE to be deactivated is not

SA PLM READI NESS OUT_COF SERVI CE, PLM relies on its clients that track
(through saPl nReadi nessTr ack()) the readiness status of this entity or of
entities that depend on it to validate during the SA PLM CHANGE_VALI DATE
step whether the deactivation can proceed.

. SA PLM DP_UNCONDI TI ONAL
If the readiness state of the HE to be deactivated is not
SA PLM READI NESS_QUT_OF_SERVI CE, PLM natifies its clients that track
(through saPl nReadi nessTr ack()) the readiness status of this entity or of
entities that depend on it that the deactivation will occur
(SA_PLM CHANGE_START step).

60

SAI-AIS-PLM-A.01.02 Section 3.3.11 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

3.3.12 Entity Groups

t ypedef enum {

SA_PLM GROUP_SI NGLE_ENTI TY =
SA_PLM GROUP_SUBTREE =
SA_PLM GROUP_SUBTREE_HES_ONLY
SA_PLM GROUP_SUBTREE_EES_ONLY

I
B LD PF

} SaPl m& oupOpti onsT,;

The SaPl mGr oupOpt i onsT type is used by the saPl nEnt i t yG oupAdd() func-
tion. The values of SaPl mG oupOpt i onsT have the following interpretation:

SA PLM GROUP_SI NGLE_ENTI TY
This option is used to indicate that only the entities directly designated by their
names in the ent i ti es array are to be added to the entity group.

SA PLM GROUP_SUBTREE

This option is used to indicate that all entities contained in the subtrees that have
as a root the entities designated by their names inthe enti ti es array are to be
added to the entity group.

SA PLM GROUP_SUBTREE_HES ONLY

This option is used to indicate that all hardware elements contained in the sub-
trees that have as a root the entities designated by their namesintheenti ti es
array are to be added to the entity group.

SA PLM GROUP_SUBTREE_EES ONLY

This option is used to indicate that all execution environments contained in the
subtrees that have as a root the entities designated by their names in the
entities array are to be added to the entity group.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.3.12 61

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.13 State Tracking

The various types defined in this section are used by the PLM APIs that track
changes of the readiness status of a group of PLM entities.

3.3.13.1 SaPImGroupChangesT

t ypedef enum {

SA_PLM GROUP_NO_CHANGE =
SA_PLM GROUP_NMEMBER ADDED =
SA_PLM GROUP_MEMBER REMOVED =
SA_PLM GROUP_MEMBER READI NESS_CHANGE

A 0O DN P

} SaPl nGr oupChangesT;

The SaPl nGr oupChangesT type reflects the status of a PLM entity that is contained
in a track notification array, that is, in the array referred to by the ent i t i es pointer in
a structure of SaPl nReadi nessTrackedEnti ti esT type. The values of

SaPl na oupChangesT have the following interpretation:

SA PLM GROUP_NO_CHANGE

The readiness state and flags of the PLM entity have not changed. This value is
used when the t r ackFl ags parameter of the saPl mReadi nessTr ack()
function is

. either SA_TRACK_CURRENT

. or SA_TRACK CHANGES, and the PLM entity was already a member of the
tracked entity group, and none of its readiness state and flags have changed
(or are about to change in the case of the SA PLM CHANGE VALI DATE or
SA PLM CHANGE_START tracking steps).

SA PLM GROUP_MEMBER_ADDED
The PLM entity has been added to the tracked entity group.

SA_PLM GROUP_MEMBER REMOVED
The PLM entity has been removed from the tracked entity group.

SA PLM GROUP_MEMBER READI NESS CHANGE

The readiness state or flags of the PLM entity have changed (or are about to
change in the case of the SA_ PLM CHANGE_VALI DATE or

SA PLM CHANGE_START tracking steps).

62

SAI-AIS-PLM-A.01.02 Section 3.3.13 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityT"’I Application Interface Specification
AVAILABILITY Platform Management Service APl Specification

FORUM

3.3.13.2 SaPImChangeStepT

t ypedef enum {
SA PLM CHANGE_VALI DATE
SA_PLM CHANGE_START
SA _PLM CHANGE_ABORTED
SA PLM _CHANGE_COWPLETED
} SaPl nChangeSt epT,;

TR
B DdPF

The SaPl mChangeSt epT type is used to indicate in which step of the readiness
change tracking process the track callback is invoked. The values of
SaPl mChangeSt epT have the following interpretation:

SA_PLM CHANGE_VALI DATE
The track callback is invoked to allow the invoker to reject the change.

SA PLM CHANGE START

The change is occurring (it has not been rejected) and the track callback is
invoked to let the invoker perform all necessary actions for this change to occur
with no service impact.

SA_PLM CHANGE_ABORTED
A proposed change has been rejected.

. SA PLM CHANGE COWPLETED
A change in the readiness state or flags of the PLM entity has occurred.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.13.2 63

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

ERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.13.3 SaPImTrackCauseT

t ypedef enum {
/* Causes that may trigger all change steps */

SA PLM CAUSE_HE_DEACTI VATI ON =1,
SA_PLM CAUSE_LOCK = 2,

/* Causes that may trigger only START and COVPLETED steps */
SA PLM CAUSE_SHUTDOWN = 101,

/* Causes that only trigger a COVPLETED step */
SA PLM CAUSE_GROUP_CHANGE = 201,
SA PLM CAUSE_MANAGEMENT _LOST = 202,
SA PLM CAUSE_MANAGEMENT _REGAI NED = 203,
SA _PLM CAUSE_FAI LURE = 204,
SA PLM CAUSE_FAI LURE_CLEARED = 205,
SA PLM CAUSE_| MM NENT_FAI LURE = 206,

SA PLM CAUSE_| MM NENT_FAI LURE_CLEARED = 207,

SA PLM CAUSE_UNLCOCKED = 208,
SA PLM CAUSE_HE_ACTI VATED = 209,
SA PLM CAUSE_HE RESET = 210,
SA PLM CAUSE_EE | NSTANTI ATED = 211,

SA PLM CAUSE_EE_UNI NSTANTI ATED = 212,

SA PLM CAUSE_EE RESTART = 213,
SA PLM CAUSE_STATUS | NFO = 214

} SaPl nifr ackCauseT;

The SaPl mir ackCauseT type is used in the SaPl nReadi nessTrackCal | BackT
callback function to indicate the cause of the readiness state of flags changes. The
values of SaPl mIr ackCauseT have the following interpretation:

. SA _PLM CAUSE_HE_DEACTI VATI ON
The hardware element designated by r oot CauseEnti ty inthe
SaPl mReadi nessTrackCal | BackT callback is going through a deactivation
process. In the case of a graceful deactivation, callbacks with this cause may be
invoked at all steps of the process, depending on the configuration of the PLM
deactivation policy. In the case of an abrupt deactivation, callbacks will be
invoked only at the SA_PLM_CHANGE_COVPLETED step. For more details on the
deactivation process, see Section 3.1.3.1.1. For the steps used in the
SaPl nReadi nessTrackCal | BackT function, refer to Section 3.1.7.

64

SAI-AIS-PLM-A.01.02 Section 3.3.13.3 AIS Specification

10

15

20

25

30

35

40

SERVICE

AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

SA_PLM CAUSE_LOCK

The entity designated by r oot CauseEnti ty inthe

SaPl nReadi nessTrackCal | BackT callback is the target of a LOCK adminis-
trative operation. Depending on the option selected with that administrative oper-
ation, callbacks with this cause may be invoked at all steps of the process. For
more details on the LOCK administrative operation, see Section 5.4.2.

SA PLM CAUSE_SHUTDOWN

The entity designated by r oot CauseEnti ty inthe

SaPl nReadi nessTrackCal | BackT callback is the target of a SHUTDOWN
administrative operation. The track callback is invoked during the

SA PLM CHANGE_ START step to force the shutdown process to happen. After
responses (successful or not) from all callback invocations have been received,
the entity is administratively locked, and the track callback is invoked in the

SA PLM CHANGE COVPLETED step. For more details on the SHUTDOWN
administrative operation, see Section 5.4.3

SA PLM CAUSE_GROUP_CHANGE

This cause is used to notify tracking processes about changes in the member-
ship of the tracked entity group. Entities may be dynamically added to the
tracked entity group or removed from it by invoking the

saPl nEntityG oupAdd() orsaPl nEntityG oupRenove() functions, by
configuring new entities within a tracked subtree, or by removing tracked entities
from the configuration. For this cause, the callback is only invoked in the

SA PLM CHANGE COVPLETED step, and the r oot CauseEnt i t y parameter is
set to NULL.

SA PLM CAUSE_MANAGEMENT _LOST

The PLM Service has lost its management capabilities for one or several enti-
ties. For this cause, the callback is only invoked in the

SA PLM CHANGE COVPLETED step, and the r oot CauseEnt i t y parameter is
set to NULL.

SA PLM CAUSE MANAGEMENT _REGAI NED

The PLM Service has regained its management capabilities for one or several
entities. For this cause, the callback is only invoked in the

SA PLM CHANGE_ COVPLETED step, and the r oot CauseEnt i t y parameter is
set to NULL.

SA PLM CAUSE_FAI LURE

The entity designated by r oot CauseEnti ty inthe

SaPl nReadi nessTrackCal | BackT callback has failed. For this cause, the
callback is only invoked in the SA_ PLM CHANGE COVPLETED step.

SA PLM CAUSE_FAI LURE_CLEARED
A failure on the entity designated by r oot CauseEnt ity in the

AIS Specification

SAI-AlS-PLM-A.01.02 Section 3.3.13.3 65

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

SaPl nReadi nessTr ackCal | BackT callback has been cleared. For this
cause, the callback is only invoked in the SA_ PLM CHANGE COVPLETED step.

SA PLM CAUSE | MM NENT_FAI LURE

An imminent failure has been detected for the entity designated by

r oot CauseEnt ity inthe SaPl nReadi nessTrackCal | BackT callback. For
this cause, the callback is only invoked in the SA_ PLM CHANGE _COMPLETED
step.

SA PLM CAUSE | MM NENT_FAI LURE_CLEARED

An imminent failure on the entity designated by r oot CauseEnti ty in the
SaPl nReadi nessTrackCal | BackT callback has been cleared. For this
cause, the callback is only invoked in the SA_ PLM CHANGE COVPLETED step.

SA PLM CAUSE_UNLOCKED

The entity designated by r oot CauseEnti ty inthe

SaPl nReadi nessTrackCal | BackT callback has been administratively
unlocked. For this cause, the callback is only invoked in the

SA_PLM CHANGE_COVPLETED step.

SA PLM CAUSE HE_ ACTI VATED

The presence state of the hardware element designated by r oot CauseEntity
in the SaPl nReadi nessTrackCal | BackT callback has changed to

SA PLM HE_PRESENCE_ACTI VE. As a consequence, the readiness state of
this hardware element became in-service. For this cause, the callback is only
invoked in the SA_ PLM CHANGE COVPLETED step.

SA PLM CAUSE HE RESET

The hardware element designated by r oot CauseEnti ty inthe

SaPl nReadi nessTr ackCal | BackT callback was reset due to an

SA PLM ADM N_RESET administrative operation. For this cause, the callback is
only invoked in the SA_PLM_CHANGE COMPLETED step.

SA PLM CAUSE EE | NSTANTI ATED

The presence state of the execution environment designated by

r oot CauseEnt ity inthe SaPl nReadi nessTrackCal | BackT callback has
changed to SA PLM EE_PRESENCE | NSTANTI ATED. As a consequence, the
readiness state of this execution environment became in-service. For this cause,
the callback is only invoked in the SA PLM CHANGE COMPLETED step.

SA PLM CAUSE_EE UNI NSTANTI ATED

The presence state of the execution environment designated by

r oot CauseEnt ity inthe SaPl nReadi nessTrackCal | BackT callback has
changed to SA PLM EE_PRESENCE_UNI NSTANTI ATED. As a consequence,
the readiness state of this execution environment became out-of-service. For
this cause, the callback is only invoked in the SA_ PLM CHANGE _COMPLETED
step.

66

SAI-AIS-PLM-A.01.02 Section 3.3.13.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

SA PLM CAUSE EE RESTART

The execution environment designated by r oot CauseEnt ity in the

SaPl nReadi nessTrackCal | BackT callback was restarted due to an

SA PLM ADM N_RESTART administrative operation. For this cause, the callback
is only invoked in the SA_PLM CHANGE _COVPLETED step.

SA_PLM CAUSE_STATUS | NFO

The value is used in the SaPl mReadi nessTrackCal | BackT callback if the
callback was triggered by specifying the flag SA_ TRACK CURRENT in the call to
saPl mReadi nessTr ack. In this case, the callback is invoked in the

SA PLM CHANGE COVPLETED step, and the r oot CauseEnt i t y parameter is
set to NULL.

3.3.13.4 SaPImReadinessTrackedEntityT

typedef struct {
SaPl n&r oupChangesT change;
SaNanmeT entityNane;
SaPl nReadi nessSt at usT current Readi nessSt at us;
SaPl mReadi nessSt at usT expect edReadi nessSt at us;
SaNtfldentifierT plmNotificationld;

} SaPl nReadi nessTrackedEntityT;

The SaPl nReadi nessTrackedEnti tyT type is used to return a descriptor of a
tracked entity designated by its name, ent i t yNane.

The change field indicates the kind of change being reported.

The curr ent Readi nessSt at us field contains the current readiness status of the
entity. When the track callback is invoked in the context of the

SA PLM CHANGE VALI DATE or SA_PLM CHANGE_START step, the

expect edReadi nessSt at us field provides the expected value of the readiness
status that the entity will have if the action is completed.

When the track callback is invoked in the context of the

SA PLM CHANGE COVPLETED or SA PLM CHANGE ABORTED step, both

expect edReadi nessSt at us and cur r ent Readi nessSt at us are set to the cur-
rent value of the readiness status.

The pl mNot i fi cati onl d field is the identifier of the first NTF notification the PLM
Service has sent (or will send) to notify the readiness status change of the tracked
entity.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.13.4 67

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.13.5 SaPImReadinessTrackedEntitiesT

t ypedef struct {

SaUi nt 32T nunber OfF Entiti es;

SaPl mReadi nessTrackedEntityT *entities;
} SaPl nReadi nessTrackedEntitiesT;

The SaPl nReadi nessTrackedEnti ti esT type is used in the

saPl nReadi nessTr ack() function and in the

SaPl nReadi nessTrackCal | BackT callback to return a set of descriptors for
tracked entities.

nunber O Enti ti es holds the number of SaPl nReadi nessTrackedEntitiesT
descriptors in the descriptor array pointed to by entities.

3.3.14 Callback Response

t ypedef enum {
SA PLM CALLBACK_RESPONSE_ (K =1,
SA PLM CALLBACK RESPONSE_REJECTED 2,
SA PLM CALLBACK RESPONSE_ERROR
} SaPl mReadi nessTrackResponseT,;

The SaPl mReadi nessTr ackResponseT type is used by the

saPl nReadi nessTr ackResponse() function to provide the response to a call-
back previously invoked by the PLM Service for an SA_ PLM CHANGE_VALI DATE or
SA PLM CHANGE_START tracking step. The values of

SaPl nReadi nessTr ackResponseT have the following interpretation:

. SA PLM CALLBACK_ RESPONSE_ XK
When provided as a response to a readiness track callback invocation in the
SA PLM CHANGE_VALI DATE step, this response indicates that the process
accepts the pending operation (graceful HE deactivation or
SA PLM ADM N_LQOCK administrative operation with the t r yl ock option).
When provided as a response to a readiness track callback invocation in the
SA PLM CHANGE_START step, this response indicates either that

. the process is ready for the pending operation to be executed (graceful HE
deactivation or SA_PLM _ADM N_LQOCK administrative operation with the
t ryl ock option or with no option), or that

. the quiescing triggered by a SA_PLM_ADM N_SHUTDOWN administrative oper-
ation is now completed by the calling process.

68

SAI-AIS-PLM-A.01.02 Section 3.3.13.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

SA PLM CALLBACK RESPONSE_REJECTED

This response is valid only as a response to a readiness track callback invoca-
tion in the SA_PLM CHANGE_VALI DATE step, and it indicates that the process
rejects the pending operation (graceful HE deactivation or

SA PLM ADM N_LOCK administrative operation with the t r yl ock option).

SA_PLM CALLBACK RESPONSE_ERROR

When provided as a response to a readiness track callback invocation, this
response indicates that the process encountered an error and is not able to pro-
vide a meaningful response to the callback invocation. As the PLM Service waits
for responses from all processes invoked with a readiness track callback with the
SA_PLM CHANGE_VALI DATE or SA_PLM CHANGE_START steps, such pro-
cesses must provide a timely response even if they encounter an error that pre-
vents them from completing the callback processing.

3.3.15 Notification Related Types
3.3.15.1 SaPImNotificationMinorldT

t ypedef enum {

SA_PLM NTFI D_HE_ALARM = 0x01,
SA _PLM NTFI D_EE_ALARM = 0x02,
SA_PLM NTFI D_HE_SEC ALARM = 0x03,
SA_PLM NTFI D_EE_SEC ALARM = 0x04,
SA_PLM NTFI D_UNVAPPED HE_ALARM = 0x05,
SA_PLM NTFI D_STATE_CHANGE_ROOT = 0x65,
SA _PLM NTFI D_STATE_CHANGE_DEP = 0x66,
SA_PLM NTFI D_HPI _NORMAL_VSB = 0x201,
SA_PLM NTFI D_HPI _NORMAL_LSB = 0x202,
SA_PLM NTFI D_HPI _XDR = 0x203

} SaPl mNotificationM norldT;

This type provides the values for the m nor | d field of notification class IDs used by
the PLM Service.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.3.15 69

Service AvaiIabiIityT"’I Application Interface Specification ERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

3.3.15.2 SaPImAdditionalinfoldT

t ypedef enum {
SA PLM Al _ENTI TY_PATH
SA PLM Al _ROOT_OBJECT
SA PLM Al _HPI _DOVAI N_I D
SA PLM Al _HPI _EVENT_DATA
SA PLM Al _HPI _RDR_DATA
SA PLM Al _HPI _RPT_DATA

} SaPl mAddi tional | nf ol dT;

1
o o~ 0N PP

This type provides identifiers for the data that is part of the additional information por-
tion of notifications sent by the PLM Service.

3.3.15.3 SaPImStateT

t ypedef enum {
SA_PLM HE_ADM N_STATE =
SA_PLM EE_ADM N_STATE =
SA _PLM OPERATI ONAL_STATE =
SA _PLM HE_PRESENCE_STATE =
SA PLM EE_PRESENCE_STATE =
SA_PLM READI NESS_STATE =
SA_PLM READI NESS_FLAGS =

} SaPl ntt at eT;

~N o o0~ 0N PR

This type is used in Platform Management Service state change notifications to iden-
tify which state values (or the readiness flags) are changing for a PLM entity.

3.3.16 SaPImCallbacksT

typedef struct {
SaPl nReadi nessTrackCal | backT saPl mReadi nessTrackCal | back;
} SaPl nCal | backsT,;

The SaPl nCal | backsT callbacks structure is supplied to the PLM Service by a pro-
cess and contains the callback functions that the PLM Service can invoke.

70 SAI-AIS-PLM-A.01.02 Section 3.3.15.2 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

3.4 Library Life Cycle

3.4.1 saPIminitialize()

Prototype

SaAi sErrorT saPimnitialize(
SaPl mHandl eT *pl nHandl e,
const SaPl nCal | backsT *pl nCal | backs,
SaVer si onT *versi on

),

Parameters

pl mHandl e - [out] A pointer to the handle which identifies this particular initialization
of the PLM Service and which is to be returned by the PLM Service. The
SaPl mHandl eT type is defined in Section 3.3.1.1.

pl nCal | backs - [i n] If pl nCal | backs is set to NULL, no callbacks are registered;
if pl mCal | backs is not set to NULL, it is a pointer to an SaPl nCal | backsT struc-
ture which contains the callback functions of the process that the PLM Service may
invoke. Only non-NULL callback functions in this structure will be registered. The
SaPl nCal | backsT is defined in Section 3.3.16.

ver si on - [i n/fout] As an input parameter, ver si on is a pointer to a structure con-
taining the required PLM Service version. In this case, m nor Ver si on is ignored
and should be set to 0x00.

As an output parameter, ver si on is a pointer to a structure containing the version
actually supported by the PLM Service. The SaVer si onT type is defined in [2].

Description

This function initializes the PLM Service for the invoking process and registers the
various callback functions. This function must be invoked prior to the invocation of
any other PLM Service API function. The handle pointed to by pl nHandl e is
returned by the PLM Service as the reference to this association between the pro-
cess and the PLM Service. The process uses this handle in subsequent communica-
tion with the PLM Service.

The pl nCal | backs parameter points to a structure containing the callbacks that the
PLM Service can invoke.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4 71

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

If the implementation supports the version of the PLM Service API specified by the

r el easeCode and maj or Ver si on fields of the structure pointed to by the ver si on
parameter, SA_Al S_OKis returned. In this case, the structure pointed to by the

ver si on parameter is set by this function to:

. rel easeCode =required release code

. mgj or Ver si on = highest value of the major version that this implementation
can support for the required r el easeCode

. m nor Ver si on = highest value of the minor version that this implementation
can support for the required value of r el easeCode and the returned value of
maj or Ver si on

If the preceding condition cannot be met, SA_ Al S_ERR _VERSI ONis returned, and
the version to which the ver si on parameter points is set to:

if (implementation supports the required r el easeCode)
r el easeCode =required r el easeCode

else {
if (implementation supports r el easeCode higher than the required
rel easeCode)
r el easeCode = the lowest value of the supported release codes that
is higher than the required r el easeCode
else
r el easeCode = the highest value of the supported release codes that
is lower than the required r el easeCode
}

maj or Ver si on = highest value of the major versions that this implementation can
support for the returned r el easeCode

m nor Ver si on = highest value of the minor versions that this implementation can
support for the returned values of r el easeCode and naj or Ver si on

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

72

SAI-AIS-PLM-A.01.02 Section 3.4.1 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

SA Al'S ERR _TRY_AGAI N - The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the PLM Service library or a process that is pro-
viding the service is out of memory and cannot provide the service.

SA Al S ERR_NO_RESOURCES - The system is out of required resources (other than
memory).

SA Al S ERR _VERSI ON - The version provided in the structure to which the
ver si on parameter points is not compatible with the version of the PLM Service
implementation.

See Also
saPl nel ecti onObj ect Get (), saPl nDi spat ch(), saPl nFi nal i ze()

3.4.2 saPImSelectionObjectGet()

Prototype

SaAi sErrorT saPl nSel ecti onQhj ect Get (
SaPl mHandl eT pl mHandl e,
SaSel ecti onObj ect T *sel ecti onObj ect

),

Parameters

pl mHandl e - [i n] The handle which was obtained by a previous invocation of the
saPl mnitialize() function and which identifies this particular initialization of the
PLM Service. The SaPl nHandl eT type is defined in Section 3.3.1.1.

sel ecti onQbj ect - [out] A pointer to the operating system handle that the pro-
cess can use to detect pending callbacks. The SaSel ecti onQbj ect T type is
defined in [2].

Description

This function returns the operating system handle associated with the handle

pl mHandl e. The invoking process can use the operating system handle to detect
pending callbacks, instead of repeatedly invoking the saPl nDi spat ch() function
for this purpose.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.2 73

10

15

20

25

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

In a POSIX environment, the operating system handle is a file descriptor that is used
with the pol | () orsel ect () system calls to detect incoming callbacks.

The operating system handle returned by saPl nSel ecti onCbj ect Get () is valid
until saPl nFi nal i ze() is invoked on the same handle pl mHandl e.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR _BAD HANDLE - The handle pl mHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - The system is out of required resources (other than
memory).

See Also
saPlmnitialize(),saPl nb spatch()

74

SAI-AIS-PLM-A.01.02 Section 3.4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

3.4.3 saPImDispatch()

Prototype

SaAi sError T saPl nDi spat ch(

SaPl mHandl eT pl mHandl e,

SaDi spat chFl agsT di spat chFl ags
)

Parameters

pl mHandl e - [i n] The handle which was obtained by a previous invocation of the
saPl mnitialize() function and which identifies this particular initialization of the
PLM Service. The SaPl nHandl eT type is defined in Section 3.3.1.1.

di spat chFl ags - [i n] Flags that specify the callback execution behavior of the
saPl nDi spat ch() function, which have the values SA DI SPATCH_ONE,

SA DI SPATCH _ALL, or SA DI SPATCH BLOCKI NG These flags are values of the
SaDi spat chFl agsT enumeration type, which is described in [2].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle pl nHandl e in a way that is specified by the di spat chFl ags parameter.

Return Values

SA Al S K- The function completed successfully. This value is also returned if this
function is being invoked with di spat chFl ags setto SA_ DI SPATCH_ALL or
SA DI SPATCH_BLOCKI NG and the handle pl mHandl e has been finalized.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle pl mHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al'S ERR | NVALI D_PARAM- The di spat chFl ags parameter is invalid.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.3 75

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

See Also
saPlmnitialize(),saPl nSel ecti onObj ect Get ()

3.4.4 saPImFinalize()

Prototype

SaAi sErrorT saPl nFinal i ze(
SaPl mHandl eT pl nHandl e

),

Parameters

pl mHandl e - [i n] The handle which was obtained by a previous invocation of the
saPl mnitialize() function and which identifies this particular initialization of the
PLM Service. The SaPl nHandl eT type is defined in Section 3.3.1.1.

Description

The saPl nFi nal i ze() function closes the association represented by the

pl mHandl e parameter between the invoking process and the PLM Service. The pro-
cess must have invoked saPl m ni ti al i ze() before it invokes this function. A pro-
cess must call this function once for each handle it acquired by invoking
saPlmnitialize().

If the saPl nFi nal i ze() function completes successfully, it cancels all pending call-
backs related to the particular handle, stops tracking of entity groups associated with
the handle, and deletes those entity groups. Moreover, it releases all resources
acquired for that handle or for entity groups associated with the handle, including the
memory allocated for the process in the saPl nReadi nessTr ack() function, if this
memory has not yet been freed by a call to the

saPl nReadi nessNot i fi cati onFree() function.

Note that because the callback invocation is asynchronous, it is still possible that
some callback calls are processed after this call returns successfully.

After saPl nFi nal i ze() completes successfully, the handle pl mHandl e and the
selection object associated with it are no longer valid.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

76

SAI-AIS-PLM-A.01.02 Section 3.4.4 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityT"’I Application Interface Specification
AVAILABILITY Platform Management Service APl Specification

FORUM

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR BAD HANDLE - The handle pl mHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saPlmnitialize()

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.4.4 77

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.5 PLM Operations

3.5.1 Entity Group Management

For tracking purposes, PLM entities can be grouped together in entity groups. The
scope of this grouping is local to the client process that created the entity group and
not visible from other processes. This grouping is not visible in the IMM Service.

Tracking a group of PLM entities ensures that when a single cause affects the state
of several entities of that group, a single invocation of the track callback will notify the
client process of the state transitions.

3.5.1.1 saPImEntityGroupCreate()

Prototype

SaAi sErrorT saPl nEntityG oupCreat e(
SaPl nHandl eT pl nHandl e,
SaPl nEnti tyG oupHandl eT *entityG oupHandl e

),

Parameters

pl mHandl e - [i n] The handle which was obtained by a previous invocation of the
saPl mnitialize() function and which designates this particular initialization of
the PLM Service. The SaPl nHandl eT type is defined in Section 3.3.1.1.

entityG oupHandl e - [out] A pointer to a memory area (provided by the invoking
process in the address space of the process) to hold the entity group handle. If the
entity group is created successfully, the PLM Service stores its handle in this memory
area. This handle is used by the process to designate the entity group in subsequent
invocations of the functions of the PLM Service API. The

SaPl nEnt i t yGr oupHandl| eT type is defined in Section 3.3.1.2.

Description

The saPl nEnt it yGr oupCr eat e() function creates an entity group that may be
used later by the invoking process to track readiness status changes of entities in the
group. The entity group is created as empty, and the saPl nEnt i t yG oupAdd()
function must be used to add entities into the group.

78

SAI-AIS-PLM-A.01.02 Section 3.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle pl mHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S_ ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - There are insufficient resources (other than mem-
ory).
See Also

saPInmnitialize(),saPl nEntityG oupAdd(),
saPl nEntityG oupDel et e()

3.5.1.2 saPImEntityGroupAdd()

Prototype

SaAi sError T saPl nEntityG oupAdd(
SaPl nEnt i t yGroupHandl eT entityG oupHandl e,
const SaNaneT *entityNanes,
SaUi nt 32T entityNanmesNunber,
SaPl m& oupOpti onsT options

);
Parameters
ent it yG oupHandl e - [i n] The handle for an entity group which was obtained by a

previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yGr oupHandl eT type is defined in Section 3.3.1.2.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.2 79

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

ent i t yNanes - [i n] Pointer to an array of entity names. The SaNaneT type is
defined in [2].

ent it yNamesNunber - [i n] Number of names contained in the array referred to by
entityNanmes. The SaUi nt 32T type is defined in [2].

opt i ons —[i n] Indicates how entity names provided in the array referred to by
ent i t yNames must be interpreted:

. Ifoptionsissetto SA PLM GROUP_SI NGLE_ENTI TY, only the entities
referred to by ent i t yNanes are added to the group.

If opti ons is setto SA_PLM GROUP_SUBTREE, all subtrees that are rooted at
the entities referred to by ent i t yNanmes are added to the group.

. Ifoptionsissetto SA PLM GROUP_SUBTREE HES ONLY, all hardware ele-
ments that are part of the subtrees rooted at the entities referred to by
ent i t yNanes are added to the group.

If opti ons issetto SA PLM GROUP_SUBTREE_EES ONLY, all execution envi-
ronments that are part of the subtrees rooted at the entities referred to by
ent i t yNanmes are added to the group.

The SaPl m& oupOpt i onsT type is defined in Section 3.3.12.

Description

The saPl nEnt it yG oupAdd() function adds a set of entities referred to by
ent i t yNanes to the entity group designated by ent i t yGr oupHandl e.

If new entities are configured later in these subtrees, the newly configured entities are
automatically considered part of the group.

A given entity name can only be added once into an entity group, either as a single
entity or as the root of a subtree. It is possible for the subtrees identified by entity
names added into an entity group to overlap.

If this function fails and returns an error, the content of the entity group is not
changed.

SAI-AIS-PLM-A.01.02 Section 3.5.1.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due to
one or both of the reasons below:

. ltis corrupted, was not obtained with the saPl mEnt i t yGr oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

The handle pl nHandl| e that was passed in to the
saPl nEntityG oupCreat e() function has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al S ERR _NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al S ERR_EXI ST - One of the names referred to by ent i t yNanes has already
been added to the group, or it appears more than once in the array referred to by
entityNanes.

SA Al'S ERR _NOT_EXI ST - One of the names referred to by ent i t yNanes does
not designate an entity configured for the PLM Service.

See Also

saPl neEntityG oupCreate(),saPl neEntityG oupRenove()

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.2 81

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAlFlni\uBM"-lT\'"

3.5.1.3 saPImEntityGroupRemove()

Prototype

SaAi sErrorT saPl nEntityG oupRenove(
SaPl nEnt i t yG oupHandl eT entityG oupHandl e,
const SaNaneT *entityNanes,
SaUi nt 32T entityNamesNunber

),

Parameters

ent it yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yGr oupHandl eT type is defined in Section 3.3.1.2.

ent i t yNanes - [i n] Pointer to an array of entity names. The SaNaneT type is
defined in [2].

enti t yNamesNunber - [i n] Number of names contained in the array
ent it yNanmes. The SaUi nt 32T type is defined in [2].

Description

The saPl nEnt it yG oupRenove() function removes entities from the entity group
designated by ent i t yG oupHandl e. Entities may only be removed from the group
in the same manner they have been added to the group: as a single entity or as a
subtree. This means in particular that if a subtree has been added to the group using
the SA_PLM GROUP_SUBTREE, SA_PLM GROUP_SUBTREE_HES ONLY, or

SA PLM GROUP_SUBTREE_EES ONLY options, entities of that subtree cannot be
removed from the group one by one. The single entities or subtrees of entities to be
removed from the group are designated by the names referred to by ent i t yNanes.

If this function fails and returns an error, the content of the entity group is not
changed.

SAI-AIS-PLM-A.01.02 Section 3.5.1.3 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due to
one or both of the reasons below:

. ltis corrupted, was not obtained with the saPl nEnt i t yGr oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

The handle pl nHandl| e that was passed in to the
saPl nEntityG oupCreat e() function has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR _NOT_EXI ST — One of the names referred to by ent i t yNanes does
not match any name contained in the entity group referred to by
entityG oupHandl e.

See Also

saPl nEntityG oupCreate(),saPl nEntityG oupAdd()

3.5.1.4 saPImEntityGroupDelete()

Prototype

SaAi sErrorT saPl nEnti tyG oupDel et e(
SaPl nEnti t yG oupHandl eT entityG oupHandl e
);

Parameters

enti t yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yG oupHandl eT type is defined in Section 3.3.1.2.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.1.4 83

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

Description

The saPl nEnt it yGroupDel et e() function deletes the entity group designated by
its handle ent i t yG- oupHandl e. Moreover, it frees all resources allocated for it,
including the memory allocated for the process in the saPl nReadi nessTr ack()
function, if this memory has not yet been freed by a call to the

saPl nReadi nessNot i fi cati onFree() function.

If the saPl nEnt i t yG oupDel et e() function fails and returns an error, the entity
group is not deleted, its content is not changed, and resources are not freed.

Return Values
SA Al S K- The function completed successfully.

SA Al'S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due to
one or both of the reasons below:

. ltis corrupted, was not obtained with the saPl mEnt i t yGr oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

The handle pl nHandl| e that was passed in to the
saPl nEntityG oupCreat e() function has already been finalized.

SA Al S_ERR BUSY — The entity group designated by ent i t y&G oupHandl e has
been used to start a track request by invoking saPl nReadi nessTr ack(), and the
track request is still in effect, as saPl nReadi nessTrackSt op() has not been
called to terminate it.

See Also

saPl nEntityG oupCreate(), saPl nReadi nessTr ack(),
saPl nReadi nessTrackSt op()

SAI-AIS-PLM-A.01.02 Section 3.5.1.4 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Platform Management Service APl Specification

3.5.2 Readiness Status Tracking

The readiness status of a PLM entity is reflected by the value of its readiness state
and readiness flags.

The readiness status of an entity can change as a consequence of:

an administrative operation,

a failure or a repair,

an activation or a deactivation of a hardware element,

the instantiation or termination of an execution environment,

and of a problem or the clearance of a problem reported to the PLM Service with
the saPl nEnti t yReadi nessl npact () function targeted to the entity or
another entity on which the entity depends.

The track API allows a process to track changes of the readiness status of a group of
PLM entities.

In most cases, tracking processes are notified of a change after it already happened.

This

Is done with a single invocation of their track callback, using the

SA PLM CHANGE COMPLETED step.

However, in some situations, the callback of tracking processes is also invoked
before the change happens (during SA_PLM CHANGE_VALI DATE or

SA PLM CHANGE_START steps) allowing these tracking processes to validate the
pending change and also to get ready before the change is effective.

The

sequence of tracking steps is:

(1) SA_PLM CHANGE_VALI| DATE

The track callbacks are invoked requesting the tracking processes to validate
the pending action and prepare themselves to perform the action. The invoked
processes must provide a response (SA PLM CALLBACK RESPONSE_ X or

SA PLM CALLBACK RESPONSE REJECTED) to the PLM Service by invoking
the saPl nReadi nessTrackResponse() function.

Processes that respond with an error (SA_PLM CALLBACK RESPONSE_ERROR)
or call saPl nReadi nessTr ackSt op() with the entity group handle used to ini-
tiate the track operation are ignored by the PLM Service (that is, the PLM Ser-
vice proceeds as if these processes had accepted the pending operation).

(2) SA_PLM CHANGE_START or SA_PLM CHANGE_ABORTED

If at least one process invoked during the SA PLM CHANGE_VALI DATE step
rejects the operation, the PLM Service invokes the track callbacks indicating that
the pending action has been aborted (SA_PLM CHANGE_ABORTED step); other-
wise, the PLM Service invokes the track callbacks again requesting the pro-
cesses to now perform the action (SA_PLM CHANGE_START step). Processes

AIS Specification

SAI-AIS-PLM-A.01.02 Section 3.5.2 85

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

must respond to PLM when the operation is completed

(SA_PLM CALLBACK RESPONSE CX), or if they fail to complete the operation
(SA_PLM CALLBACK RESPONSE ERRCR).

When processes are not allowed to reject the pending change, they may be
directly notified by an SA_PLM_CHANGE_START step without any prior tracking
notification with an SA_PLM CHANGE_VALI DATE step.

(3) SA_PLM _CHANGE_COVPLETED
When all clients involved in the SA_PLM CHANGE_START step reported that they
have completed the action, PLM performs actions required to complete the
action and updates the readiness states of impacted entities. When this is done,
PLM notifies tracking processes that the action has been completed
(SA_PLM CHANGE COWVPLETED step).

Responses to the SA PLM CHANGE VALI DATE and SA PLM CHANGE START steps
are not time-bounded. The operator should initiate and monitor all operations leading
to the SA_PLM CHANGE VALI DATE or SA PLM CHANGCE_START steps. If a graceful
LOCK administrative operation does not complete in a timely manner, the operator
can issue a forced LOCK; if hot swap indicators do not indicate deactivation in time,
the operator can abruptly extract hardware or also issue a forced LOCK. The PLM
Service must wait for responses to the SA_PLM CHANGE_VALI DATE and

SA PLM CHANGE_START steps until:

. all invoked processes have responded, or until
. tracking for the entity group has stopped, or until

. the current tracking notification has been superseded by a new tracking notifica-
tion, which is triggered by the same entity having a different expected or new
readiness status as a consequence of another operation on the same entity.

When a process initiates the track operation, the PLM Service always notifies the pro-
cess in the SA_PLM CHANGE_COVPLETED step. In addition, the process can request
to receive additional callback notifications, as described next:

A process that wants to be able to reject a change request in certain circum-
stances may use the SA_ TRACK VALI DATE_STEP flag in the call to

saPl mReadi nessTr ack() . The track callback function of the process will then
be invoked in the SA PLM CHANGE VALI DATE step. If a change is rejected by a
client of the track API, the process will also receive callbacks in the

SA PLM CHANGE_ABORTED step.

. A process that needs to get ready before a change is effective may use the
SA TRACK _START_STEP flag in the call to saPl nReadi nessTrack() . The
track callback function of the process will then be invoked in the
SA PLM CHANGE_START step.

86

SAI-AIS-PLM-A.01.02 Section 3.5.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

Only changes in the readiness status of a tracked entity are reported, so if a particular
cause does not change the readiness status of any entity in a tracked group, the track
callback of the tracking process is not invoked.

For example, if a board is administratively locked, extracting the board or reporting a
failure of the board triggers no callback. Depending on the order of these actions, a
process may be notified of a board going out-of-service with an

SA PLM CAUSE_LQOCK cause and then be notified that the board is back in service
with an SA_ PLM CAUSE_FAI LURE_CLEARED cause without being notified of the
intermediate failure and unlock events.

3.5.2.1 saPImReadinessTrack()

Prototype

SaAi sErrorT saPl nReadi nessTrack(
SaPl nEnt i t yGroupHandl eT entityG oupHandl e,
SaUi nt 8T trackFl ags,
SaUi nt 64T trackCooki e,
SaPl nReadi nessTrackedEntitiesT *trackedEntities

),

Parameters

ent it yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnt i t yG oupCr eat e() function. The
SaPl nEnt it yG oupHandl eT type is defined in Section 3.3.1.2.

t rackFl ags —[i n] The kind of tracking that is requested, which is the bitwise OR of
one or more of the following flags (as defined in [2]), which have the following inter-
pretation here:

. SA TRACK CURRENT - Request the current readiness information of the entity
group designated by the handle enti t yG oupHandl e.
IftrackedEnti ti es is NULL, information about all entities that are currently in
this entity group is returned by a single subsequent invocation of the
SaPl nReadi nessTr ackCal | backT tracking callback; otherwise, this informa-
tion is returned in the structure to which t rackedEnt i t i es points when the
saPl mReadi nessTrack() call completes successfully. The change field in
each entry of the array pointed to by the ent i ti es pointer in the structure
referred to by t rackedEnti ti es is setto SA PLM GROUP_NO_CHANCE. The

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 87

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

fields cur r ent Readi nessSt at us and expect edReadi nessSt at us both
contain the current readiness status of this entity.

SA TRACK CHANGES - Start readiness tracking, requesting a complete picture
of all entities in the entity group.

The SaPl nReadi nessTrackCal | backT callback function is invoked each
time the readiness status of one of the entities in this entity group changes (or is
about to change) or when entities are added to or removed from the entity group.
The structure to which t r ackedEnt i ti es points in an invocation of the

SaPl nReadi nessTrackCal | backT function contains information about all
entities that are currently in the entity group and also about entities that have
been removed from the entity group since the last invocation of

SaPl nReadi nessTrackCal | backT.

SA TRACK CHANGES ONLY - Start readiness tracking, requesting a list of only
the changed entities with each callback.

The SaPl nReadi nessTrackCal | backT callback function is invoked each
time the readiness status of one of the entities in this group changes (or is about
to change) or when entities are added to or removed from the entity group. The
structure to which t r ackedEnt i t i es points in an invocation of the

SaPl nReadi nessTr ackCal | backT function contains only information about
entities whose readiness status have changed or have been added or removed
from the entity group since the last invocation of

SaPl nReadi nessTrackCal | backT.

SA TRACK START_STEP - Request additionally the SA PLM CHANGE _START
step. This flag is ignored, if neither SA_ TRACK CHANCES nor
SA TRACK CHANGES ONLY is set.

SA TRACK VALI DATE_STEP - Request additionally the
SA PLM CHANGE_VALI DATE step. This flag is ignored, if neither
SA_TRACK_CHANGES nor SA_TRACK_CHANGES_ONLY is set.

If both SA_ TRACK CHANGES and SA TRACK CHANGES ONLY are set in an invoca-
tion of this function, the function returns SA_ Al S ERR BAD FLAGS, and tracking is
not started. An invocation of this function is also invalid and returns

SA Al'S ERR BAD FLAGS if none of the flags SA_ TRACK CHANGES,

SA TRACK _CHANGES_ONLY, or SA_TRACK CURRENT are set.

The PLM Service does not support the SA_ TRACK _LOCAL flag, and it will be ignored.
The SaUi nt 8T type is defined in [2].

88 SAI-AIS-PLM-A.01.02 Section 3.5.2.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

t rackCooki e - [i n] Value provided by the invoking process, and which will be
passed as a parameter to all invocations of the SaPl nReadi nessTr ackCal | backT
function triggered by this invocation of the saPl mReadi nessTr ack() function. This
parameter can be used to pass process specific information related to the group of
entities being tracked. The SaUi nt 64T type is defined in [2].

trackedEntiti es —[i nfout] A pointer to a structure of type

SaPl nReadi nessTrackedEntiti esT (defined in Section 3.3.13.5) . This parame-
ter is ignored if SA_ TRACK CURRENT is not set in t r ackFl ags; otherwise, if
trackedEnti ti es is not NULL, the structure will contain information about all enti-
ties in the entity group when saPl nReadi nessTr ack() returns. The meaning of
the fields of the SaPl mReadi nessTrackedEnti ti esT structure is:

nunber Of Entities —[i nfout]Ifentitiesis NULL, nunberOfEntitiesis
ignored as input parameter; otherwise, it specifies that the array to which

enti ti es points provides memory for information about the readiness status of
nunber O Enti ti es entities. When saPl nReadi nessTr ack() returns with
SA AI'S OKorwith SA Al S ERR NO SPACE, nunber O Ent i t i es contains
the number of entities in the entity group.

. entities-[infout]lfentities is NULL, memory for the readiness status
information of the tracked entities is allocated by the PLM Service. The caller is
responsible for freeing the allocated memory by calling the
saPl mReadi nessNot i fi cati onFree() function.

Description

The saPl mReadi nessTr ack() function can be used to retrieve the current readi-
ness status of all PLM entities that are contained in the entity group referred to by
enti t yG oupHandl e, to start tracking changes of the readiness status of these
entities, or to perform both actions.

PLM provides this information to the process by invoking its
saPl nReadi nessTrackCal | back() callback, which must have been supplied
when the process invoked the saPl m niti alize() call

A process may call saPl nReadi nessTr ack() repeatedly for the same value of
ent it yG oupHandl e, regardless of whether the call initiates a one-time status
request or a series of callback invocations.

If a process has enabled tracking by calling saPl nReadi nessTr ack() with either
SA TRACK CHANGES or SA TRACK CHANGES ONLY set and then calls

saPl nReadi nessTrack() again with the same value of ent i t yG oupHandl e,
the following applies, depending on the flags in the second call:

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 89

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

If the second call has either SA_ TRACK CHANGES or

SA TRACK CHANGES_ ONLY set, the new combination of flags is used to change
the settings for the tracking. For example, if the first call had

SA TRACK START_STEP set, and the second call does not have this flag set,
the process will not receive further callbacks for the SA TRACK_START_STEP.
The t r ackCooki e of the second call will be used from now on in invocations of
the saPl nReadi nessTrackCal | back() callback function of the process.

If the second call has neither SA_ TRACK CHANGES nor

SA TRACK CHANGES_ ONLY set, but rather only SA_ TRACK CURRENT, the
tracking started by the first call will proceed unchanged, and the process will
additionally receive the current information about all entities that are currently in
the entity group designated by its ent i t yG oupHandl e.

Note that it is possible for entities to be added or removed from the entity group while
a track operation is in progress on the group.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N - The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due to
one or both of the reasons below:

It is corrupted, was not obtained with the saPl nEnti t yGr oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

. The handle pl nHandl e that was passed in to the
saPl nEntityG oupCreat e() function has already been finalized.

SA Al'S ERR I NI T — The initialization of the PLM Service library with

saPl mnitialize() used later on to create the entity group designated by

ent it yG oupHandl e was incomplete, since the

saPl nReadi nessTrackCal | back() callback function of the process is missing.
This value is returned only if saPl mReadi nessTrack() is called in a way that
requires the callback; that is, with SA_ TRACK CHANGES or

SA TRACK_CHANGES_ONLY set, or with SA_ TRACK _CURRENT set and
trackedEntities setto NULL.

90

SAI-AIS-PLM-A.01.02 Section 3.5.2.1 AIS Specification

10

15

20

25

30

35

40

SERVI

FORUM

CE Service AvailabilityT"’I Application Interface Specification
AVAILABILITY Platform Management Service APl Specification

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
applies if in the structure to which t r ackedEnt i ti es points the entities pointer is
not NULL and nunber OfF Enti ti es isO.

SA Al'S_ ERR_NO MEMCORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR NO SPACE - The SA TRACK CURRENT flag is set, andtheentiti es
pointer in the structure referred to by t r ackedEnt i ti es is not NULL, but the value

of nunber &f Enti ti es in this structure is smaller than the number of entries to be
provided in the array referred to by the ent i ti es pointer.

SA Al'S ERR BAD FLAGS —The t r ackFl ags parameter is invalid. In particular,
this applies if
. the SA TRACK CHANGES and SA TRACK CHANGES_ ONLY flags are both
specified or if

. none of the flags SA_ TRACK CHANGES, SA TRACK CHANGES ONLY, or
SA TRACK CURRENT are set.

See Also

saPl nEnt it yG oupCreat e(), SaPl nReadi nessTrackCal | backT,
saPl nReadi nessTrackSt op(), saPl nReadi nessNoti fi cati onFree()

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.1 91

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.5.2.2 SaPImReadinessTrackCallbackT

Prototype

t ypedef void (*SaPl nReadi nessTrackCal | backT) (
SaPl nEnt i t yG oupHandl eT entityG oupHandl e,
SaUi nt 64T trackCooki e,
Sal nvocati onT invocati on,
SaPl mir ackCauseT cause,
const SaNaneT *r oot CauseEntity,
SaNtfldentifierT rootCorrel ationld,
const SaPl nReadi nessTrackedEntitiesT *trackedEntities,
SaPl nChangeSt epT step,
SaAi sErrorT error

),

Parameters

ent it yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yGr oupHandl eT type is defined in Section 3.3.1.2.

t rackCooki e - [i n] Value that was provided to the saPl nReadi nessTr ack()
function when the tracking was initialized. This value complements the handle

enti tyG oupHandl e and holds process specific information related to the group of
entities being tracked. The SaUi nt 64T type is defined in [2].

i nvocati on —[i n] This parameter is used by the invoked process to provide a
response to the PLM Service with the saPl nReadi nessTr ackResponse() func-
tion. This parameter enables the PLM Service to associate the

saPl nReadi nessTr ackResponse() invocation with this particular callback invo-
cation. The Sal nvocat i onT type is defined in [2].

cause —[i n] Indicates the action or event that caused the invocation of the callback.
The SaPl mir ackCauseT type is defined in Section 3.3.13.3.

r oot CauseEnt ity —[i n] Pointer to the name of the entity directly targeted by the
action or the event identified by the cause parameter. Itis set to NULL if cause is set
to SA_PLM CAUSE_GROUP_CHANGE, SA_PLM CAUSE_NMANAGEMENT _LOST, or

SA PLM CAUSE_MANAGEMENT _REGAI NED. The SaNaneT type is defined in [2].

92

SAI-AIS-PLM-A.01.02 Section 3.5.2.2 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

root Correl ati onl d—[i n] Correlation identifier associated with the root cause. It
is set to SA_NTF_I DENTI FI ER_UNUSED if cause is set to

SA PLM CAUSE GROUP_CHANGE, SA PLM CAUSE NMANAGEMENT _LOST,

SA PLM CAUSE_MANAGEMENT _REGAI NED, or SA_PLM CAUSE_STATUS | NFO.
The SaNt f 1 denti fi erT type is defined in [4].

trackedEntities —[i n] Pointer to a structure that contains information about the
changes in the entity group designated by ent i t yG oupHandl e. The
SaPl nReadi nessTrackedEnti ti esT type is defined in Section 3.3.13.5.

st ep —[i n] Indicates the tracking step in which the callback is invoked. The
SaPl nChangeSt epT type is defined in Section 3.3.13.2.

error —[i n] This parameter indicates whether the PLM Service was able to perform
the operation. The SaAi skrror T type is defined in [2].

The parameter er r or has one of the values:

. SA AIS OK- No error has been encountered by the PLM Service during the
tracking process.

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such
as corruption). The library cannot be used anymore.

. SA AIS ERR TRY_AGAI N- The service cannot be provided at this time. The
process may retry the saPl nReadi nessTrack() call later.

. SA AIS ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due
to one or both of the reasons below:

. Itis corrupted, or the corresponding entity group associated with that handle
has been deleted.

. The handle pl nHandl| e that was passed in to the
saPl meEnt it yGroupCreat e() function has already been finalized.

. SA AIS ERR NO MEMORY - Either the PLM Service library or the provider of the
service is out of memory and cannot provide the service. The process that
invoked saPl nReadi nessTrack() might have missed one or more tracking
notifications.

. SA AIS ERR NO RESOURCES - There are insufficient resources (other than
memory). The process that invoked saPl nReadi nessTr ack() might have
missed one or more tracking notifications.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.2 93

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

Description

This callback is invoked in the context of a thread issuing an saPl nDi spat ch() call
with the PLM library handle that was specified when the entity group designated by
the handle ent i t yG- oupHandl| e was created. If successful, the

saPl nReadi nessTrackCal | back() function passes information about tracked
entities in the structure pointed to by the t r ackedEnt i t i es parameter. The kind of
information passed depends on the setting of the t r ackFl ags parameter of the
saPl nReadi nessTrack() function.

This callback is invoked when:

. entities are added to or removed from the entity group, either as a result of calls
to saPl nEnti t yG oupAdd() orsaPl nEntityG oupRenove(), or because
PLM entities are created or deleted on subtrees that are selected for tracking in
the entity group, or

. the readiness status of at least one of the entities of the group is about to change
(SA_PLM CHANGE_VALI| DATE or SA_PLM CHANGE_START steps), or has
changed (SA_PLM CHANGE COVPLETED step), or

a pending change has been rejected (SA_PLM CHANGE ABORTED step).

A single invocation of this callback contains information about all entities of the
tracked group whose readiness status is or will be affected by the same cause identi-
fied by the cause and r oot CauseEnt i t y parameters.

When the st ep parameter is set to SA_PLM CHANGE_VALI DATE or

SA PLM CHANGE_START, the invoked process must provide a response to the PLM
Service with the saPl nReadi nessTr ackResponse() function. When the st ep
parameter is set to SA PLM CHANGE ABORTED or SA_ PLM CHANGE COVPLETED,
the invoked process must not provide a response to the PLM Service.

If an error that prevents the PLM Service from satisfying the tracking request initiated
by a previous call to saPl nReadi nessTr ack() occurs, the error is returned in the
error parameter.

A process may concurrently track changes of the readiness status of several entity
groups. If an entity is part of more than one of these groups, a change of the entity’s
readiness status will be notified several times to the process, that is, its

saPl nReadi nessTrackCal | back() function will be invoked once for each
affected group.

Return Values

None

94

SAI-AIS-PLM-A.01.02 Section 3.5.2.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAlFlni\uBM"-lwh Platform Management Service API Specification

See Also

saPl nReadi nessTrack(),saPInmnitialize(),saPl nD spatch(),
saPl nReadi nessTr ackResponse()

3.5.2.3 saPImReadinessTrackResponse()

Prototype

SaAi serror T saPl nReadi nessTr ackResponse(
SaPl nEnti t yG oupHandl eT entityG oupHandl e,
Sal nvocati onT i nvocati on,
SaPl nReadi nessTr ackResponseT response

),

Parameters

enti t yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnt i t yG oupCr eat e() function. The
SaPl nEnt it yG oupHandl eT type is defined in Section 3.3.1.2.

i nvocat i on —[i n] This parameter was provided to the process by the PLM Service
in the SaPl nReadi nessTrackCal | backT callback. It enables the PLM Service to
associate this saPl mReadi nessTr ackResponse() invocation with the previous
callback invocation. The Sal nvocat i onT type is defined in [2].

response — [i n] This parameter provides the response expected by the PLM Ser-
vice to a previous invocation of the SaPl nReadi nessTr ackCal | backT track call-
back. The SaPl nReadi nessTr ackResponseT type is defined in Section 3.3.14.

Description

This function is used by a process to provide a response to an

SaPl nReadi nessTrackCal | backT callback previously invoked with a st ep
parameter equal to either SA_ PLM CHANGE_VALI DATE or

SA PLM CHANGE_START. The i nvocat i on parameter must be set to the value
passed in the i nvocat i on parameter of the track callback. The r esponse parame-
ter holds the response of the process.

Return Values

SA Al S X - The function completed successfully.

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.3 95

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

SA Al S _ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, due to
one or both of the reasons below:

It is corrupted, was not obtained with the saPl nEnti t yG oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

The handle pl nHandl| e that was passed in to the
saPl nEnti t yG oupCreat e() function has already been finalized.

SA Al'S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
appliesifi nvocat i on is invalid, or there is no outstanding response for a track call-
back with the same values of i nvocati on and enti t yG oupHandl e.

SA Al'S_ ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al'S ERR NO RESOURCES - There are insufficient resources (other than mem-
ory).
See Also

SaPl mReadi nessTrackCal | backT

3.5.2.4 saPImReadinessTrackStop()

Prototype

SaAi serror T saPl nReadi nessTrackSt op(
SaPl nEnti t yG oupHandl eT entityG oupHandl e

);
Parameters
enti t yG oupHandl e - [i n] The handle for an entity group which was obtained by a

previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yG oupHandl eT type is defined in Section 3.3.1.2.

96

SAI-AIS-PLM-A.01.02 Section 3.5.2.4 AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY Platform Management Service API Specification

Description

The saPl nReadi nessTrackSt op() function stops any further tracking notifica-
tions of readiness status changes of the group of entities designated by

ent i t yG oupHandl e and which were requested by specifying the handle

ent i t yG oupHandl e when invoking the saPl nReadi nessTr ack() function, and
which are still in effect. Pending callbacks are removed.

Return Values
SA Al S_OK - The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N - The service cannot be provided at this time. The pro-
cess may retry later.

SA Al'S ERR BAD HANDLE - The handle ent i t yG oupHandl e is invalid, due to
one or both of the reasons below:

. ltis corrupted, was not obtained with the saPl ment i t yGr oupCr eat e() func-
tion, or the corresponding entity group associated with that handle has been
deleted.

. The handle pl nHandl e that was passed in to the
saPl meEnt it yGroupCreat e() function has already been finalized.

SA Al'S ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_EXI ST — No track of readiness status changes in the entity group
designated by ent i t yG oupHandl e was started by invoking the

saPl mReadi nessTrack() function with track flags SA_ TRACK CHANGES or

SA TRACK CHANGES ONLY and is still in effect.

See Also

saPl nReadi nessTr ack()

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.2.4 97

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Platform Management Service API Specification AVAILABILITY

FORUM

3.5.2.5 saPImReadinessNotificationFree()

Prototype

SaAi sError T saPl nReadi nessNoti fi cati onFree(
SaPl nEnt i t yG oupHandl eT entityG oupHandl e,
SaPl mReadi nessTrackedEntityT *entities

),

Parameters

ent it yG oupHandl e - [i n] The handle for an entity group which was obtained by a
previous invocation of the saPl nEnti t yG oupCr eat e() function. The
SaPl nEnt i t yGr oupHandl eT type is defined in Section 3.3.1.2.

entities —[i n] Apointer to the memory array that was allocated by the PLM Ser-
vice library in the saPl mReadi nessTrack() function and is to be deallocated. The
SaPl nReadi nessTrackedEnti tyT type is defined in Section 3.3.13.4.

Description

This function frees the memory to which ent i t i es points and which was allocated by
the PLM Service library in a previous call to the saPl nReadi nessTrack() function.
For details, refer to the description of the ent i t i es pointer in the structure referred
to by the t rackedEnti ti es parameter in the corresponding invocation of the

saPl mReadi nessTrack() function.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA AlS ERR BAD HANDLE - The handle ent i t yGr oupHandl e is invalid, since itis
corrupted, uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly. In particular, this
applies if the ent i t i es parameter does not point to memory allocated by PLM in a
previous call to the saPl nReadi nessTr ack() function using the same value of the
ent it yG oupHandl e parameter.

See Also

saPl nReadi nessTr ack()

98

SAI-AIS-PLM-A.01.02 Section 3.5.2.5 AIS Specification

10

15

20

25

30

35

40

ERVICE Service AvailabilityT"’I Application Interface Specification
AVAILABILITY Platform Management Service APl Specification

FORUM

3.5.3 Entity Readiness Impact

3.5.3.1 saPImEntityReadinessimpact()

Prototype

SaAi serror T saPl nEnti t yReadi nessl npact (
SaPl nHandl eT pl nHandl e,
const SaNanmeT *i npactedEntity,
SaPl nReadi nessl mpact T i npact,
SaNt f Correl ati onldsT *correl ati onl ds

),

Parameters

p! mHandl e - [i n] The handle which was obtained by a previous invocation of the
saPl mnitialize() function and which designates this particular initialization of
the PLM Service. The SaPl nHandl eT type is defined in Section 3.3.1.1.

i npact edEnti ty —[i n] Pointer to the name of the entity whose readiness status
should be updated. The SaNaneT type is defined in [2].

i npact —[i n] Impact being reported. The SaPl nReadi nessl npact T type is
defined in Section 3.3.10.

correl ationl ds —[i nfout] Pointer to a structure that contains correlation identifi-
ers. Theroot Correl ati onl d and par ent Corr el ati onl d fields are i n parame-
ters and hold respectively the root and parent correlation identifiers to be included by
the PLM Service when it generates NTF notifications directly related to this invoca-
tion. The noti fi cati onl d field is an out parameter. If the invocation of the

saPl nEnt i t yReadi nessl npact () function triggers a state change of the target
entity, the PLM Service returns in not i fi cati onl d the identifier of the correspond-
ing state change NTF notification; otherwise PLM sets noti fi cati onl d to

SA NTF_| DENTI FI ER_UNUSED. The SaNt f Corr el ati onl dsT type is defined

in [4].

AIS Specification SAI-AIS-PLM-A.01.02 Section 3.5.3 99

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Platform Management Service API Specification AVAILABILITY

FORUM

Description

The saPl nEnt i t yReadi nessl npact () function is used by processes to report
that the state of health of an entity has changed. The change may result in changes
to the operational state and readiness status of the entity being reported as well as in
changes to the readiness status of other entities that are children of or dependent on
the entity being reported.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR LI BRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA Al S _ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR _TRY_AGAI N - The service cannot be provided at this time. The pro-
cess may retry later.

SA Al S ERR _BAD HANDLE - The handle pl mHandl e is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA Al S ERR | NVALI D_PARAM- A parameter is not set correctly.

SA Al'S ERR_NO MEMORY - Either the PLM Service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_EXI ST — The name referred to by the i npact edEnt i t y param-
eter does not designate an entity configured for the PLM Service.

See Also

saPlmnitialize()

SAI-AIS-PLM-A.01.02 Section 3.5.3.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY UML Information Model

FORUM

4 PLM Service UML Information Model

The PLM Service Information Model is described in UML and has been organized in
UML class diagrams.

The PLM Service Information Model is implemented by the SA Forum IMM Service
([5]). For further details on this implementation, refer to the SA Forum Overview doc-
ument ([1]).

The classes in the PLM Service UML class diagrams show the contained attributes
and their type, multiplicity, default values, and constraints. The description of each
attribute is provided in the SA Forum XMI document (see [8]). The class diagrams
additionally show the administrative operations (if any) applicable on these classes.

To simplify references, this description uses for the UML diagrams the same names
used in [8].

The UML diagrams defined for the PLM Service are:

. “Cluster View”

. “PLM Instances and Types View”
. “PLM HE Classes”

. “PLM EE Classes”

. “PLM Other Classes”

These diagrams will be described starting with Section 4.2.

4.1 Notes on the Conventions Used in UML Diagrams

A general explanation of the conventions used in the UML diagrams, such as the use
of constraints, default values, and the like is presented in [1].

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 4 101

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
UML Information Model

SERVICE
AVAILABILITY’

FORUM

4.2 DN Formats for PLM Service UML Classes

Table 1 provides the format of the various DNs used to name PLM objects of the SA

Forum Information Model. One format is defined for each object class.

The ‘[saf XX=. ..,] "’ notation indicates that an RDN in the form ‘saf Xx=. . . may occur
zero or more times in the DN at a particular position. The ‘[saf Xx=...,]* notation

indicates that an RDN in the form ‘saf XX=. .. may occur 1 or more times in the DN at
a particular position.

Table 1 DN Formats

Object Class DN Format for Objects of that Class

SaPl nDependency "saf Dependency=. . ., [saf EE=...,] *[saf HE=. ..,] saf Domai n=..."
or
"saf Dependency=. .., [saf HE=...,] *saf Domai n=..."

SaPl mDomai n "saf Domai n=. . ."

SaPl nEE "[saf EE=...,] *[saf HE=. ..,] "saf Domai n=..."

SaPl nEEBaseType "saf EEType=. .., saf App=saf Pl nServi ce"

SaPl nEEType "saf Versi on=. .., saf EEType=. .., saf App=saf Pl nServi ce"

SaPl mHE “[saf HE=. . .,] *saf Donmai n=. . . "

SaPl nHEBaseType "saf HEType=. .., saf App=saf Pl nServi ce"

SaPl nHEType "saf Versi on=. .., saf HEType=. .., saf App=saf Pl nServi ce"

102 SAI-AIS-PLM-A.01.02 Section 4.2 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY UML Information Model

FORUM

4.3 PLM Classes and Other Services’ Classes

FIGURE 4 shows the relationships among the main classes of the PLM Service and
the main classes of HPI, CLM, and AMF.

Attributes and operations of the PLM classes SaPl mnHE, SaPl nEE, and
SaPl mDomai n are shown in Section 4.5, Section 4.6, and Section 4.7 respectively.

The SaPl nEnt ity class is only used to facilitate the UML description and is not
implemented in the IMM Service.

HPI, CLM, and AMF object classes are not shown in this document.

FIGURE 4 Cluster View

SaHpiDomain SaPImDomain SaCImCluster Maps On SaAmfCluster
0.1 0.1 0.1 0.1
1.x 1 1 1
0..*
Manages SaPImEntity 1
0.* 0 o
SaHpiEntity Maps On SaPImHE SaPImEE Maps On SaClmNode Maps On SaAmfNode
0.1 0.1 0.1 0.1 0.1 0.1 0.1 O.
[0.1 0.* ‘ 0.1 0..*

AIS Specification SAI-AIS-PLM-A.01.02 Section 4.3 103

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
UML Information Model AVAILABILITY

FORUM

4.4 PLM Instances and Types View

FIGURE 5 shows all classes of the PLM Service. The SaPl nEnt i ty class is only
used to facilitate the UML description and is not implemented in the IMM Service.

FIGURE 5 PLM Instances and Types View

Realizes (config)

a o v
0.* SaPImHE Realizes (runtime) SaPImHEBaseT
arim - - — SaPimHEType | SarimHEBaselype
0.1
SaPimDomain [gL__ 0" SaPImEntity 2
1
0.1 0.4 0t 0.1 Realizes (config)
" SaPImEE — — — —] SaPImEEType ——— SaPImEEBaseType

SaPImDependency
|/\ 1

Note that HE and EE classes relate in a different way to their respective type and
base type classes:

. An HE instance is configured to relate to a particular base type. The relationship
between an HE instance and its type is established dynamically at run time by
the PLM Service after the matching process described in Section 4.5.1 com-
pletes successfully.

. An EE instance is configured to relate to a particular type, providing no dynamic
mapping capability at runtime.

104 SAI-AIS-PLM-A.01.02 Section 4.4 AIS Specification

10

15

20

25

30

35

40

SERVICE

AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
UML Information Model

4.5 PLM HE Classes Diagram

The diagram shown in FIGURE 6 contains the following classes:

SaPl mHE—This configuration object class defines configuration and runtime
attributes of a hardware element and the operations that can be applied on the
hardware element. For each hardware element, an object of this class must be
configured, and its saPl mHEBaseHEType attribute must contain the DN of a
valid object of the SaPl mHEBaseType object class. When hardware matching is
completed, as described in Section 4.5.1, its saPl nCur r HETy pe will contain the
DN of an object of the SaPl nTHEType object class.

SaPl mHEType —This configuration object class defines configuration attributes
of a hardware element type. All hardware elements of the same type share the
attribute values defined in the hardware element type configuration.

SaPl nHEBaseType —This configuration object class defines the configuration
attributes common to different hardware element types. In particular, a base
hardware element type defines the common name of versioned hardware ele-
ment types. A hardware element type x belongs to a base hardware element
type y based on the DN of x, which is the concatenation of the RDN of x (repre-
senting its version) with the DN of y.

AIS Specification

SAI-AlS-PLM-A.01.02 Section 4.5 105

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
UML Information Model

SERVICE
AVAILABILITY’

FORUM

FIGURE 6

PLM HE Classes

<<CONFIG>>
SaPImHE

safHE : SaStringT [L{RDN, CONFIG}

saPImHEBaseHEType : SaNameT [L{CONFIG}

saPImHEEntityPaths : SaStringT [0..*}{CONFIG, WRITABLE}

saPImHECurrHEType : SaNameT [0..1] = Empty{RUNTIME, CACHED}

saPImHECurrEntityPath : SaStringT [0..1] = Empty{RUNTIME, CACHED}

saPImHEAdminState : SaPImHEAdminStateT [L{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saPImHEReadinessState : SaPImReadinessStateT [1[{RUNTIME, CACHED, SAUINT32T}
saPImHEReadinessFlags : SaPImReadinessFlagsT [1{RUNTIME, CACHED, SAUINT64T}
saPImHEPresenceState : SaPImHEPresenceStateT [L{RUNTIME, CACHED, SAUINT32T}
saPImHEOperationalState : SaPImOperationalStateT [L{RUNTIME, CACHED, SAUINT32T}

SA_PLM_ADMIN_ACTIVATE()
SA_PLM_ADMIN_DEACTIVATE()
SA_PLM_ADMIN_LOCK()
SA_PLM_ADMIN_SHUTDOWN()
SA_PLM_ADMIN_UNLOCK()
SA_PLM_ADMIN_RESET()
SA_PLM_ADMIN_REPAIRED()
SA_PLM_ADMIN_REMOVED()

<<CONFIG>>
SaPImHEType

safVersion : SaStringT [1{RDN, CONFIG}
saPImHetldr : SaStringT [0..*{CONFIG, WRITABLE}

<<CONFIG>>
SaPImHEBaseType

safHEType [1[{RDN, CONFIG}
saPImHetHpiEntityType : SaStringT [L{CONFIG}

4.5.1 Matching Configured HEs to Hardware Entities

At system startup and at each time new hardware is added, the PLM Service
attempts to match the newly discovered hardware entities to the configuration
described in the information model. The PLM Service must not remap any hardware
element, while it is in-service. When attempting to match a hardware element with a
hardware entity, the PLM Service performs the following checks:

. It checks that the hardware entity is located in one of the potential locations that
have been configured for the hardware element. The entity path of the hardware

entity is used by the PLM Service to perform this check.

106

SAI-AlS-PLM-A.01.02 Section 4.5.1

AIS Specification

10

15

20

25

30

35

40

CE Service AvailabilityT"’I Application Interface Specification

S
AVAILABILITY’ UML Information Model

It checks that the characteristics of the hardware entity match the configured
characteristics of the hardware element. The contents of its Inventory Data
Repositories are used by the PLM Service to perform this check.

The following sections describe in more details how these checks are performed.

4.5.1.1 Hardware Entity Location Check

Each saPl nHE object class contains two attributes that are used by the PLM Service
to check if the entity path of a hardware entity matches the configuration of a particu-
lar hardware element:

. The saPl rHECur r Ent i t yPat h runtime attribute holds the entity path (using
the standard text string representation for entity paths defined in [3]) of the hard-
ware entity that has been matched with the hardware element. This attribute is
set by the PLM Service when the matching is completed.

. The saPl nHEENt i t yPat hs configuration attribute holds one or several entity
path fragments that are relative to the location of the parent of the PLM hardware
element entity in the PLM Service containment tree.

When checking that an HPI entity is properly located for a particular hardware ele-
ment, the PLM Service combines the entity path of the parent of the hardware ele-
ment (saPl nHECur r Ent i t yPat h attribute of the parent) with each of the entity path
fragments contained in the saPl nHEENt i t yPat hs attribute and checks that they
match the entity path of the hardware entity.

So, for example, if the parent's saPl nHECur r Ent i t yPat h attribute is

"SUBRACK. 1, RACK. 2", and the saPl nHEEnNt i t yPat hs attribute of a hardware ele-
ment includes: "SYSTEM BLADE. 2" and "SYSTEM BLADE. 3", then that hardware
element could match a hardware entity with an entity path

"SYSTEM BLADE. 2, SUBRACK. 1, RACK. 2" or

"SYSTEM BLADE. 3, SUBRACK. 1, RACK. 2".

As another example, the parent's saPl nHECur r Ent i t yPat h attribute might be the
same as above, but the hardware element’s saPl nHEEnt i t yPat hs attribute could
contain: "PI CMG_FRONT_BLADE. 0, PHYSI CAL_SLOT. 3" and

"PI CM5_FRONT_BLADE. 0, PHYSI CAL_SLOT. 4". Now, it could match:

"PI CMG_FRONT_BLADE. 0, PHYSI CAL_SLOT. 3, SUBRACK. 1, RACK. 2" or

"PI CMG_FRONT_BLADE. 0, PHYSI CAL_SLOT. 4, SUBRACK. 1, RACK. 2".

AIS Specification SAI-AIS-PLM-A.01.02 Section 4.5.1.1 107

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

UML Information Model AVAILABILITY’

FORUM

The entity path fragments contained in the saPl nHEEnt i t yPat hs attribute can be
specified exactly or with a syntax that allows multiple locations to match. The num-
bers that indicate the entity location in the entity path fragments can have:

a number, for an exact match,
an asterisk (*), which matches any value, or

a list of numbers and ranges of numbers separated by colons (ranges specified
with hyphens).

Examples

"PROCESSOR. 3" matches the PROCESSOR entity type at location 3 prepended to the
parent's entity path.

"PROCESSOR. * " matches the PROCESSOR entity type, any location, prepended to the
parent’s entity path.

"PROCESSOR. 1: 3: 5- 8" matches the PROCESSCR entity type, entity locations 1, 3,
5, 6, 7, 8 prepended to the parent’s entity path.

"PROCESSOR. 1: 3- " matches the PROCESSOR entity type, entity locations 1, or entity
locations greater than or equal to 3 prepended to the parent’s entity path.

"AMC. *, PHYSI CAL_SLOQT. 1- 4" match an entity path with two additional elements
prepended to the parent's entity path. The first element in the resulting entity path is
of AMC entity type at any location, the second is of PHYSI CAL_SLOT entity type, entity
location 1, 2, 3, or 4.

4.5.1.2 HPI Entity Characteristics Check

After checking that the location of a hardware entity matches the hardware element’s
configuration, the PLM Service checks that the other characteristics of the hardware
entity are also matching the configuration.

Each saPl nHE object class contains an saPl mHEBaseHEType configuration
attribute that associates a hardware element with a particular base type (the attribute
contains the name of an object of class SaPl nHEBaseType).

All hardware element types (represented by objects of class SaPl mHEType) that cor-
respond to the different versions of the hardware element’s base type are checked for
a potential match with the hardware entity. According to the naming conventions
listed in Section 4.2, the name of these hardware element types is built from the
name of their base type.

108

SAI-AIS-PLM-A.01.02 Section 4.5.1.2 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
UML Information Model

The SaPl mHEType object class contains an saPl nHet | dr configuration attribute
that is used to specify the characteristics of the hardware entities that can be repre-
sented by a particular hardware element type. The saPl nHet | dr configuration
attribute holds values that are matched to fields of an Inventory Data Repositories
(IDR) associated with the hardware entity.

One IDR field setting is represented using the following format:

"IDR_Area_Name/IDR_Field Name=IDR_Field Value”

where IDR_Area_Name and IDR_Field_Name may take one of the values defined

in Table 2.

Table 2 IDR Names and Values

IDR Names

IDR Values

IDR_Area_Name

""BOARD" ,""CHASSIS", " INTERNAL",""OEM"™, "PRODUCT"

IDR_Field Name

"ASSET_TAG","CHASSIS_TYPE","CUSTOM" ,"FILE_ID",
"MANUFACTURER"", ""MFG_DATETIME"", ""PART_NUMBER",
""PRODUCT_NAME"",""PRODUCT_VERSION",""SERI1AL_NUMBER"

If the setting of several IDR fields must be specified to identify a particular hardware
entity, they must all be concatenated to form a single string value using “,” as a a sep-
arator. Below is an example of a value held by the saPl nHet | dr configuration

attribute:

"PRODUCT/MANUFACTURER=name_of_ the_ manufacturer,
BOARD/PRODUCT _NAME=board_product_name"

A given hardware entity matches a hardware element type if all IDR settings specified
in one value of the saPl mHet | dr attribute match fields having corresponding
| DR_Area_Nanes and | DR_Fi el d_Nanes in an IDR associated with the hardware

entity.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 4.5.1.2 109

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

UML Information Model AVAILABILITY’

FORUM

If the characteristics of the hardware entity match one version of the hardware ele-
ment’s base type, the PLM Service

sets the value of the hardware element’s saPl nHECur r Ent i t yPat h runtime
attribute to the entity path of the hardware entity and

sets the value of the hardware element’'s saPl nHECur r HETy pe runtime
attribute to the name of the hardware element type that matches the hardware
entity.

For hardware entities not providing an IDR, the saPl nHet | dr attribute should be
empty, that is, it should have no strings.

4.6 PLM EE Classes Diagram

The diagram shown in FIGURE 7 contains the following classes:

SaPl mEE—This configuration object class defines configuration and runtime
attributes of an execution environment and the operations that can be applied on
the execution environment. For each execution environment, an object of this
class must be configured, and its saPl nEEType attribute must contain the DN
of a valid object of the SaPl mEEType object class. Additional configuration
attributes of an execution environment are defined in the SaPl nEEType class.

SaPl nEEType —This configuration object class defines configuration attributes
of an execution environment type. All execution environments of the same type
share the attribute values defined in the execution environment type configura-

tion.

SaPl nHEBaseType —This configuration object class defines the configuration
attributes common to different execution environment types. In particular, a base
execution environment type defines the common name of versioned execution
environment types. An execution environment type x belongs to a base execu-
tion environment type y based on the DN of x, which is the concatenation of the
RDN of x (representing its version) with the DN of y.

110

SAI-AIS-PLM-A.01.02 Section 4.6 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification

UML Information Model

FIGURE 7 PLM EE Classes

<<CONFIG>>
SaPImEE

safEE : SaStringT [1{RDN, CONFIG}

saPImEEType : SaNameT [1{CONFIG, WRITABLE}

saPImEEInstantiateTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}
saPImEETerminateTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}

saPImEEAdminState : SaPImEEAdminStateT [L{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saPImEEReadinessState : SaPImReadinessStateT [1{RUNTIME, CACHED, SAUINT32T}
saPImEEReadinessFlags : SaPImReadinessFlagsT [L{RUNTIME, CACHED, SAUINT32T}
saPImEEPresenceState : SaPImEEPresenceStateT [1[{RUNTIME, CACHED, SAUINT32T}
saPImEEOperationalState : SaPImOperationalStateT [L{RUNTIME, CACHED, SAUINT32T}

SA_PLM_ADMIN_LOCK_INSTANTIATION()
SA_PLM_ADMIN_LOCK()
SA_PLM_ADMIN_UNLOCK_INSTANTIATION()
SA_PLM_ADMIN_UNLOCK()
SA_PLM_ADMIN_SHUTDOWN()
SA_PLM_ADMIN_RESTART()
SA_PLM_ADMIN_REPAIRED()
SA_PLM_ADMIN_REMOVED()

<<CONFIG>>
SaPImEEType

safVersion : SaStringT [1{RDN, CONFIG}
saPImEetDefInstantiateTimeout : SaTimeT [0..1] = No Limit{CONFIG, WRITABLE}
saPImEetDefTerminateTimeout : SaTimeT [0..1] = No Limit{CONFIG, WRITABLE}

<<CONFIG>>
SaPImEEBaseType

safEEType : SaStringT [1{RDN, CONFIG}
saPImEetProduct : SaStringT [1{CONFIG}
saPImEetVendor : SaStringT [0..1] = Empty{CONFIG}
saPImEetRelease : SaStringT [0..1] = Empty{CONFIG}

AIS Specification SAI-AIS-PLM-A.01.02 Section 4.6

111

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
UML Information Model AVAILABILITY

FORUM

4.7 PLM Other Classes Diagram

The diagram shown in FIGURE 8 contains the following classes:

SaPl mDomai n —This configuration object class defines the root object of all
hardware elements and execution environments managed by the PLM Service.

SaPl mDependency —This is a configuration association class used to define
dependencies between PLM entities. It is used to specify the dependencies that
a particular PLM entity has on other PLM entities. Use of the

SaPl mDependency class is described in Section 3.1.2.3.

FIGURE 8 PLM Other Classes

<<CONFIG>>
SaPlmDomain

safDomain : SaStringT [L{RDN, CONFIG}
saPImHEDeactivationPolicy : SaPImHEDeactivationPolicyT [0..1] = 2 (SA_PLM_DP_VALIDATE{CONFIG, WRITABLE, SAUINT32T}

<<CONFIG>>
SaPImDependency

safDependency : SaStringT [1}{RDN, CONFIG}
saPimDepNames : SaNameT [L..{CONFIG, WRITABLE}
saPmDepMinNumber : SaUint32T [L[{CONFIG, WRITABLE}

112 SAI-AIS-PLM-A.01.02 Section 4.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5 PLM Service Administration API

This section describes the administrative states and API functions that the IMM Ser-
vice exposes on behalf of the PLM Service to a system administrator. These API
functions are described using a 'C’ API syntax. The main clients of this administrative
API are system management applications, which typically convert system administra-
tion commands (invoked from a management station) to the correct administrative
API sequence to yield the wanted result that is expected upon execution of the sys-
tem administration command.

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 5 113

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Administration API AVAILABILITY

FORUM

5.1 Include File and Library Name

The appropriate IMM Service header file and the PLM Service header file must be
included in the source of an application using the PLM Service administration API; for
the name of the IMM Service header file, see [5]).

To use the PLM Service administration API, an application must be bound to the IMM
Service library (for the library name, see [5]).

5.2 Type Definitions

The specification of PLM Service Administration API requires the following types, in
addition to the ones already described.

5.2.1 SaPImAdminOperationidT

t ypedef enum {
SA PLM ADM N_LOCK =
SA PLM ADM N_UNLOCK =
SA PLM ADM N_LOCK_I NSTANTI ATION =
SA PLM ADM N_UNLOCK_| NSTANTI ATl ON=
SA PLM ADM N_SHUTDOWN =
SA PLM ADM N_REPAI RED =
SA PLM ADM N_RESTART =
SA PLM ADM N_ACTI VATE =
SA PLM ADM N_DEACTI VATE =
SA PLM ADM N_RESET =
SA PLM ADM N_REMOVED =

} SaPl mAdmi nQOper ati onl dT;

© 00 N O 0O pn W DN P

N
= o

This type defines the identifiers of administrative operations that can be invoked on
hardware element or execution environment objects.

114 SAI-AIS-PLM-A.01.02 Section 5.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.2.2 Parameter lockOption for the LOCK Administrative Operation
#defi ne SA PLM ADM N_LOCK_OPTI ON "1 ockOpt i on"

#define SA PLM ADM N_LOCK_OPTI ON_TRYLOCK "tryl ock"
#define SA PLM ADM N_LOCK_OPTI ON_FORCED "for ced"

5.2.3 Parameter restartOption for the Restart Administrative Operation

#define SA PLM ADM N_RESTART_OPTION "restart Opti on"
#defi ne SA_PLM ADM N_RESTART_OPTI ON_ABRUPT "abrupt"

5.3 Interface to the Information Model Management Service

As explained earlier, the administrative API shall be exposed by the IMM Service
library.

The administrative APIs are described with the assumption that the PLM Service is
an object implementer (runtime owner) for the various administrative operations that
will be initiated as a consequence of invoking the

sal mMOmAdm nQper at i onl nvoke _3() or

sal mmOmAdm nOper at i onl nvokeAsync_3() functions (see [5]) with the appro-
priate oper at i onl d (described in Section 5.2.1) on the entity designated by the
name to which obj ect Nane points.

The return values explained in the following sections for various administrative opera-
tions shall be passed by the oper at i onRet ur nVal ue parameter, which is provided
by the invoker of the sal mmOmAdm nOper at i onl nvoke_3() or

sal nmOmAdm nOper at i onl nvokeAsync_3() functions to obtain return codes
from the object implementer, which in this case is the PLM Service.

5.4 Administrative Operations

A fair number of administrative operations involve the manipulation of the administra-
tive state. Possible values for the administrative state are unlocked, locked, locked-
instantiation, and shutting-down for EEs and unlocked, locked, locked-inactive, and
shutting-down for HEs.

For more details on the administrative states of HEs and EEs, see
Section 3.1.3.1.2 on page 31 and Section 3.1.3.2.2 on page 39 respectively.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.2.2 115

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Administration API AVAILABILITY

FORUM

To aid in the description of the administrative operations, FIGURE 9 illustrates the
various administrative states and the various operations that are applicable on an EE
when it is in a particular administrative state. The abbreviations used in this figure and
their meaning are:

. UL=SA PLM ADM N_UNLOCK

. L=SA PLM ADM N_LOCK

. ULI=SA PLM ADM N_UNLOCK | NSTANTI ATI ON

. LI=SA PLM ADM N_LOCK | NSTANTI ATI ON

. SD=SA PLM ADM N_SHUTDON

The dotted line in the figure represents the internal (spontaneous) transition corre-
sponding to the completion of the shutting down operation; this transition moves the
entity into locked state without further external intervention.

FIGURE 9 Administrative States and Related Operations for PLM EE Entities

N L

unlocked locked
UL

7 sD
p - Complete

UL SD ULI LI

Y

. locked-instantiation
shutting-down

116 SAI-AIS-PLM-A.01.02 Section 5.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

FIGURE 10 illustrates the various administrative states and the various operations
that are applicable on an HE when it is in a particular administrative state. This figure
uses the same abbreviations as for FIGURE 9, except for A and DA, which replace LI
and ULI respectively:

. A=SA PLM ADM N_ACTI VATE
. DA=SA PLM ADM N_DEACTI VATE

FIGURE 10 Administrative States and Related Operations for PLM HE Entities

N L

unlocked locked

UL

Y

, locked-inactive
shutting-down

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4 117

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Administration API AVAILABILITY’

FORUM

5.4.1 SA_PLM_ADMIN_UNLOCK

Parameters
operationld=SA PLM ADM N_UNLCCK, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the logical entity (HE or EE) to be
unlocked. The name is expressed as a LDAP DN.

Description

This administrative operation sets the administrative state of the logical entity (HE or
EE) designated by the name to which obj ect Nane points to unlocked. For more
details regarding the respective status of the logical entities that results as a conse-
guence of invoking this administrative operation on these entities, refer to

Section 3.1.3 on page 25.

This administrative operation can be issued on any logical entity, even if the entity is
not present in the system (for instance, a hardware element is currently not present or
an entity is not instantiated because its parent is locked).

If this operation is invoked on an entity that is already unlocked, there is no change in
the status of such an entity, that is, it remains in unlocked state, and the caller is
returned a benign SA_ Al S ERR_NO_COP error code.

If this operation is invoked on an entity that is in the locked-inactive or locked-instanti-
ation state, there is no change in the status of such an entity, that is, it remains in the
locked-inactive or locked-instantiation state, and the caller is returned an

SA Al S ERR BAD OPERATI ON error value.

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA AlS ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

118

SAI-AIS-PLM-A.01.02 Section 5.4.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR NOT_SUPPCORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in unlocked state.

SA Al'S ERR BAD OPERATI ON- The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

SA Al S ERR DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA_PLM ADM N_LOCK, SA_PLM ADM N_SHUTDOWN

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.1 119

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Administration API AVAILABILITY’

FORUM

5.4.2 SA_PLM_ADMIN_LOCK

Parameters
operationld=SA PLM ADM N _LCCK, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the logical entity (HE or EE) to be
locked. The name is expressed as a LDAP DN.

par ans - [i n] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor is shown next, and its format is specified in [5].

SaStringT operationOption;

operationOption = SA PLM ADM N_LOCK_OPTI ON_FORCED;
or

operationOption = SA PLM ADM N_LOCK_OPTI ON_TRYLOCK;

par ans[0] - >par anName = SA PLM ADM N_LOCK_OPTI ON;

par ans[0] - >par anifype = SA | MM _ATTR_SASTRI NGT;

par ans[0] - >par anBuf fer = &operati onQpti on;

This parameter descriptor specifies the kind of LOCK operation to be carried out on
the object referred to by obj ect Nane.

The SA PLM ADM N_LOCK_OPTI ON parameter is an optional parameter. If it is not
specified, that is, the NULL-terminated array of pointers has NULL in the first ele-
ment, this administrative function will execute the default LOCK operation (see
below).

The types SA_ PLM_ADM N_LOCK_OPTI ON,

SA PLM ADM N_LOCK_OPTI ON_FORCED, and

SA PLM ADM N _LOCK OPTI ON_TRYLQOCK are defined in Section 5.2.2.

Description

This administrative operation sets the administrative state of the logical entity (HE or
EE) designated by the name to which obj ect Nane points to locked.

When this operation is applied to an entity that is in-service, the PLM Service informs
clients of the readiness track API about changes of the readiness state of affected
entities. The number of steps in which readiness track callbacks (see

Section 3.5.2 on page 85) are invoked depends on the par ans parameter. If

SA PLM ADM N _LOCK OPTI ON_TRYLOCK is specified, consumers may reject the

120

SAI-AIS-PLM-A.01.02 Section 5.4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

LOCK operation. In that case, the administrative operation will be rejected, and all
affected entities remain in their previous states.

The detailed actions of the LOCK administrative operation are:

PLM generates a list of all PLM entities that are affected by the LOCK operation.

The following action is performed if the

SA PLM ADM N _LOCK OPTI ON_TRYLOCK option is selected: PLM calls readi-
ness track callbacks to validate the operation and to check whether it is possible
to evacuate services from the entity before it is locked. If services cannot be relo-
cated, the LOCK request may be rejected. If so, the administrative operation is
rejected with SA_Al S ERR_FAI LED_OPERATI ON; otherwise, the action is per-
formed.

If the LOCK operation was accepted in the validation step by all users, or the
operation was invoked with the default option, PLM calls the readiness track call-
backs to start the evacuation of all services. As a result, for example, CLM calls
its track callback and AMF switches over the services as necessary. This action
is performed if the t r yl ock or the default option is selected.

. When all responses have been received for the START step, or the LOCK oper-
ation was invoked with the SA_PLM_ADM N_LOCK_OPTI ON_FORCED option, the
LOCK operation is completed at PLM level by placing the entity into locked state,
which includes the termination of all EEs that are children of a locked EE or that
depend on a locked hardware element.

All affected objects are taken out-of-service (readiness state).

PLM calls readiness track callbacks to inform clients about all entities whose
readiness state changed to out-of-service.

This administrative operation can be issued on any logical entity, even if the entity is
not present in the system (for instance, a hardware element is currently not present,
or an entity is not instantiated because its parent is locked).

If this operation is invoked on an entity that is already locked, there is no change in

the status of such an entity, that is, it remains in the locked state, and a benign error
value SA Al S ERR NO _OP is returned to the client to convey that the entity in ques-
tion designated by the name to which obj ect Nane points is already in locked state.

If this operation is invoked on an entity that is in the locked -inactive or locked-instan-
tiation state, there is no change in the status of such an entity, that is, it remains in the
locked-inactive or locked-instantiation state, and the caller is returned an

SA Al S ERR BAD OPERATI ON error value.

Appendix B.1 on page 167 illustrates a scenario in which a computing blade is physi-
cally extracted from the system. The shown sequence is a superset of the actions

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.2 121

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

necessary for processing a LOCK administrative operation, and it is intended as an
aid in understanding PLM actions for a LOCK operation.

Return Values
SA Al S K- The function completed successfully.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA Al S ERR | NVALI D_PARAM- The SA_ PLM ADM N_LOCK_OPTI ON parameter is
not set correctly.

SA Al'S ERR_NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S_ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

SA Al'S ERR NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in locked state.

SA Al'S ERR BAD OPERATI ON- The operation was not successful because the tar-
get entity is in locked-instantiation administrative state.

SA Al'S ERR FAI LED OPERATI ON- The LOCK request was specified with the
SA PLM ADM N _LOCK_ OPTI ON_TRYLQOCK option, and at least one of the applica-
tions rejected the LOCK request. The administrative operation has no effect on the
current state of the logical entity.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA_PLM ADM N_UNLOCK, SA PLM ADM N_SHUTDOWN

122

SAI-AIS-PLM-A.01.02 Section 5.4.2 AIS Specification

10

15

20

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.3 SA_PLM_ADMIN_SHUTDOWN

Parameters
operationld=SA PLM ADM N_SHUTDOW, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the logical entity (HE or EE) to be shut
down. The name is expressed as a LDAP DN.

Description

This operation is only applicable to entities that have an administrative state of
unlocked. Note, however, that an entity may have an administrative state of unlocked,
but a readiness state of stopping, because an ancestor or an entity upon which this
entity depends is already in the shutting down state.

When this operation is applied to an entity (HE or EE) with a readiness state of out-of-
service, the PLM Service sets the administrative state of the entity immediately to
locked. No further processing is required.

When this operation is applied to an entity with a readiness state of in-service or stop-
ping, the administrative state is set to shutting down and the readiness state to stop-
ping, if not already set. If the readiness state is changed, the PLM Service propagates
that change through entities that are dependent on the one being shut down and
invokes track callbacks in the COMPLETED step for all entity groups that contain
entities whose readiness state changed from in-service to stopping.

After this initial state change, the PLM Service invokes track callbacks in the START
step for all entity groups that contain entities whose readiness state will change to
out-of-service when this shutdown is complete. PLM then waits for the processes
receiving those callbacks to respond with the saPl mReadi nessTr ackResponse()
function.

This waiting period ends when one of the following conditions is met:

. responses are received for all callbacks,

. the readiness state of the target entity has changed to out-of-service due to other
changes in the system, or

. the SHUTDOWN operation is canceled by a subsequent UNLOCK administra-
tive operation.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.3 123

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

At this point, if the SHUTDOWN operation was canceled, no further processing is
required; otherwise, the administrative state is changed to locked, and the readiness
state is changed to out-of-service, if required. If the readiness state was changed as a
result of the administrative state changing to locked, then that readiness state change
is propagated through entities that are dependent on the one being shut down, and
track callbacks in the COMPLETED step are invoked for all entity groups that contain
entities whose readiness state changed to out-of-service.

Return Values
SA Al S_OK - The function completed successfully.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA Al'S ERR_NO MEMCORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR NOT_SUPPCRTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in shutting-down state.

SA Al'S ERR BAD_ OPERATI ON- The operation was not successful because the tar-
get entity is in the locked or locked-instantiation administrative state.

SA Al S ERR DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA_PLM ADM N_UNLOCK, SA PLM ADM N_LOCK

124

SAI-AIS-PLM-A.01.02 Section 5.4.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION

Parameters

operationld=SA PLM ADM N _LOCK | NSTANTI ATI ON, as defined in
Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the EE logical entity to be set in the
locked-instantiation administrative state. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation sets the administrative state of the EE
logical entity designated by the name to which obj ect Nane points to locked-instanti-
ation, provided that the EE was in the locked administrative state.

The effect of this operation can only be reversed by issuing an
SA PLM ADM N_UNLOCK | NSTANTI ATl ON operation on the entity.

The operation can be issued on EEs only. If this operation is issued on an HE, it is
rejected with the SA_ Al S_ERR_NOT_SUPPORTED error code.

This administrative operation can be issued on any EE, even if it has a presence
state of SA_ PLM EE_PRESENCE UNI NSTANTI ATED (for instance, because its par-
ent is locked).

If this operation is invoked by a client on a logical entity that is already in the locked-
instantiation state, the status of such an entity does not change, that is, the entity
remains in that state, and a benign error value SA_ Al S ERR_NO _OP is returned to
the client to convey that the state of the concerned entity in question did not change.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an

SA Al S ERR BAD OPERATI ON error value.

Return Values
SA Al S_OK- The function completed successfully.

SA Al S ERR TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.4 125

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Administration API AVAILABILITY’

FORUM

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA AlS ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR _NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Narne points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity and it remains in the current state.

SA Al'S ERR BAD_ COPERATI ON- The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA PLM ADM N_LOCK, SA PLM ADM N_UNLOCK_| NSTANTI ATI ON

126

SAI-AIS-PLM-A.01.02 Section 5.4.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.5 SA_PLM_ADMIN_UNLOCK_INSTANTIATION

Parameters

operationld=SA PLM ADM N_UNLOCK | NSTANTI ATI ON, as defined in
Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the EE logical entity to be unlocked for
instantiation. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation sets the administrative state of the EE
logical entity designated by the name to which obj ect Nane points to locked.

If the current administrative state of the target entity is

SA PLM ADM N _LOCKED | NSTANTI ATI QN, the invocation of this operation
changes the administrative state to SA_ PLM_ADM N_LOCKED. If the entity has an
operational state of enabled, and the readiness states of all ancestors and of all other
required dependency objects are in-service, the presence state of the target entity is
changed to instantiating, and PLM takes actions to cause the EE to start up. Because
the administrative state is locked, the readiness state of the target entity remains out-
of-service, and the presence states of contained and dependent EEs remain unin-
stantiated.

The operation can be issued on EEs only. If this operation is issued on an HE, it is
rejected with the SA Al S_ERR_NOT_SUPPORTED error code.

This operation is only valid for an EE entity that is currently in the locked-instantiation
administrative state.

If this operation is invoked by a client on a logical entity that is already locked, the sta-
tus of such an entity does not change, that is, it remains in the locked state, and a
benign error value SA_ Al S ERR _NO _OP is returned to the client to convey that the
entity (designated by the name to which obj ect Nane points) is already in locked
state.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an

SA Al'S ERR BAD OPERATI ON error value.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.5 127

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA Al'S ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Narne points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in locked state.

SA Al S ERR BAD_ OPERATI ON- The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA PLM ADM N_LOCK, SA PLM ADM N_LOCK_| NSTANTI ATI ON

SAI-AIS-PLM-A.01.02 Section 5.4.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.6 SA_PLM_ADMIN_RESTART

Parameters
operationld=SA PLM ADM N_RESTART, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the EE logical entity to be restarted. The
name is expressed as a LDAP DN.

par ans - [i n] A pointer to a NULL-terminated array of pointers to parameter descrip-
tors. The first parameter descriptor is shown next, and its format is specified in [5].

SaStringT operationOption;

operati onOpti on = SA PLM ADM N_RESTART_OPTI ON_ABRUPT;
par ans[0] - >par anNanme = SA PLM ADM N_RESTART_COPTI ON,
par ans[0] - >par anifype = SA | MM_ATTR_SASTRI NGT;

par ans[0] - >par anBuf fer = &operati onQpti on;

This parameter descriptor specifies the kind of restart operation to be carried out on
the object referred to by obj ect Nane.

The SA_ PLM RESTART _OPTI ON parameter is an optional parameter. If it is not spec-
ified, that is, the NULL-terminated array of pointers has NULL in the first element, this
administrative function will execute the default (graceful) restart.

The types SA_ PLM_ADM N_RESTART_OPTI ON and

SA PLM ADM N_RESTART _OPTI ON_ABRUPT are defined in Section 5.2.3.

Description

The invocation of this administrative operation involves the termination and immedi-
ate re-instantiation of the target EE. This operation is intended to be used as a repair
action for the service running on the EE. The processing depends on whether the
SA PLM RESTART_COPTI ON parameter is specified:

— SA_PLM ADM N_RESTART OPTI ON_ABRUPT is specified:

If SA PLM ADM N_RESTART_OPTI ON_ABRUPT is specified for an EE, the PLM
Service uses a specific operation of the parent entity to abruptly terminate and
reboot the target EE.

The execution of the operation depends on the capabilities of the parent: If the
target EE's parent is an HE, the PLM Service typically uses an HPI operation to
reset the HE. If the parent is a virtualization monitor, the PLM Service uses the
implementation-specific operation of the virtualization monitor to reboot the tar-

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.6 129

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

get EE. This operation should be carried out such that none of the siblings of the
target EE are affected. After initiating the restart operation, the PLM Service sets
the target EE's presence state to instantiating and its readiness state to out-of-
service. Additionally, the presence states in dependent EEs are set to uninstanti-
ated and their readiness states to out-of-service. The PLM Service then invokes
the saPl nReadi nessTrackCal | back() callback of all processes that
requested this callback for the target EE or dependent EEs that change readi-
ness state. The callback is invoked with the st ep parameter set to

SA PLM CHANGE COVPLETED and cause set to

SA PLM CAUSE_EE RESTART.

= No parameter is specified:

If no parameter is specified, the PLM Service executes a graceful termination
and a reboot of the target EE. As opposed to the abrupt restart operation, which
uses an operation on the parent entity to force the restart, a graceful termination
of an EE is initiated by using an appropriate operation on the target entity itself.
That is, the PLM Service instructs the target EE to reboot itself.

As a result of rebooting the target EE, dependent EE entities will necessarily be
terminated. Before initiating the reboot operation, the PLM Service sets the pres-
ence state of the target EE to terminating and keeps this state until all dependent
entities are terminated. As each dependent EE terminates, the PLM Service sets
the presence state of the dependent EE to uninstantiated and its readiness state
to out-of-service. When the target EE begins to reboot, the PLM Service sets the
target EE’s presence state to instantiating and its readiness state to
out-of-service.

It is implementation-specific how these termination and reboot operations are
initiated and coordinated. As the readiness state of any affected EE changes,
the PLM Service invokes the saPl nReadi nessTrackCal | back() callback of
all processes that requested this callback for the appropriate EE. The callback is
invoked with the st ep parameter set to SA PLM CHANGE COMPLETED and
cause setto SA PLM CAUSE _EE RESTART.

For both abrupt and graceful restarts, when the start-up of the target EE is completed,
its presence state becomes instantiated. If there is not some other reason for it to
remain out-of-service, its readiness state is changed to in-service, and the PLM Ser-
vice invokes the saPl nReadi nessTrackCal | back() callback of all processes
that requested this callback for the target EE. The callback is invoked with the st ep
parameter set to SA PLM CHANGE COVPLETED and cause set to

SA_PLM CAUSE_EE | NSTANTI ATED.

130

SAI-AIS-PLM-A.01.02 Section 5.4.6 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY’ Administration API

FORUM

Subsequently, the PLM Service also ensures that all dependent entities are instanti-
ated, as required. When each dependent entity reaches the instantiated presence
state, its readiness state becomes in-service, unless there is some other reason
causing it to remain out-of-service. If the readiness state of a dependent EE changes,
the PLM Service invokes the saPl nReadi nessTr ackCal | back() callback of all
processes that requested this callback for the EE being set in-service. The callback is
invoked with the st ep parameter set to SA PLM CHANGE COMPLETED and cause
set to SA PLM CAUSE_EE_| NSTANTI ATED.

After the target EE and all dependent EEs that are to be instantiated reach a pres-
ence state of instantiated, the operation returns with SA_Al S_OK. If at least one EE
was unable to start up within the configured time (specified by the

saPl nEEl nst anti at eTi meout attribute of the SaPl nEE object class, shown in
FIGURE 7 on page 111), the operation returns with

SA AI'S ERR FAI LED_OPERATI ON.

This administrative operation is applicable only to those entities whose presence
state is instantiated.

This operation can be issued on EEs only. If this operation is issued on an HE, it is
rejected with the SA Al S_ERR_NOT_SUPPORTED error code.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation. This error code is also returned when the
PLM Service was unable to initiate the restart operation because the management-
lost readiness flag is set for the entity.

SA Al'S ERR | NVALI D_PARAM- The SA_PLM ADM N_RESTART_OPTI ON parame-
ter is not set correctly.

SA Al'S ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al'S ERR NO RESOURCES - There are insufficient resources (other than mem-
ory).

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.6 131

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Administration API AVAILABILITY

FORUM

SA Al S ERR BAD_COPERATI ON- The target logical entity for this operation identified
by the name to which obj ect Nane points could not be restarted for various reasons
like the presence state of the entity to be restarted being other than instantiated.

SA Al'S_ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

SA Al'S ERR _FAI LED OPERATI ON - The requested operation was accepted and
applied to the object; however, not all affected EEs were successfully restarted.

See Also

None

132

SAI-AIS-PLM-A.01.02 Section 5.4.6 AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY’ Administration API

FORUM

5.4.7 SA_PLM_ADMIN_DEACTIVATE

Parameters
operationld=SA PLM ADM N_DEACTI VATE, as defined in Section 5.2.1.

obj ect Nan®e - [i n] A pointer to the name of the HE logical entity whose administra-
tive state is to be transitioned to locked-inactive. The name is expressed as a LDAP
DN.

Description

The invocation of this administrative operation sets the administrative state of the HE
logical entity designated by the name to which obj ect Nane points to locked-inac-
tive, provided that the logical entity’s administrative state was locked.

When setting the administrative state of an HE to locked-inactive, the PLM Service
will initiate the required actions to deactivate the hardware entity mapped to that HE,
if its presence state is not already inactive or not present.

The operation can be issued on HEs only. If this operation is issued on an EE, it is
rejected with the SA_ Al S_ERR_NOT_SUPPORTED error code.

The effect of this operation on a logical entity can be reversed only by issuing an
SA PLM ADM N_ACTI VATE operation on the logical entity.

This administrative operation can be issued on any HE logical entity, even if its pres-
ence state is set to not present.

If this operation is invoked by a client on a logical entity that is already in the locked-
inactive state, the status of such an entity does not change, that is, the entity remains
in that state, and a benign error value SA_Al S ERR _NO _CP is returned to the client

to convey that the state of the concerned entity in question did not change.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an

SA Al'S ERR BAD OPERATI ON error value.

Return Values
SA Al S X - The function completed successfully.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.7 133

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Administration API AVAILABILITY’

FORUM

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA AlS ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR _NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Narne points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity and it remains in the current state.

SA Al'S ERR BAD_ COPERATI ON- The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA_PLM ADM N_LOCK, SA_PLM ADM N_ACTI VATE

134

SAI-AIS-PLM-A.01.02 Section 5.4.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.8 SA_PLM_ADMIN_ACTIVATE

Parameters
operationld=SA PLM ADM N_ACTI VATE, as defined in Section 5.2.1.

obj ect Nan®e - [i n] A pointer to the name of the HE logical entity whose administra-
tive state is to be transitioned to locked. The name is expressed as a LDAP DN.

Description

The invocation of this administrative operation transitions the administrative state of
the HE logical entity designated by the name to which obj ect Nane points to locked.

This administrative operation is only valid when the current administrative state of the
target entity is locked-inactive. When this operation is processed, the administrative
state of the target entity is set to locked, and the PLM Service takes any required
actions to begin activation of a hardware entity mapped to the addressed HE entity,
as well as contained entities, provided they do not have an administrative state of
locked-inactive. Generally, this will result in a change of the presence state of the
affected entities to activating, and eventually to active. However, the readiness states
will remain out-of-service, because the new administrative state of the target entity is
locked.

The operation can be issued on HEs only. If this operation is issued on an EE, it is
rejected with the SA_ Al S ERR_NOT_SUPPORTED error code.

This administrative operation can be issued on any HE logical entity, even if its pres-
ence state is set to SA PLM HE PRESENCE_NOT PRESENT.

If this operation is invoked by a client on a logical entity that is already locked, the sta-
tus of such an entity does not change, that is, it remains in the locked state, and a
benign error value SA_Al S ERR _NO_OR is returned to the client to convey that the
entity (designated by the name to which obj ect Nane points) is already in locked
state.

If this operation is invoked by a client on a logical entity that is either in the shutting-
down or unlocked administrative state, the status of such an entity does not change,
that is, the entity remains in the respective state, and the caller is returned an

SA Al'S ERR BAD OPERATI ON error value.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.8 135

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA Al'S ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR_NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al'S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Narne points.

SA Al'S ERR _NO OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in locked state.

SA Al S ERR BAD_ OPERATI ON- The operation was not successful because the tar-
get entity is either in the shutting-down or unlocked administrative state.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also
SA_PLM ADM N_LOCK, SA_PLM ADM N_DEACTI VATE

SAI-AIS-PLM-A.01.02 Section 5.4.8 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.9 SA_PLM_ADMIN_RESET

Parameters
operationld=SA PLM ADM N_RESET, as defined in Section 5.2.1.

obj ect Nan®e - [i n] A pointer to the name of the HE logical entity to be reset. The
name is expressed as a LDAP DN.

Description

The invocation of this administrative operation is intended to be used to bring a failed
entity back to a known state.

The PLM Service typically uses the saHpi Resour ceReset St at eSet () HPI func-
tion to perform a reset on the target entity. The operation also results in dependent
EEs becoming uninstantiated and subsequently re-instantiated. If the target entity
can be activated, and all dependent EEs are successfully instantiated, the success of
the administrative operation is signalized with SA Al S_OK.

When the reset is initiated, the PLM Service sets the presence state of the target HE
to inactive and its readiness state to out-of-service. Additionally, the presence state of
dependent entities become inactive or uninstantiated, and their readiness states
become out-of- service. The PLM Service invokes the

saPl nReadi nessTrackCal | back() callback function of all processes that
requested this callback for any of the entities that changed readiness state. The call-
back is invoked with the st ep parameter set to SA PLM_CHANGE _COVPLETED and
cause setto SA_ PLM CAUSE_HE RESET.

When the target entity has restarted, the PLM Service sets its presence state to
active and its readiness state to in-service, if there is no other reason to have it out-of-
service. Additionally, the presence states and readiness states of dependent HE enti-
ties are changed to active and in-service, as appropriate. The PLM Service invokes
again the saPl nReadi nessTr ackCal | back() callback function of all processes
that requested this callback for any of the entities that changed readiness state to in-
service. The callback is invoked with the st ep parameter set to

SA PLM CHANGE COVPLETED and cause setto SA PLM CAUSE_HE ACTI VATED.
Subsequently, the PLM Service also ensures that dependent EE entities are instanti-
ated, as required. When each dependent EE reaches the instantiated presence state,
its readiness state becomes in-service, unless there is some other reason causing it
to remain out-of-service. If the readiness state changes, the PLM Service invokes the
saPl mReadi nessTrackCal | back() callback function of all processes that
requested this callback for the EE being set in-service. The callback is invoked with
the st ep parameter set to SA_ PLM CHANGE_COVPLETED, cause set to

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.9 137

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Administration API AVAILABILITY

FORUM

SA PLM CAUSE_HE_ ACTI VATED, and with r oot CauseEnt i t y identifying the tar-
get HE that was reset.

This administrative operation is applicable only to those entities whose presence
state is active; otherwise, SA_Al S ERR BAD_ OPERATI ONis returned.

This operation can be issued on HEs only. If this operation is issued on an EE, it is
rejected with the SA_ Al S_ERR_NOT_SUPPORTED error code.

Return Values
SA Al S _OK - The function completed successfully.

SA Al S ERR _TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al'S ERR TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation. This error code is also returned when the
PLM Service was unable to initiate the reset operation due to circumstances for
which the management-lost readiness flag was set for the entity.

SA Al'S ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR _NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al S ERR BAD_ OPERATI ON- The target logical entity for this operation identified
by the name to which obj ect Nane points could not be reset for various reasons like
the presence state of the entity to be reset being inactive.

SA Al S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

See Also

None

SAI-AIS-PLM-A.01.02 Section 5.4.9 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.10 SA_PLM_ADMIN_REPAIRED

Parameters
operationld=SA PLM ADM N_REPAI RED, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the logical entity (EE or HE) to be
repaired. The name is expressed as a LDAP DN.

Description

This administrative operation is used to clear the disabled operational state of a PLM
entity (HE or EE), after it has been successfully mended to declare it as repaired. The
administrator uses this command to indicate that the PLM Service should try to take
the entity back to service.

This operation can be used, for instance, to reverse the effect of the call of the func-
tion saPl nEnt i t yReadi nessl npact () by an application to report a failure condi-
tion.

If the PLM Service does not detect a pending fault condition, it sets the operational
state of the entity to enabled and clears the isolate-pending and the imminent-failure
readiness flags. The administrative operation than returns with SA_ Al S_OK.

If all other preconditions are met, the PLM Service brings the entity in-service and ini-
tiates the appropriate actions. The PLM Service invokes the

saPl mReadi nessTrackCal | back() callback function of all processes that
requested this callback with the st ep parameter set to

SA PLM CHANGE COVPLETED and cause set to

SA PLM CAUSE_FAI LURE_CLEARED.

If PLM still detects a pending fault condition, it returns

SA Al S_ERR BAD_ OPERATI ON.

This administrative operation can be issued on any configured entity, even if the
entity is inactive.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.10 139

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Administration API AVAILABILITY’

FORUM

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked.

SA Al'S ERR_NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al S ERR _NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al S_ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Nane points.

SA Al'S_ERR _NO _OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already enabled.

SA Al S ERR BAD OPERATI ON- The invocation of this administrative operation was
unsuccessful because there is still an error condition. The operational state could not
be set to enabled.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also

None

140

SAI-AIS-PLM-A.01.02 Section 5.4.10 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Administration API

FORUM

5.4.11 SA_PLM_ADMIN_REMOVED

Parameters

operationld=SA PLM ADM N _REMOVED, as defined in Section 5.2.1.

obj ect Nane - [i n] A pointer to the name of the logical entity (HE or EE) that has
been removed. The name is expressed as a LDAP DN.

Description

This administrative operation is used when an entity has been removed from the sys-
tem, while the PLM Service has no management capabilities to detect the removal. It
is applicable only to those logical entities (HE or EE) for which the management-lost

readiness flag is set.

This operation will set the HE identified by the name to which obj ect Nane points
and its child HEs to out-of-service, not-present and all its child-EEs to out-of-service,
uninstantiated.

The operation issued on an EE identified by the name to which obj ect Name points
will set the EE and all its child-EEs to out-of-service, uninstantiated. Readiness flags
of all affected entities are cleared. Users of the track interface are called as appropri-
ate.

Return Values
SA Al S K- The function completed successfully.

SA Al S _ERR_TI MEQUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA Al S ERR _TRY_AGAI N- The service cannot be provided at this time. The client
may retry later. This error generally should be returned when the requested action is
valid but not currently possible, probably because another operation is acting upon
the logical entity on which the administrative operation is invoked. Such an operation
can be another administrative operation.

SA AlS ERR NO MEMORY - The PLM Service or a library is out of memory and can-
not provide the service.

SA Al'S ERR NO RESOURCES - There are insufficient resources (other than mem-
ory).

SA Al S ERR _NOT_SUPPORTED - This administrative operation is not supported by
the type of entity denoted by the name to which obj ect Narne points.

SA Al S ERR BAD OPERATI ON - The management-lost readiness flag is not set for
the target logical entity that is identified by the name to which obj ect Nane points.

AIS Specification SAI-AIS-PLM-A.01.02 Section 5.4.11 141

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Administration API AVAILABILITY

FORUM

SA Al'S_ERR _NO _OP - The invocation of this administrative operation has no effect
on the current state of the logical entity, as it is already in not-present or uninstanti-
ated state.

SA Al S_ERR _DEPLOYMENT - The requested operation was accepted and applied at
the information model level. However, its complete deployment in the running system
may not be guaranteed at the moment because the management-lost readiness flag
is set for the entity.

See Also

None

142

SAI-AIS-PLM-A.01.02 Section 5.4.11 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

6 PLM Service Alarms and Notifications

The Platform Management Service produces alarms and notifications to convey
important information regarding the operational and functional state of the objects
under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention, and notifications which signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service Availability™ Forum (abbreviated as NTF, see [4]), and hence the
various notifications are partitioned into categories, as described in this service.

In some cases, this specification uses the word “Unspecified” for values of attributes
that the vendor is at liberty to set to whatever makes sense in the vendor’s context,
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see
[10]).

6.1 Setting Common Attributes

The following attributes of the notifications presented in Section 6.2 are not shown in
their description, as the generic description presented here applies to all of them:

Notification Id - Depending on the Notification Service function used to send the
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

. Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and must contain at least the
saf App RDN value portion of the DN set to the specified standard RDN value of
the SA Forum AIS Service generating the notification, that is, saf Pl nmSer vi ce.
For details on the AIS naming convention, refer to [2].

Event Time - This attribute contains the time when the Platform Management
Service detected the event leading to the notification.

Correlated Notifications - Correlation ids are supplied to correlate notifications
that have been generated because of a related cause. The correlated notifica-
tions attribute should include

. in the first position the root notification identifier of the related tree of notifica-
tions as described in the Notification Service specification (see [4]),

. in the second position the parent notification identifier of the same tree,

AIS Specification SAI-AIS-PLM-A.01.02 Chapter 6 143

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Alarms and Notifications AVAILABILITY

FORUM

. in the third position the notification identifier of the sibling notification, if any.
This sibling notification is the opening pair of the current notification such as
the alarm that is being cleared or the start of an administrative operation or a
configuration change that has ended.

If any of these notifications is unknown, the SA NTF_| DENTI FI ER_UNUSED
value must be used. This value may be omitted in trailing positions.

The following note applies to all notifications presented in Section 6.2:

Notification Class Identifier - The vendor | d field of the SaNt f Cl assl dT data
structure must be setto SA_ NTF_VENDOR | D_SAF, and the maj or | d field must
be setto SA_ SVC PLM(as defined in the SaSer vi cesT enumeration in [2]) for
all notifications that follow the standard formats described in this specification.
The m nor | d field will vary based on the specific notification.

An implementation of the Platform Management Service may also produce noti-
fications with an implementation-specific format. In particular, HPI event notifica-
tions may use implementation-specific data formats. For these implementation-
specific notifications, the vendor | d portion of the SaNt f Cl ass| dT data struc-
ture must be set to a value that identifies the vendor defining the format. The val-
ues of maj or I d and m nor | d will vary as defined by the vendor.

The PLM Service should provide close-to-source notification suppression, as
described in [4]. That is, the PLM Service should save the efforts necessary to con-
struct currently suppressed notifications.

144

SAI-AIS-PLM-A.01.02 Section 6.1 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Alarms and Notifications

FORUM

6.2 Platform Management Service Notifications

The following sections describe a set of notifications that a PLM Service implementa-
tion shall produce.

6.2.1 Platform Management Service Alarms
6.2.1.1 Hardware Element Alarm

Description

By using its interface to HPI or by other implementation-specific means, the PLM Ser-
vice has detected that an alarm condition (for instance, a hardware fault) exists for a
hardware entity modeled as a PLM hardware element (HE) object.

Clearing Method
(1) By exchanging faulty hardware, or taking other repair procedure or
(2) manual
. by taking an appropriate administrative action,
. by taking other appropriate action, or

(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-
tion with SA NTF_SEVERI TY_CLEARED perceived severity to convey that the
PLM Service has detected that the alarm condition no longer exists. For
instance, the PLM Service has detected that the faulty hardware entity ha been
removed.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2 145

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 3 Hardware Element Alarm

NTF Attribute Name Mar)datory/ Specified Value
Optional
Event Type Mandatory SA NTF_ALARM EQUI PMENT
Notification Object Mandatory LDAP DN of the HE object associated with the
hardware entity
Notification Class Identifier | NTF-Internal | mi norld =SA PLM NTFI D_HE ALARM
Additional Text Optional "Hardware element <LDAP DN of HE> alarm"
Additional Information Optional i nfold=SA PLM Al _ENTI TY_PATH
i nfoType = SA_ NTF_VALUE_STRI NG
i nf oVal ue = HPI entity path, that is, the con-
tents of HE object’s
saPl mHECur r Ent i t yPat h attribute
Probable Cause Mandatory Applicable value from enum
SaNt f Pr obabl eCauseT in [4]
Specific Problems Optional Unspecified
Perceived Severity Mandatory Applicable value from enum
SaNt f SeverityTin [4]
Trend Indication Optional Unspecified
Threshold Information Optional Unspecified
Monitored Attributes Optional Unspecified
Proposed Repair Actions Optional Unspecified

146

SAI-AIS-PLM-A.01.02 Section 6.2.1.1 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Alarms and Notifications

FORUM

6.2.1.2 Execution Environment Alarm

Description

By using implementation-specific means, the PLM Service has detected that an
alarm condition (for instance, a fault condition) exists for an execution environment
(EE) object.

Clearing Method
(1) By using a problem-specific repair procedure,
(2) manual,
. by taking an appropriate administrative action,
. by taking other appropriate action, or

(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-
tion with SA_ NTF_SEVERI TY_CLEARED perceived severity to convey that the
PLM Service has detected that the alarm condition no longer exists.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.2 147

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 4 Execution Environment Alarm

NTF Attribute Name g;ggs;?ry/ Specified Value
Event Type Mandatory SA _NTF_ALARM ENVI RONMENT
Notification Object Mandatory LDAP DN of the EE object
Notification Class Identifier | NTF-Internal | m norld = SA PLM NTFI D_EE_ALARM
Additional Text Optional "Execution environment <LDAP DN of EE>
alarm"
Additional Information Optional Unspecified
Probable Cause Mandatory Applicable value from enum
SaNt f Probabl eCauseT in [4]
Specific Problems Optional Unspecified
Perceived Severity Mandatory Applicable value from enum
SaNt f SeverityTin [4]
Trend Indication Optional Unspecified
Threshold Information Optional Unspecified
Monitored Attributes Optional Unspecified
Proposed Repair Actions Optional Unspecified
148 SAI-AIS-PLM-A.01.02 Section 6.2.1.2 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Alarms and Notifications

FORUM

6.2.1.3 Hardware Element Security Alarm

Description

By using its interface to HPI or by other implementation-specific means, the PLM Ser-
vice has detected that a security alarm condition exists for a hardware entity modeled
as a PLM hardware element (HE) object.

Clearing Method
(1) Manual, after taking the appropriate administrative action or

(2) issue a subsequent security alarm notification with
SA NTF_SEVERI TY_CLEARED perceived severity to convey that the PLM Ser-
vice has detected that the security alarm condition no longer exists.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.3 149

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 5 Hardware Element Security Alarm

Mandatory/

NTF Attribute Name . Specified Value
Optional

Event Type Mandatory SA _NTF_PHYSI CAL_VI OLATI ON

Notification Object Mandatory LDAP DN of the HE object associated with the
hardware entity

Notification Class Identifier | NTF-Internal | mi norl d = SA PLM NTFI D_ HE SEC ALARM

Additional Text Optional "Hardware element <LDAP DN of HE> security
alarm"

Additional Information Optional infold=SA PLM Al _ENTI TY_PATH
i nfoType = SA NTF_VALUE_STRI NG
i nf oVal ue = HPI entity path, that is, the con-
tents of HE object’s
saPl nHECur r Ent i t yPat h attribute.

Cause Mandatory Applicable value from enum
SaNt f Probabl eCauseT in [4]

Severity Mandatory Applicable value from enum SaNt f SeverityT
in [4]

Detector Mandatory This field should uniquely indicate how the vio-
lation was detected. It can contain, for example,
a string identifying an HPI sensor.

Service User Mandatory This field must represent the identity of the SA
Forum Service user. When the identity of the
user cannot be determined, the value 'Unidenti-
fied', represented as a string, must be used.

Service Provider Mandatory Typically, HPI detected the violation:

"saf App=saf Hpi Ser vi ce"

In other cases, PLM reports the detecting ser-
vice or:

"saf App=saf Pl nSer vi ce".

150

SAI-AIS-PLM-A.01.02 Section 6.2.1.3 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Alarms and Notifications

FORUM

6.2.1.4 Execution Environment Security Alarm

Description

By using implementation-specific means, the PLM Service has detected that a secu-
rity alarm condition exists for an operating environment modeled as a PLM execution
environment (EE) object.

Clearing Method
(1) Manual, after taking the appropriate administrative action or

(2) issue a subsequent security alarm notification with
SA NTF_SEVERI TY_CLEARED perceived severity to convey that the PLM Ser-
vice has detected that the security alarm condition no longer exists.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.4 151

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

Alarms and Notifications

FORUM

SERVICE
AVAILABILITY’

Table 6 Execution Environment Security Alarm

NTF Attribute Name Maqdatory/ Specified Value
Optional

Event Type Mandatory SA _NTF_OPERATI ON_VI CLATI ON

Notification Object Mandatory LDAP DN of the EE object.

Notification Class NTF-Internal | m norld =SA PLM NTFI D_EE SEC ALARM

Identifier

Additional Text Optional "Execution environment <LDAP DN of EE> security
alarm"

Additional Informa- | Optional Unspecified

tion

Cause Mandatory Applicable value from enum
SaNt f Pr obabl eCauseT in [4]

Severity Mandatory Applicable value from enum SaNt f SeverityT in [4]

Detector Optional This field should uniquely indicate how the violation
was detected. It can contain, for example, a string
identifying the program that detected the violation.

Service User Optional This field must represent the identity of the SA Forum
Service user. When the identity of the user cannot be
determined, the value 'Unidentified’, represented as a
string, must be used.

Service Provider Optional Typically, PLM detects the violation:
"saf App=saf Pl nSer vi ce".
In other cases, PLM reports the DN of the detecting
service.

152

SAI-AIS-PLM-A.01.02 Section 6.2.1.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

6.2.1.5 Unmapped Hardware Entity Alarm

Description

The PLM Service, through its interface with HPI or other implementation-specific
means, has discovered the presence of a hardware entity that is not mappable to any
configured hardware element (HE).

It is possible that a group of HPI entities such as a computing blade plus contained
components on that blade, are all mapped to a single HE. Therefore, it is not required
for PLM to generate an “unmapped hardware entity” alarm for every discovered HPI
entity path that does not map directly to an entity path in an HE. This notification
should be issued only when a hardware entity is discovered that is not associated
with any HE in the PLM configuration.

Similarly, when this notification is issued for a particular hardware entity, it is not
required, nor recommended, that it be issued for all contained entities. For example, if
a notification is issued reporting that a discovered computing blade is unmapped, it is
not required to issue notifications reporting that individual components on that blade
are also unmapped.

The probable cause and perceived severity attributes in the notification may be set to
appropriate values determined by the PLM implementation. In most cases, it is
expected that the probable cause will be

SA NTF_CONFI GURATI ON_OR_CUSTOM ZATI ON_ERROR and the perceived sever-
ity will be SA_NTF_SEVERI TY_| NDETERM NATE.

Clearing Method

(1) By removing hardware of a wrong types or by changing the configuration such
that the hardware can be mapped, or

(2) manual, by taking other appropriate action, or

(3) automatic, as a result of subsequent events: issue a subsequent alarm notifica-
tion with SA_ NTF_SEVERI TY_CLEARED perceived severity to convey that the
PLM Service has resolved the mapping issue. For example, the PLM Service
detected that the unmapped hardware entity has been removed from the system
or that a reconfiguration of HE objects has been made such that the hardware
entity now can be mapped to an HE.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.1.5 153

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Alarms and Notifications AVAILABILITY

FORUM

Table 7 Unmapped Hardware Entity Alarm

NTF Attribute Name Maqdatory/ Specified Value
Optional

Event Type Mandatory SA NTF_ALARM EQUI PMENT

Notification Object Mandatory LDAP DN of the nearest HE object that is a
candidate parent of the unmapped entity, or if
there is no candidate parent, the LDAP DN of
the PLM Domain object. An HE object is a
candidate parent if the
saPl mHECur r Ent i t yPat h attribute of the
HE object matches the tail of the entity path of
the unmapped hardware entity.

Notification Class Identifier | NTF-Internal | mi norld =
SA PLM NTFI D_UNVAPPED HE ALARM

Additional Text Optional "Unmapped hardware entity"

Additional Information Optional i nfold=SA PLM Al _ENTI TY_PATH
i nf oType = SA_NTF_VALUE_STRI NG
i nf oVal ue = HPI entity path for unmapped
hardware entity

Probable Cause Mandatory Applicable value from enum
SaNt f Pr obabl eCauseT in [4]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNt f SeverityTin [4]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified

154

SAI-AIS-PLM-A.01.02 Section 6.2.1.5

AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Alarms and Notifications

6.2.2 Platform Management Service State Change Notifications

6.2.2.1 PLM Entity State Change Notification

Description

The administrative, HA, operational, presence, or readiness state or flags of an HE or
EE object has changed. If multiple states of an object change together, a single notifi-
cation including all associated state changes shall be generated for that object. For
example, if the operational state for an HE object that has a readiness state of
SA_PLM READI NESS | N_SERVI CE changes to

SA PLM OPERATI ONAL_DI SABLED, the readiness state changes to

SA PLM READI NESS_QUT_OF_SERVI CE as part of the same operation. These two
state changes should be included in a single state change notification.

An object changes state either as the result of an administrative operation, a detected
or reported status change, or as a result of a change in state of another PLM entity
object, either an ancestor PLM entity or a PLM entity with a configured dependency
relationship. A change of state of an object due to an ancestor or dependency object
changing state is indicated in the notification with a specific notification class identifier
(NCI) and with the inclusion of the LDAP name of the 'root' state change object in the
additional information field. The 'root’ state change object is not necessarily the direct
parent or dependency PLM entity for the object changing state; it is the ‘initial' PLM
entity that changed state resulting in this state change, that is, the object that
changed state for some reason other than the fact that an ancestor or a dependency
object changed state.

Table 8 PLM Entity State Change Notification

NTF Attribute Name Mandatory/Optional | Specified Value

Event Type Mandatory SA NTF_OBJECT STATE_CHANGE

Notification Object Mandatory LDAP DN of the PLM entity object whose
state changed

Notification Class Iden- | NTF-Internal mnorld=

tifier SA_PLM NTFI D_STATE_CHANGE ROOT
for root state change notification, or
mnorld=
SA_PLM NTFI D_STATE_CHANGE_DEP for
child or dependent state change notification

Additional Text Optional Unspecified

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.2 155

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

Alarms and Notifications

SERVICE
AVAILABILITY’

FORUM

Table 8 PLM Entity State Change Notification (Continued)

SA PLM NTFI D_
STATE_CHANGE_DEP

NTF Attribute Name Mandatory/Optional | Specified Value
Additional Information Mandatory when i nfold=SA PLM Al ROOT_OBJECT
NCIm norld= i nfoType = SA NTF_VALUE LDAP_NAVME

i nfoVal ue = LDAP DN of root state
change PLM entity object

Identifier (stat el d
field of
SaNt f St at eChangeT)

Source Indicator Mandatory Applicable value from enum
SaNt f Sour cel ndi cat or T in [4]. When
the state change is due to an ancestor or
dependency object changing state, the
Source Indicator is the same as the value in
the notification generated for the root object
for the state change.

nuntt at eChanges Mandatory Number of state values that changed

field of together in this object. For example, the

SaNt f St at eChange value 2 is used if both the operational and

Noti ficationTin[4] the readiness states changed as the result
of a failure.

changedSt at es array | Mandatory Array of SaNt f St at eChangeT structures

of SaNt f St at eChange (see [4]) for each state in the object that

NotificationTin[4] has changed, each entry including the four
next attributes

Changed State Attribute | Mandatory Applicable value from enum SaPI nf5t at eT

(see Section 3.3.15.3) to identify which
state has changed

156

SAI-AIS-PLM-A.01.02 Section 6.2.2.1

AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Alarms and Notifications

Table 8 PLM Entity State Change Notification (Continued)

NTF Attribute Name

Mandatory/Optional

Specified Value

Old Attribute Value
Present

(ol dSt at ePr esent
field of

SaMt f St at eChangeT)

Mandatory

Boolean value indicating whether or not the
old attribute value is included in the
SaNt f St at eChangeT structure

Old Attribute Value
(ol dst at e field of
SaNt f St at eChangeT)

Optional

Applicable value from enum

SaPl mHEAdnm nSt at eT (Section 3.3.2)
SaPl nEEAdm nSt at eT (Section 3.3.3)
SaPl mOper ati onal StateT

(Section 3.3.4),

SaPl nHEPr esenceSt at eT

(Section 3.3.5),

SaPl nEEPr esenceSt at eT

(Section 3.3.6), SaPl nReadi nessSt at eT
(Section 3.3.7), or

SaPl nReadi nessFl agsT (Section 3.3.8),
depending on the value of the st at el d
field. When reporting the value of readiness
flags, all readiness flags which were origi-
nally set are included.

New Attribute Value
(newsSt at e field of
SaNt f St at eChangeT)

Mandatory

Applicable value from enum

SaPl mHEAdm nSt at eT (Section 3.3.2) ,
SaPl mEEAdm nSt at eT (Section 3.3.3)
SaPl mOper ati onal StateT

(Section 3.3.4),

SaPl nHEPr esenceSt at eT

(Section 3.3.5),

SaPl nEEPr esenceSt at eT

(Section 3.3.6), SaPl nReadi nessSt ateT
(Section 3.3.7), or

SaPl nReadi nessFl agsT (Section 3.3.8),
depending on the value of the st at el d
field. When reporting the value of readiness
flags, all readiness flags which were origi-

nally set are included.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 6.2.2.1 157

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Alarms and Notifications AVAILABILITY

FORUM

6.2.3 HPI Events Notifications

In addition to the notifications described above, a PLM implementation may produce

HPI event notifications for events received from HPI implementations. These notifica-
tions are intended to provide only an audit-trail of the detail of HPI events received by
PLM, and should not be expected to be a replacement for any of the required notifica-
tions described in the previous sections.

For example, when a HPI Hot Swap event is received by a PLM implementation, an
HPI event notification may be generated to record the reception of that event. How-
ever, the processing of that event will normally result in the associated PLM HE
object changing its hot swap state. A byproduct of this state change is the generation
of a state change notification. This state change notification is the "primary" notifica-
tion that other processes should use to track hot swap activity. Similarly, processes
wanting to be informed of hardware alarm conditions should receive PLM alarm noti-
fications rather than HPI event notifications for sensor changes.

HPI event notifications are formatted as described next.

158

SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Alarms and Notifications

Table 9 HPI Event Notification

NTF Attribute Name

Mandatory/
Optional

Specified Value

Event Type

Mandatory

Defined below

Notification Object

Mandatory

LDAP DN for HPI implementation. See
below for more details.

Notification Class Identifier

NTF-Internal

If using a standard data format:

vendor | d = SA_NTF_VENDOR | D_SAF
maj orl d =SA SVC PLM

m nor | d = applicable value defined below
for data format.

If using an implementation-specific data for-
mat:

vendor | d = <identifier for vendor defining
data format>

maj or | d = <defined by vendor>

m nor | d = <defined by vendor>.

Additional Text

Optional

Unspecified

Additional Information

Mandatory +
Optional

Two to four fields, as defined below, for
domain Id, event data, RDR data, and RPT
data, formatted as identified via NCI

Event Type

The event type parameter in HPI event notifications is derived from the HPI event
type in the received event. HPI event types are mapped to notification event types, so
that various subsets of HPI event notifications may be identified for filtering or sup-
pression. HPI event types are mapped to notification event types as defined in

Table 10.

AIS Specification

SAI-AIS-PLM-A.01.02 Section 6.2.3

159

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Alarms and Notifications AVAILABILITY

FORUM

Table 10 Mapping HPI Event Type to Notification Event Type

HPI Event Type Notification Event Type

SAHPI _ET_RESOURCE SA NTF_HPI _EVENT RESOURCE
SAHPI _ET_HOTSWAP

SAHPI _ET_SENSOR SA_NTF_HPI _EVENT_SENSOR
SAHPI _ET_SENSOR_ENABLE_CHANGE

SAHPI _ET_WATCHDOG SA_NTF_HPI _EVENT_WATCHDOG
SAHPI _ET DI'M SA_NTF_HPI _EVENT_DI M
SAHPI _ET_FUM SA _NTF_HPI _EVENT_FUM

All Other HPI Event Types SA_NTF_HPI _EVENT_OTHER

Notification Object

The notification object parameter in HPI event notifications identifies the HPI imple-
mentation that generated the event. That is, the LDAP DN will be:

"saf App=saf Hpi Servi ce[: <var AppNanme>] "

The optional ":<var AppNanme>" string can be used to distinguish between multiple
instances of HPI implementations.

Notification Class Identifier

The notification class identifier parameter in HPI event notifications defines the format
of the HPI event and related data included in the additional information field. Three
formats are defined, any of these may be used. These formats are identified by use of
the appropriate notification class identifier defined below. Other formats may be
defined by specific implementations. When an implementation-specific format is
used, the notification class identifier should include an appropriate vendor | d for the
implementation.

SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Alarms and Notifications

FORUM

Additional Information

The additional information parameter in HPI event notifications is used to hold the
data received from HPI for the event.

Two mandatory data fields and two optional data fields may be included as additional
information.

One mandatory additional information field holds the domain Id of the domain from
which the event was received. This is the domain with which the HPI session that
retrieved the event was opened. If the session was opened using

SAHPI _UNSPECI FI ED_DOMAI N_I D, the actual domain Id of the domain accessed
by the session must be retrieved by calling saHpi Domai nl nf oGet () . For more
details, see [3]. The domain Id additional information field is defined with an

SaNt f Addi ti onal | nf oT structure with:

i nfoType
infold

SA_NTF_VALUE_Ul NT32
SA_PLM Al _HPI _DOVAI N_I D

The other mandatory additional information field holds the data returned in the
SaHpi Event T structure passed to the saHpi Event Get () function, and the two
optional additional information fields hold the data returned in the optional

SaHpi Rdr T and SaHpi Rpt Ent r y T structures passed to the saHpi Event Get ()
function. Each of these fields is defined with an SaNt f Addt i onal | nf oT structure
with:

i nfoType
infold

SA_NTF_VALUE_BI NARY
SA_PLM Al _HPI _EVENT_DATA,
SA_PLM Al _HPI _RDR DATA, or
SA_PLM Al _HPI _RPT_DATA

The format of the binary data block in each of these three fields is defined by the noti-
fication class identifier. Three preferred formats are defined by this specification. An
implementation-specific format may be used with an appropriate notification class
identifier defined by the implementation.

It is expected that the data structures returned by HPI in most implementations will
follow one of the first two formats described below. If this is the case, the implementa-
tion may copy the HPI data structure directly into the additional data field and use the
appropriate notification class identifier. If the data in the HPI structures does not fol-
low one of these formats, the implementation may define an implementation-specific
notification class identifier to describe the format for the data, or it may translate the
data into one of the three standard formats.

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.3 161

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Alarms and Notifications AVAILABILITY’

FORUM

The standard formats are:

Normal Binary, MSB First
Notification Class Identifier:

vendorld = SA NTF_VENDOR | D_SAF
majorld = SA SVC PLM
mnorld = SA PLM NTFI D HPI _NORVAL_MSB

Data is binary, and the fields are ordered as listed in the HPI structure definition in
SaHpi .h. Each field takes the number of bytes recommended in that header, pre-
ceded by pad bytes as required to achieve the recommended alignment. That is,

SaHpi Ui nt 8T and SaHpi | nt 8T types use 1 byte and have 1-byte alignment.
SaHpi Ui nt 16T and SaHpi | nt 16T types use 2 bytes and have 2-byte align-

ment.

. SaHpi Ui nt 32T and SaHpi | nt 32T types use 4 bytes and have 4-byte align-
ment.

. SaHpi Ui nt 64T and SaHpi | nt 64T types use 8 bytes and have 8-byte align-
ment.

SaHpi Fl oat 64T types use 8 bytes and have 8-byte alignment.
enum types use 4 bytes and have 4-byte alignment.

Floating point fields are represented as IEEE 754 double-precision values with high-
order sign bit, followed by 11 bits of exponent, and 52 bit mantissa.

All multi-byte fields are stored most-significant-byte first (that is, big-endian).

Structures and unions are preceded by pad bytes to achieve the same alignment
required for their most restrictive (that is, largest) element. Each structure or union is
followed by pad bytes as required such that the total length of the structure or union is
a multiple of its required alignment.

162 SAI-AIS-PLM-A.01.02 Section 6.2.3 AIS Specification

10

15

20

25

30

35

40

Service AvailabilityT"’I Application Interface Specification

SERVICE
AVAILABILITY Alarms and Notifications

FORUM

Normal Binary, LSB First
Notification Class Identifier:

vendorld = SA_NTF_VENDOR | D_SAF
majorld = SA SVC PLM
mnorld = SA PLM NTFI D HPI _NORMAL_LSB

Data format is the same as in the previous description, except all multi-byte fields are
stored least-significant-byte first (that is, little-endian).

XDR
Notification Class Identifier:

vendorld = SA NTF_VENDOR | D_SAF
SA SVC PLM
SA PLM NTFI D_HPI _XDR

maj orld

m nor | d

Data format is based on XDR (see [14]).

AIS Specification SAI-AIS-PLM-A.01.02 Section 6.2.3 163

10

15

20

25

30

35

40

SERVICE

AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Appendices

Appendix A Mapping of PLM State Model to CCITT X.731

If a system needs to provide state management as defined in CCITT Recommenda-
tion X.731 (see [11]) to the outside world, the PLM state model can be mapped as fol-
lows:

= Administrative state

The values locked, unlocked, and shutting-down map directly on X.731.
Locked-inactive of hardware elements should be shown as locked plus availabil-
ity status power-off.

Locked-instantiation of execution environments in X.731 should be shown as
locked plus the availability status being not-installed.

= Readiness state can be mapped to the X.731 operational state:

In-service => enabled
Out-of-service => disabled

There is a semantic difference between out-of-service and disabled: An
administrative LOCK operation affects the readiness state, but not the X.731
operational state. If an object in PLM is locked/out-of-service/enabled, and the
readiness flag dependency is not set, the X.731 should show this as locked/
enabled. If the dependency flag is set, or the PLM operational state is dis-
abled, X.731 should show locked/disabled.

Stopping cannot be directly mapped to X.731; it could be shown through the
procedural status terminating.

= Operational state of the SA Forum maps on a flag in X.731 availability status:

Disabled => Failed is set
Enabled => Failed is not set

= Presence State for HEs should be shown in X.731 availability status, procedural
status, and lifecycle status (see [12]):

not-present => life cycle status planned and availability status not-installed

inactive => life cycle status installed, availability status power-off, and proce-
dural status not-initialized

activating => life cycle status installed and procedural status initializing
active => life cycle status installed and procedural status empty
deactivating => life cycle status installed and procedural status terminating

AIS Specification

SAI-AIS-PLM-A.01.02 Appendix A 165

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
Appendices

FORUM

SERVICE
AVAILABILITY’

= Presence State for EEs maps similarly on flags in X.731 availability status or
procedural status and lifecycle status:

instantiated => life cycle status installed

uninstantiated => life cycle status planned and availability status not-installed
terminating => procedural status terminating

instantiating => procedural status initializing

instantiation-failed => procedural status initializing and availability status failed
termination-failed => procedural status terminating and availability status failed

= Readiness Flags

management-lost => unknown status attribute
dependency => availability status dependency

admin-operation-pending, isolate-pending, imminent-failure and dependency-
imminent-failure cannot be shown in X.731

166

SAI-AIS-PLM-A.01.02 Appendix A AIS Specification

10

15

20

25

30

35

40

SERVI

CE Service AvailabilityT"’I Application Interface Specification

AVAILABILITY' Basic Operational Scenarios

FORUM

Appendix B Basic Operational Scenarios

The following basic operational scenarios explain in principle the necessary actions.
These basic operational scenarios do not mandate a certain sequence of actions or
specific function calls. They are only examples of how an implementation could
behave, and they intend only to explain the main principles.

B.1 Extraction of a Computing Blade

B.1.1

There are many different use cases for hardware extraction, depending on the type of
hardware and the way it is extracted. The scenarios presented here show the typical
extraction of a computing blade. They illustrate the interworking of the PLM Service
with HPI and other AIS Services. The provided sequences are just examples of how
an implementation could behave. For simplification, no other dependencies are
assumed.

The first scenario applies when the blade supports the managed hot swap model. In
the second scenario, the hardware supports the unmanaged hot swap model. In the
latter case, the hardware does not allow graceful termination of all services on the
blade, since it cannot remain in the extraction-pending state.

Extraction of a Computing Blade with Managed Hot Swap

As typical for bladed architectures, extraction is done in two steps: the operator
opens some latches, HPI recognizes this extraction request and sends events. The
PLM Service has subscribed with HPI and starts all necessary actions for a graceful
deactivation. When the deactivation is completed, LEDs are switched to indicate a
successful deactivation to the operator. When the operator now physically removes
the blade from the chassis, again appropriate actions are triggered in the system.

The blade in this example supports the managed hot swap model and is modeled as
an HE. It runs one single operating system, modeled as an EE, on which a CLM node
is running. Some applications controlled by the Availability Management Framework
run on the AMF node that is mapped to this CLM node. In the beginning of the
sequence, all entities are in-service; no entities are administratively locked.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B 167

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Basic Operational Scenarios AVAILABILITY

FORUM

The sequence of actions in this scenario is described next. For the reader’s conve-
nience, the steps shown in Section 3.1.3.1.1 in the description of the deactivating
presence state (graceful case, on page 30) are reproduced here in a shortened way.
To each of these steps (represented by numbers enclosed in curly brackets), the cor-
responding actions in the scenario (represented by numbers enclosed in parenthe-
ses) are given.

{1} PLM sets the presence state of the HE to deactivating.
See steps (1) through (7).

{2} PLM checks the readiness state of the HE being deactivated and all depen-
dent PLM entities.
See step (8).

{3a} If the deactivation policy is SA PLM DP_REJECT_ NOT_QOCS, the deactiva-
tion is rejected.
See step (9).

{3b} If the deactivation policy is SA_ PLM DP_VALI DATE, track callbacks are

invoked for the SA_PLM_CHANGE_VALI DATE step.
See steps (9) through (15).
A sequence diagram for these first steps is in FIGURE 11.

{3c} If the deactivation policy is SA_ PLM DP_UNCONDI Tl ONAL, or after all pro-
cesses receiving VALIDATE callbacks accept the deactivation, track call-
backs are invoked for the SA_PLM CHANGE_START step.

See steps (16) through (27) and FIGURE 12.

{4} PLM initiates the necessary actions using HPI interfaces to actually deacti-
vate the hardware.
See step (28).

{5} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked
for the SA_ PLM_CHANGE_ _COMPLETED step.

See steps (29) through (33).

A sequence diagram for these steps is in FIGURE 13.

Additionally to the deactivation steps, the sequence shows:

{6} The operator actually extracts the blade
See steps (34) through (42) and FIGURE 14

168 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Basic Operational Scenarios

FORUM

(1) Operator opens latches.

(2) Detection by HPI, PLM receives HPI hot swap-event.
To do this, PLM must have an open session to the domain, managing the entity,
and be subscribed for the events.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt at e = SAHPI _HS STATE_EXTRACTI ON_PENDI NG
Pr evi ousHot SwapSt at e= SAHPI _HS STATE_ACTI VE
Causer St at eChange = SAHPI _HS CAUSE _OPERATOR INIT

(3) PLM generates a notification for the HPI event. The notification id is used as root
correlation id in all further notifications.

(4) PLM maps HPI event to HE in the IMMS object model.
HPI entity path is included in HE attributes, search is possible by following the
containment.

(5) PLM calls saHpi Hot SwapPol i cyCancel () to stop HPI from taking automatic
actions.
Note that PLM will not call this function if the event does not map to a PLM man-
aged object. In such a case, HPI would act according to its policies.

(6) PLM changes the presence state of the HE of the blade to
SA PLM HE_PRESENCE_DEACTI VATI NG

(7) PLM generates a state change notification for the blade HE presence state
changing to SA_PLM HE PRESENCE_DEACTI VATI NG

(8) PLM checks containment of the affected HE and dependencies. PLM generates
a list of all PLM objects (HEs and EESs) that need to terminate their services.
In this example, only the blade HE and the EE are affected.

(9) PLM checks the configured deactivation policy.
. If this attribute is SA_ PLM DP_REJECT NOT_QCS, and there are entities
that are not out-of-service, the extraction processing is stopped.

If this attribute is SA_PLM DP_UNCONDI Tl ONAL, steps (10) to (15) are
skipped.
The following sequence shows the case of SA PLM DP_VALI DATE.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 169

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Basic Operational Scenarios AVAILABILITY"

FORUM

(10) PLM starts to inform subscribed users for the track callbacks:
PLM calls for every subscriber of an affected HE or EE:

saPl nReadi nessTrackCal | back(ny_obj G pHandl e,

my_trackCooki e,

my_i nvocati on,

SA_PLM CAUSE_HE_DEACTI VATI ON,

DN _extract ed_bl ade,

root Correl ati onld,

Li st _affected objects,

SA_PLM CHANGE_VALI DATE,

return_val ue);
CLM should be subscribed for track callbacks on all EEs on which CLM nodes
run. So in this example, CLM is called for the affected EE and will now evaluate
whether it is safe to terminate that CLM node.
Other services may be subscribed on EEs or HEs additionally and can take
separate validation actions.

(11) In this example, a CLM node in the membership is affected. CLM invokes simi-
larly the sadl nC ust er TrackCal | back_4() callbacks of its consumers in the
validate step to evaluate the extraction request.

The Availability Management Framework should be subscribed for CLM track
callbacks. So the Availability Management Framework will now evaluate
whether all active HA assignments can be moved to other nodes, that is, to
nodes not affected by the list of affected objects.

(12) The Availability Management Framework checks the redundancy configura-
tion. If it detects that active HA assignments cannot be moved to redundant
entities on other nodes, it will reject the extraction by responding to CLM with
SA CLM CALLBACK RESPONSE REJECTED.

(13) The Availability Management Framework calls saCl nResponse_4() and
returns SA_CLM CALLBACK RESPONSE_OK to CLM to indicate that it is safe to
extract the entity.

(14) CLM calls saPl nReadi nessTr ackResponse() and returns
SA PLM CALLBACK RESPONSE_ (XK to PLM to indicate that it is safe to extract
the entity.

(15) After PLM receives a positive response from all track callbacks for all affected
objects, PLM decides to allow the extraction.

(16) PLM changes the presence state of the affected EE to
SA _PLM EE_PRESENCE_TERM NATI NG

170

SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Basic Operational Scenarios

FORUM

(17) PLM now requests all subscribed users to terminate their services, that is, PLM
calls for every subscriber of an affected HE or EE:

saPl nReadi nessTrackCal | back(ny_obj G pHandl e,
my_trackCooki e,
my_i nvocati on,
SA_PLM CAUSE_HE_DEACTI VATI ON,
DN _extract ed_bl ade,
root Correl ationld,
Li st _affected objects,
SA PLM CHANGE_START,
return_val ue);
CLM should be subscribed for the EE and will now evict the affected node.
Other services that are subscribed can take separate actions.

(18) CLM invokes the saCl nCl ust er Tr ackCal | back_4() callbacks of its consum-
ers in the start step, and passes all needed information in the call.

(19) The Availability Management Framework should be subscribed for CLM track
callbacks as above. So if an AMF node has running services, and the corre-
sponding CLM node terminates, the Availability Management Framework will
now change HA assignments according to its redundancy configuration.

(20) The Availability Management Framework terminates all components and ser-
vice units on the affected nodes.

(21) The Availability Management Framework calls saCl nResponse_4() and
returns SA_CLM CALLBACK_ RESPONSE_OK to CLM to indicate that the node may
now leave the membership.

(22) As soon as all track callbacks have returned, CLM removes the affected nodes
from the membership.

(23) CLM invokes the saCl nCl ust er Tr ackCal | back_4() callbacks of its consum-
ers in the completed step, and passes all needed information in the call.

(24) CLM calls saPl nReadi nessTr ackResponse() and returns
SA PLM CALLBACK_ RESPONSE_OK to PLM.

(25) After PLM receives a positive response from all track callbacks, PLM termi-
nates that EE (OS shutdown or similar operation).

(26) PLM changes the presence state of the EE to
SA PLM EE_PRESENCE UNI NSTANTI ATED and its readiness state to
SA PLM READI NESS OUT_COF SERVI CE and generates a state change notifi-
cation using the correlation id.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 171

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Basic Operational Scenarios AVAILABILITY"

FORUM

(27) PLM may informs the subscribers of the track interface that subscribed only for
the EE already now with the completed step.
Note that from HPI's perspective, the process is not yet completed; however,
these users are only interested in the EE readiness state.
PLM calls for every subscriber of the affected EE:

saPl nReadi nessTrackCal | back(ny_obj G pHandl e,
my_trackCooki e,
my_i nvocati on,
SA PLM CAUSE_HE DEACTI VATI ON,
DN _extract ed_bl ade,
root Correl ati onl d,
Li st _affected objects,
SA PLM CHANGE COWPLETED,
return_val ue);

(28) PLM allows HPI to execute the hot swap extraction policy by calling

saHpi Resour cel nacti veSet () for the blade. This function will initiate all
necessary hardware actions to deactivate the entity.

(29) PLM receives HPI events for the completion of the hot swap requests.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt at e = SAHPI _HS STATE | NACTI VE
Pr evi ousHot SwapSt at e= SAHPI _HS STATE_EXTRACTI ON_PENDI NG
CauseOr St at eChange = SAHPI _HS CAUSE EXT_ SOFTWARE

(30) PLM detects that the event is related to the running extraction processing.
(31) PLM generates a notification for the HPI event using the correlation id.

(32) PLM changes the presence state of the related HE to
SA PLM HE PRESENCE | NACTI VE and its readiness state to

SA PLM READI NESS OUT_COF SERVI CE and generates a state change notifi-

cations using the correlation id.

172

SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Basic Operational Scenarios

FORUM

(33) PLM informs the subscribers of the track interface for the HE with the com-
pleted step.
PLM calls for every subscriber of the affected HE (CLM should not be sub-
scribed here):

saPl nReadi nessTrackCal | back(mny_obj G pHandl e,
my_trackCooki e,
my_invocati on,
SA PLM CAUSE_HE DEACTI VATI ON,
DN_ext ract ed_bl ade,
root Correl ati onld,
Li st _af fected_obj ect s,
SA PLM _CHANGE COWPLETED,
return_val ue);

(34) The Operator extracts the blade.

(35) HPI notifies about the extraction.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt at e = SAHPI _HS STATE_NOT_PRESENT
Pr evi ousHot SwapSt at e= SAHPI _HS STATE | NACTI VE
CauseOr St at eChange = SAHPI _HS CAUSE_OPERATOR INIT

(36) PLM generates a notification for the HPI event. This event is a new root cause.
The new notification id is used in all further calls to allow correlation.

(37) PLM maps the HPI event to HE in the IMMS object model and checks the
states.

(38) PLM changes the presence state of the affected HE object to
SA PLM HE_PRESENCE_NOT PRESENT.

(39) PLM generates a state change notification for the presence state of the HE
changing to SA PLM HE PRESENCE NOT _PRESENT.

(40) PLM checks containment and dependencies of the affected HE. All contained
HEs are extracted together and should already be out-of-service. All contained
and dependent EEs should also already be out-of-service.

(41) PLM changes the presence state of all contained HEs to
SA PLM HE PRESENCE_NOT_PRESENT and generates state change notifica-
tion (using the correlation identifier).
Note that no track callbacks are called in this case. All affected entities are
already out-of-service. Any software that needs to know about the physical
extraction will need to listen to notifications.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.1 173

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
Basic Operational Scenarios

SERVICE
AVAILABILITY’

FORUM

(42) PLM clears active alarms of the HE and all contained HEs.
Alarms in the domain alarm table are cleared by HPI itself.

However, PLM has to send a notification with severity "cleared" for hardware-
related alarms that it had issued for these HEs.

The next figures show the actions taken when a computing blade is extracted.

FIGURE 11

Extraction of a Computing Blade (Deactivation Part 1)

HPI

=
=
m

PL| CLM Al

JL0 [————

2. HPI hot swap event

1.0perator opens latches

3.HPI event notification

—_—— -

|
| 5.saHpiHotSwapPolicyCancel () | > 4.Mapto HE

PR S /A —

7.State change notification ;> 6.Presence state blade object deactivating

¢ |
| |

|
| 8.Generate list of affected entities

1
9.Check Deactivation Policy

1
10.PLM track callbacks : VALIDATE

"11.CLM track callback: VALIDAT

—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
£

>

|
| 13.Return SA AIS_OK

14.Return SA_AIS_OK

Pg——————

—_————— g ———

|
1
|
GS.PLM decides to allow extractioD :
|
|

12.AMF checks redundancy

174

SAI-AIS-PLM-A.01.02 Appendix B.1.1

AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Basic Operational Scenarios

FIGURE 12 Extraction of a Computing Blade (Deactivation Part 2)

T
Rl
=
5
anl

PL

(@]
=
<
>
T

State change notification

D 16.EE presence state terminatin

17.PLM track callbacks: START

18.CLM track callback: START

RN . U (= pui——

21.Return SA_AIS_OK

|
| 22.Remove node from membership

23.CLM track callback: COMPLETED :

24.Return SA AIS_OK

e St S

25.Terminate EE

26.EE presence state terminated and readiness state out-of-service

e G e e R

27PLM track callbacks: EE COMPLETED :

Gow all services are terminate@

—— e — ——— ———————— =

|
1«
|
|
|
|
|
|
|

- o X

19.AMF change CSI assignments

20.AMF terminate components

AIS Specification

SAI-AIS-PLM-A.01.02 Appendix B.1.1

175

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Basic Operational Scenarios AVAILABILITY
FORUM
FIGURE 13 Extraction of a Computing Blade (Deactivation Part 3)
HP) NTE PLM CLM AME

1 I 1 | 1

| 28.saHpiResourcelnactiveSet() | | |

" I | | |

| | | | |

| | * | |

| I PLM waits for HPI event I |

| | | |

| | | | |

1

: 29.HPI hot swap events blade inactive : : :

. . N

I | 1 | |

| I lp> 30.Relates to this extraction I |

| | | |

I | 31.HPI event notification | | |

| ¢ — 1 | |

| | | | |

| | oo . 1 .

| | State change notification | 32.Blade presence state inactive and readiness state out-of-service

| | |

| | | | |

: : : 33.PLM track callbacks: COMPLETED : :

| | | > | |

| | | | |

| | | | |
176 SAI-AIS-PLM-A.01.02 Appendix B.1.1 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Basic Operational Scenarios

FIGURE 14 Actual Extraction of a Computing Blade

36.HPI event notification

HPI NTFE PLM CLM AMF
| | i
| | (
l | |
| * |
: G4.0perator extracts the blad9 :
(| (
| | |

35.HPI hot swap events blade not present | |
N |

|

|

|

|

37.Map to HE and check states
|

38.Blade presence state not present

39.State change notification I |

| |
| |
40.Check containment and dependencies

S R

State change notification

42.Clear alarms of entities that are not present

iy wiany wiakaiabab Yy

41.Presence state of contained and depending entities

AIS Specification

SAI-AIS-PLM-A.01.02 Appendix B.1.1

177

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Basic Operational Scenarios AVAILABILITY

FORUM

B.1.2 Extraction of a Computing Blade with Unmanaged Hot Swap

In the case of unmanaged hot swap, the hardware cannot stay in the extraction-pend-
ing state, that is, the auto-extraction-policy cannot be stopped. The blade in this
example is again modeled as an HE that runs a single operating system, which is
modeled as an EE, on which in turn a CLM node is running. Some applications con-
trolled by the Availability Management Framework run on the AMF node that is
mapped to this CLM node. In the beginning of the sequence, all entities are in-ser-
vice; no entities are administratively locked.

Note that an operator wanting graceful deactivation can use the administrative LOCK
administrative operation to terminate the services gracefully.

The sequence of actions in this scenario is described next. For the reader’s conve-
nience, the steps shown in Section 3.1.3.1.1 in the description of the deactivating
presence state (abrupt case, on page 31) are reproduced here in a shortened way. To
each of these steps (represented by numbers enclosed in curly brackets), the corre-
sponding actions in the scenario (represented by numbers enclosed in parentheses)
are given.

{1} PLM sets the presence state to deactivating.
See steps (1) through (6).

{2} PLM monitors the hardware as it deactivates.
Wait for step (7) to happen.

{3} When the deactivation is complete, PLM changes the presence state to inac-
tive and the readiness state to out-of-service, and track callbacks are invoked
for the SA_ PLM CHANGE COVPLETED step.

See steps (8) through (16).

FIGURE 15 shows a sequence diagram for these steps.

The actual extraction is done in the same way as in the previous use-case.

(1) Operator opens latches.

(2) Detection by HPI, PLM receives HPI a hot swap event.
To receive this event, PLM must have an open session to the domain managing
the entity and be subscribed for the events.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt at e = SAHPI _HS STATE_EXTRACTI ON_PENDI NG
Pr evi ousHot SwapSt at e= SAHPI _HS STATE_ACTI VE
Causer St at eChange = SAHPI _HS CAUSE _OPERATOR INIT

SAI-AIS-PLM-A.01.02 Appendix B.1.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Basic Operational Scenarios

FORUM

(3) PLM generates a notification for the HPI event. The notification id is used as root
correlation id in all further notifications.

(4) PLM maps the HPI event to an HE in the IMMS object model.
The HPI entity path is included in the HE attributes, search is possible by follow-
ing the containment.
PLM knows hardware capabilities, so it will not call
saHpi Hot SwapPol i cyCancel () . HPI will continue to deactivate the hard-
ware.

(5) PLM changes the presence state of the HE of the blade to
SA_PLM HE_PRESENCE_DEACTI VATI NG

(6) PLM generates a state change notification for the blade HE presence state
changing to SA_PLM HE_PRESENCE_DEACTI VATI NG

(7) PLM receives an HPI event for the completion of the deactivation.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt at e = SAHPI _HS STATE_| NACTI VE
Pr evi ousHot SwapSt at e= SAHPI _HS STATE_EXTRACTI ON_PENDI NG
CauseOr St at eChange = SAHPI _HS CAUSE_EXT_SOFTWARE

(8) PLM detects that the event is related to the running extraction processing.
(9) PLM generates a notification for the HPI event using the correlation id.

(10) PLM changes the presence state of the related HE to
SA PLM HE PRESENCE | NACTI VE and its readiness state to
SA PLM READI NESS QOUT_OF_ SERVI CE and generates a state change notifi-
cations using the correlation id.

(11) PLM checks the containment of the affected HE and dependencies. PLM gen-
erates a list of all PLM objects (HEs and EESs) that need to be informed about
the abrupt deactivation.

In this example, only the blade HE and the EE are affected.

(12) PLM changes the presence state of the EE to
SA PLM EE_PRESENCE_UNI NSTANTI ATED and its readiness state to
SA PLM READI NESS_QUT_OF SERVI CE and generates a state change noti-
fication using the correlation id.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.1.2 179

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification

SERVICE
Basic Operational Scenarios AVAILABILITY

FORUM

(13) PLM informs subscribers of the track interface with the completed step.
PLM calls for every subscriber of the affected HE and EE:

saPl nReadi nessTrackCal | back(ny_obj G pHandl e,
my_trackCooki e,
my_i nvocati on,
SA PLM CAUSE_HE DEACTI VATI ON,
DN _extract ed_bl ade,
root Correl ationld,
Li st _affected objects,
SA PLM CHANGE COVPLETED,
return_val ue);

(14) CLM should be subscribed for the EE and will remove the affected node from
membership.
Note that CLM may already have detected that the node has unexpectedly left
the cluster, so some of the following steps may have already happened.
Other services that are subscribed can take separate actions.

(15) CLM invokes the saC nCl ust er TrackCal | back_4() callbacks of its cli-
ents in the completed step and passes all needed information in the call.

(16) The Availability Management Framework should be subscribed for CLM track
callbacks as above. So if an AMF node has running services, these services
need to failover according to its redundancy configuration.

Some hardware may not support the extraction-pending step at all. In this case, steps
(2) to (6) do not apply, and the first HPI event reports a direct state change from
active to inactive.

180 SAI-AIS-PLM-A.01.02 Appendix B.1.2 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Basic Operational Scenarios

FIGURE 15 Extraction of a Computing Blade Supporting Unmanaged Hot Swap

T
A

z
=
anl

O
A
<

CLM

1
2.HPI hot swap event EXTRACTION-PENDING

1.Operator opens latches

3.HPI event notification

R I e —

4.Map to HE

6.State change notification 5.Blade presence state deactivating

—_—— =y =

1
7.HPI Hot Swap Event INACTIVE

]

I¢ |

] |

] |
J |

|

|
8.Relates to this extraction
|
|

9.HPI Event notification |

State change notification |

1
11.Generate list of affected entities
1

-

State change notification |

——— e ————— e ——

"]
13.PLM track callbacks : COMPLETED

>

1
10.Blade presence state inactive and readiness state out-of-service

12.EE presence state terminated and readiness state out-of-service

I
| 14.Remove node from membership

15.CLM track callback: COMPLETED :

D 16.Service failovers

AIS Specification

SAI-AIS-PLM-A.01.02 Appendix B.1.2

181

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Basic Operational Scenarios AVAILABILITY"

FORUM

B.2 Fault of a Computing Blade

This use-case shows the processing of the PLM Service when a fault of a computing
blade is detected. The PLM Service can detect the fault by analyzing HPI events or if
an application reports the error by invoking the saPl nEnt i t yReadi nessl npact ()
function.

The blade in this example is again modeled as an HE; the HE runs one single operat-
ing system, which is modeled as an EE on which a CLM node is running. Some appli-
cations controlled by the Availability Management Framework run on the AMF node
that is mapped to this CLM node. In the beginning of the sequence, all entities are in-
service, and no entities are administratively locked. It is assumed that no other enti-
ties are affected.

The sequence of actions is described next. A sequence diagram is in FIGURE 16.

(1) An application reports the fault:

saPl nEnt i t yReadi nessl npact (p! nHandl e,
DN faul ty_ bl ade,
SA PLM Rl _FAI LURE,
correl ationlds);

(2) PLM checks containment of the affected HE and dependencies. PLM generates
a list of all PLM objects (HEs and EESs) that are affected. It may be necessary to
isolate multiple entities.

In this example, only the blade HE and the EE are affected. The EE does not
need a separate isolation, it terminates automatically when the HE is isolated.

(3) PLM uses HPI to deactivate the blade by calling
saHpi Resour cel nacti veSet () for the blade. This function will initiate all
necessary hardware actions to deactivate the entity.

(4) PLM receives HPI events for the completion of the hot swap requests.
The HPI event for this case is:
Event Type = SAHPI _ET_HOTSWAP
Hot SwapSt ate = SAHPI _HS STATE_| NACTI VE
Pr evi ousHot SwapSt at e= SAHPI _HS STATE_ACTI VE
Causer St at eChange = SAHPI _HS CAUSE EXT SOFTWARE

(5) PLM detects that the event is related to the isolation of the faulty HE.
(6) PLM generates a notification for the HPI event using the correlation ids.

182

SAI-AIS-PLM-A.01.02 Appendix B.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Basic Operational Scenarios

FORUM

(7) PLM changes the presence state of the HE of the blade to
SA PLM HE_PRESENCE | NACTI VE, its operational state to
SA PLM OPERATI ONAL DI SABLED, its readiness state to
SA PLM READI NESS OUT_OF_ SERVI CE, and generates a state change notifi-
cation using the correlation id.

(8) PLM changes the presence state of the affected EE to
SA PLM EE_PRESENCE_UNI NSTANTI ATED, sets the readiness flag
SA PLM RF_DEPENDENCY for this EE, sets the readiness state of the EE to
SA PLM READI NESS_QUT_OF_SERVI CE, and generates a state change notifi-
cation using the correlation id.

(9) PLM informs the subscribers of the track interface for the HE and EE for the
completed step.
PLM calls for every subscriber of HE or EE:

saPl nReadi nessTrackCal | back(ny_obj G pHandl e,
my_trackCooki e,
nmy_invocati on,

SA PLM CAUSE_FAI LURE,
DN faul ty_ bl ade,

root Correl ati onl d,

|ist _affected objects,
SA PLM CHANGE COVPLETED,
return_val ue);

(10) CLM should be subscribed for the EE, and CLM thus removes the affected
node from the cluster membership.
Note that CLM may already have detected that the node has unexpectedly left
the cluster, so some of the following steps may already have happened.
Other services that are subscribed can take separate actions.

(11) CLM invokes for the completed step the
sad nCl ust er TrackCal | back_4() callback functions of its clients and
passes all needed information in the corresponding invocations.

(12) The Availability Management Framework should be subscribed for CLM track
callbacks as above. So if an AMF node had running services, these services
need to failover according to the redundancy configuration.

AIS Specification SAI-AIS-PLM-A.01.02 Appendix B.2 183

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Basic Operational Scenarios AVAILABILITY

FORUM

FIGURE 16 Fault of a Computing Blade

T
o

TE

0
=
<

CLM AME

1.saPImEntityReadinessimpact ()
1
|

1
2.Generate list of affected entities
|

3.saHpiResourcelnactiveSet()
4.HPI Hot éwap Event INACTIVE

6.HPI event notification 5.Relates to this extraction

7.Blade states inactive , disabled, out-of-service

1
8.EE states uninstantiated, out-of-service

State change notification

State change notification

9.PLM track Callbacks: COMPLETED

.. 4

| 10.Remove node from membership

1
11.CLM track callback: COMPLETED

12 Service failovers

bttty By Suntd |

T T T T T T T T T T T T T T RAT T T RAT T T AT

-

SAI-AIS-PLM-A.01.02 Appendix B.2

AIS Specification

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityT"’I Application Interface Specification
Index of Definitions

Index of Definitions
A

aborted track interface option 54

abrupt deactivation 29

activating presence state 28

active presence state 28

administrative state of an EE 39

administrative state of an HE 31
admin-operation-pending readiness flag of an EE 44
admin-operation-pending readiness flag of an HE 36
all-of-a-group dependency 24

ancestor 20

C

child EEs 20
completed track interface option 54

D

deactivating presence state 29
dependencies 24
dependency readiness flag of an EE 43
dependency readiness flag of an HE
HE
readiness flags
dependency 35
dependency-imminent-failure readiness flag of an EE 44
dependency-imminent-failure readiness flag of an HE 36
disabled operational state of an EE 40
disabled operational state of an HE 33

E

EE 20

administrative state 39
locked 39
locked-instantiation 39
shutting-down 40
unlocked 39

child EEs 20

dependencies 24
all-of-a-group dependency 24
n-of-a-group dependency 25
one-of-a-group dependency 24
one-on-one dependency 24
on-the-parent dependency 24

isolation 53

operational state 40
disabled state 40
enabled state 40

parent EEs 20

presence state 37
instantiated state 38
instantiating state 37
instantiation-failed state 38
terminating state 38
termination-failed state 39
uninstantiated state 37

readiness flags 42
admin-operation-pending 44
dependency 43

dependency-imminent-failure 44

imminent-failure 43

isolate-pending 44

management-lost 42

readiness state 41

in-service state 41

out-of-service state 41

stopping state 41
enabled operational state of an EE 40
enabled operational state of an HE 32
execution environments see EE

G
graceful deactivation 29

H

hardware elements see HE
HE 19, 22
administrative state
locked state 31
locked-inactive state 32
shutting-down state 32
unlocked state 31
isolation 52
operational state 32
disabled state 33
enabled state 32
presence state
activating state 28
active state 28
deactivating state 29
inactive state 27
not-present state 26
readiness flags 34
admin-operation-pending 36
dependency-imminent-failure 36
imminent-failure 36
isolate-pending 37
management-lost 34
readiness state 33
in-service state 33
out-of-service state 33
stopping state 34
HE presence state 26
health state monitoring 47
hypervisors 49

imminent-failure readiness flag of an EE 43
imminent-failure readiness flag of an HE 36
inactive presence state 27

in-service readiness state of an EE 41
in-service readiness state of an HE 33
instantiated presence state of an EE 38
instantiating presence state of an EE 37
instantiation-failed presence state of an EE 38
isolate-pending readiness flag of an EE 44
isolate-pending readiness flag of an HE 37
isolation 52

isolation of EEs 53

isolation of HEs 52

AIS Specification

SAI-AIS-PLM-A.01.02 185

10

15

20

25

30

35

40

Service AvaiIabiIityT"’I Application Interface Specification
Index of Definitions

SERVICE
AVAILABILITY’

FORUM

L VMM 49

locked administrative state of an EE 39

locked administrative state of an HE 31
locked-inactive administrative state of an HE 32
locked-instantiation administrative state of an EE 39

M

management-lost readiness flag of an EE 42
management-lost readiness flag of an HE 34
mandatory dependency 25

N

n-of-a-group dependency 25

not-present presence state 26

O

one-of-a-group dependency 24

one-on-one dependency 24

on-the-parent dependency 24

operational state of an EE 40

operational state of an HE 32

out-of-service readiness state of an EE 41
out-of-service readiness state of an HE 33

P

parent 20

parent EEs 20

PLM state model 25
presence state of an EE 37

R

readiness flags of an EE 42
readiness flags of an HE 34
readiness state of an EE 41
readiness state of an HE 33
readiness status 54

S

service 26

shutting-down administrative state of an EE 40
shutting-down administrative state of an HE 32
start track interface option 54

stopping readiness state of an EE 41

stopping readiness state of an HE 34

terminating presence state of an EE 38
termination-failed presence state of an EE 39
track interface 54

aborted option 54

completed option 54

start option 54

validate option 54

U

uninstantiated presence state of an EE 37
unlocked administrative state of an EE 39
unlocked administrative state of an HE 31

\Y

validate track interface option 54
virtual machine monitor 49
virtual machines 49

VM 49

186 SAI-AIS-PLM-A.01.02

AIS Specification

10

15

20

25

30

35

40

	Table of Contents
	List of Figures
	List of Tables
	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Platform Management Service

	3 Platform Management Service API
	3.1 Platform Management Service Model
	3.1.1 Role of PLM in the Overall Architecture
	3.1.2 PLM Information Model
	3.1.2.1 Hardware Elements
	3.1.2.2 Execution Environments
	3.1.2.3 Dependencies

	3.1.3 PLM State Model
	3.1.3.1 HE States
	3.1.3.1.1 HE Presence State
	3.1.3.1.2 Administrative State
	3.1.3.1.3 Operational State
	3.1.3.1.4 Readiness State
	3.1.3.1.5 Readiness Flags

	3.1.3.2 EE States
	3.1.3.2.1 EE Presence State
	3.1.3.2.2 Administrative State
	3.1.3.2.3 Operational State
	3.1.3.2.4 Readiness State
	3.1.3.2.5 Readiness Flags

	3.1.3.3 Mapping Between PLM and HPI Objects
	3.1.3.4 Recommendation for HE Modeling
	3.1.3.5 Hardware Health Monitoring
	3.1.3.6 Other Aspects of Interworking with HPI

	3.1.4 EE Management
	3.1.4.1 Recommendation for EE Modeling
	3.1.4.2 PLM Virtualization Support

	3.1.5 Verification of the System Configuration
	3.1.5.1 Verification of the Hardware Configuration
	3.1.5.2 Verification of Execution Environments

	3.1.6 Isolation of Entities
	3.1.7 Overview of the PLM Interfaces
	3.1.8 PLM Service and Cluster Membership

	3.2 Include File and Library Names
	3.3 Type Definitions
	3.3.1 PLM Handles
	3.3.1.1 SaPlmHandleT
	3.3.1.2 SaPlmEntityGroupHandleT

	3.3.2 HE Administrative State
	3.3.3 EE Administrative State
	3.3.4 Operational State
	3.3.5 HE Presence State
	3.3.6 EE Presence State
	3.3.7 Readiness State
	3.3.8 Readiness Flags
	3.3.9 Readiness Status
	3.3.10 Readiness Impact
	3.3.11 HE Deactivation Policy
	3.3.12 Entity Groups
	3.3.13 State Tracking
	3.3.13.1 SaPlmGroupChangesT
	3.3.13.2 SaPlmChangeStepT
	3.3.13.3 SaPlmTrackCauseT
	3.3.13.4 SaPlmReadinessTrackedEntityT
	3.3.13.5 SaPlmReadinessTrackedEntitiesT

	3.3.14 Callback Response
	3.3.15 Notification Related Types
	3.3.15.1 SaPlmNotificationMinorIdT
	3.3.15.2 SaPlmAdditionalInfoIdT
	3.3.15.3 SaPlmStateT

	3.3.16 SaPlmCallbacksT

	3.4 Library Life Cycle
	3.4.1 saPlmInitialize()
	3.4.2 saPlmSelectionObjectGet()
	3.4.3 saPlmDispatch()
	3.4.4 saPlmFinalize()

	3.5 PLM Operations
	3.5.1 Entity Group Management
	3.5.1.1 saPlmEntityGroupCreate()
	3.5.1.2 saPlmEntityGroupAdd()
	3.5.1.3 saPlmEntityGroupRemove()
	3.5.1.4 saPlmEntityGroupDelete()

	3.5.2 Readiness Status Tracking
	3.5.2.1 saPlmReadinessTrack()
	3.5.2.2 SaPlmReadinessTrackCallbackT
	3.5.2.3 saPlmReadinessTrackResponse()
	3.5.2.4 saPlmReadinessTrackStop()
	3.5.2.5 saPlmReadinessNotificationFree()

	3.5.3 Entity Readiness Impact
	3.5.3.1 saPlmEntityReadinessImpact()

	4 PLM Service UML Information Model
	4.1 Notes on the Conventions Used in UML Diagrams
	4.2 DN Formats for PLM Service UML Classes
	4.3 PLM Classes and Other Services’ Classes
	4.4 PLM Instances and Types View
	4.5 PLM HE Classes Diagram
	4.5.1 Matching Configured HEs to Hardware Entities
	4.5.1.1 Hardware Entity Location Check
	4.5.1.2 HPI Entity Characteristics Check

	4.6 PLM EE Classes Diagram
	4.7 PLM Other Classes Diagram

	5 PLM Service Administration API
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 SaPlmAdminOperationIdT
	5.2.2 Parameter lockOption for the LOCK Administrative Operation
	5.2.3 Parameter restartOption for the Restart Administrative Operation

	5.3 Interface to the Information Model Management Service
	5.4 Administrative Operations
	5.4.1 SA_PLM_ADMIN_UNLOCK
	5.4.2 SA_PLM_ADMIN_LOCK
	5.4.3 SA_PLM_ADMIN_SHUTDOWN
	5.4.4 SA_PLM_ADMIN_LOCK_INSTANTIATION
	5.4.5 SA_PLM_ADMIN_UNLOCK_INSTANTIATION
	5.4.6 SA_PLM_ADMIN_RESTART
	5.4.7 SA_PLM_ADMIN_DEACTIVATE
	5.4.8 SA_PLM_ADMIN_ACTIVATE
	5.4.9 SA_PLM_ADMIN_RESET
	5.4.10 SA_PLM_ADMIN_REPAIRED
	5.4.11 SA_PLM_ADMIN_REMOVED

	6 PLM Service Alarms and Notifications
	6.1 Setting Common Attributes
	6.2 Platform Management Service Notifications
	6.2.1 Platform Management Service Alarms
	6.2.1.1 Hardware Element Alarm
	6.2.1.2 Execution Environment Alarm
	6.2.1.3 Hardware Element Security Alarm
	6.2.1.4 Execution Environment Security Alarm
	6.2.1.5 Unmapped Hardware Entity Alarm

	6.2.2 Platform Management Service State Change Notifications
	6.2.2.1 PLM Entity State Change Notification

	6.2.3 HPI Events Notifications

	Appendix A Mapping of PLM State Model to CCITT X.731
	Appendix B Basic Operational Scenarios
	B.1 Extraction of a Computing Blade
	B.1.1 Extraction of a Computing Blade with Managed Hot Swap
	B.1.2 Extraction of a Computing Blade with Unmanaged Hot Swap

	B.2 Fault of a Computing Blade

	Index of Definitions

