
Service AvailabilityTM Forum
Application Interface Specification

Software Management Framework SAI-AIS-SMF-A.01.02

This specification was reissued on September 30, 2011 under the Artistic License 2.0.
The technical contents and the version remain the same as in the original specification.

.

.

AIS Specification SAI-AIS-SMF-A.01.02 3

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT
The Service Availability™ Forum Application Interface Specification (the "Package") found at the URL
http://www.saforum.org is generally made available by the Service Availability Forum (the "Copyright Holder") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions which govern the use of the Package are covered
by the Artistic License 2.0 of the Perl Foundation, which is reproduced here.

The Artistic License 2.0

 Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or redistributed.

The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions

"Copyright Holder" means the individual(s) or organization(s) named in the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute, or modify the Package.

"Package" means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified Version.

"Distribute" means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

"Distributor Fee" means any fee that you charge for Distributing this Package or providing support for this Package to another party. It does not
mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the Standard Version of the Package, in its current version or as it may be
modified by The Perl Foundation in the future.

"Source" form means the source code, documentation source, and configuration files for the Package.

"Compiled" form means the compiled bytecode, object code, binary, or any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting any
non-standard features, executables, or modules, and provided that you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

http://www.saforum.org

4 SAI-AIS-SMF-A.01.02 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Legal Notice

(b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor Fees are allowed.

Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution.

If you provide valid instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other works, to embed the Package in a larger work of your own, or to build
stand-alone binary or bytecode versions of applications that include the Package, and Distribute the result without restriction, provided the
result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms of this
license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-charge patent license to make, have made, use, offer to sell, sell, import and
otherwise transfer the Package with respect to any patent claims licensable by the Copyright Holder that are necessarily infringed by the
Package. If you institute patent litigation (including a cross-claim or counterclaim) against any party alleging that the Package constitutes direct
or contributory patent infringement, then this Artistic License to you shall terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty:

THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO
COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents
1 Document Introduction . 13

 1.1 Document Purpose . 13
 1.2 Document’s Organization . 13
 1.3 History . 13
 1.3.1 New Topics .14
 1.3.2 Clarifications .14
 1.3.3 Deleted Topics .14
 1.3.4 Other Changes .15
 1.3.5 Superseded and Superseding Functions .16
 1.3.6 Changes in Return Values of API and Administrative Functions .16
 1.4 References . 16
 1.5 How to Provide Feedback on the Specification . 17
 1.6 How to Join the Service Availability™ Forum . 17
 1.7 Additional Information . 17
 1.7.1 Member Companies .17
 1.7.2 Press Materials .18

2 Overview . 19

 2.1 Overview to the Software Management Framework . 19
 2.1.1 Service Availability Considerations .21
 2.2 Scope of the Software Management Framework Specification . 21
 2.2.1 Scope of the Current Release .22

3 System Description and System Model . 23

 3.1 Software Management in SA Forum Systems . 23
 3.2 Software Delivery . 26
 3.2.1 Software Catalog .26
 3.2.1.1 Software Entity .27
 3.2.1.2 Software Entity Type .27
 3.2.1.2.1 Base Entity Type .27
 3.2.1.2.2 Versioned Entity Type and Prototype .28
 3.2.1.3 Software Bundle .28
 3.2.2 Handling of Software Bundles .29
 3.2.2.1 Repository Management .29
 3.2.3 Software Installation and Uninstallation .30
 3.2.3.1 Ordering of the Operations for Upgrade .31
 3.2.3.2 Ordering of the Operations for Recovery .32
 3.2.4 Software Bundle Object Class .32
 3.2.5 Entity Types File .33
 3.3 Software Deployment . 33
 3.3.1 Upgrade Campaign .33
 3.3.1.1 Upgrade Campaign Model .37
AIS Specification SAI-AIS-SMF-A.01.02 5

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.3.1.1.1 Upgrade Campaign Object Class .37
 3.3.1.1.2 Upgrade Procedure Object Class .38
 3.3.1.1.3 Upgrade Step Object Class .39
 3.3.2 Upgrade Step .39
 3.3.2.1 Deactivation Unit .40
 3.3.2.2 Activation Unit .41
 3.3.2.3 Actions of the Upgrade Step .42
 3.3.3 Upgrade Procedure .43
 3.3.3.1 Upgrade Scope .43
 3.3.3.2 Upgrade Method .43
 3.3.3.2.1 Rolling Upgrade .44
 3.3.3.2.2 Single-Step Upgrade .44
 3.3.3.3 Procedure Execution Level .45
 3.3.4 Service Outage .45
 3.4 Upgrade Periods . 46
 3.4.1 Upgrade Procedure Period .46
 3.4.2 Upgrade Campaign Period .47
 3.5 Upgrade-Aware Entities . 48
 3.6 Typical Software Management Information Flow . 48

4 Failure Detection and Failure Handling . 51

 4.1 Failure Detection . 51
 4.1.1 Upgrade Prerequisites .52
 4.1.2 Upgrade Step Verification .55
 4.1.3 Upgrade Procedure Verification .56
 4.1.4 Upgrade Campaign Verification .56
 4.1.5 Exit Status .57
 4.2 Failure Handling . 57
 4.2.1 Protective Measures .58
 4.2.1.1 Backup .58
 4.2.1.2 Upgrade History .59
 4.2.1.3 Detection of Asynchronous Failures of AMF Entities .60
 4.2.1.4 Handling Persistent Changes During Upgrade .61
 4.2.1.4.1 Changes Caused by the Upgrade .61
 4.2.1.4.2 Changes Caused by Normal Operation .62
 4.2.2 Recovery Operations .62
 4.2.2.1 Undoing an Upgrade Step .63
 4.2.2.2 Retry of an Upgrade Step .65
 4.2.2.3 Rollback .65
 4.2.2.3.1 Campaign Rollback .66
 4.2.2.3.2 Procedure Rollback .66
 4.2.2.3.3 Step Rollback .66
 4.2.2.3.4 Failure During Rollback .67
 4.2.2.4 Fallback .68
 4.2.2.4.1 Rollforward .69

5 State Models . 71
6 SAI-AIS-SMF-A.01.02 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 5.1 Upgrade Step State Model . 72
 5.1.1 Initial State .72
 5.1.2 Executing State .72
 5.1.3 Completed State .72
 5.1.4 Undoing State .74
 5.1.5 Failed State .74
 5.1.6 Undone State .74
 5.1.7 Rolling Back State .74
 5.1.8 Undoing Rollback State .75
 5.1.9 Rolled Back, Rollback Undone, and Rollback Failed States .75
 5.2 Upgrade Procedure State Model . 75
 5.2.1 Initial State .75
 5.2.2 Executing State .75
 5.2.3 Suspended and Step Undone States .76
 5.2.4 Completed State .77
 5.2.5 Rolling Back State .77
 5.2.6 Rollback Suspended State .79
 5.2.7 Rolled Back, Failed, and Rollback Failed States .79
 5.3 Upgrade Campaign State Model . 79
 5.3.1 Initial State .79
 5.3.2 Executing State .79
 5.3.3 Execution Completed State .82
 5.3.4 Error Detected State .82
 5.3.5 Suspending Execution State .82
 5.3.6 Error Detected in Suspending State .83
 5.3.7 Suspended by Error Detected State .83
 5.3.8 Execution Suspended State .84
 5.3.9 Rolling Back State .84
 5.3.10 Rollback Completed State .85
 5.3.11 Suspending Rollback State .85
 5.3.12 Rollback Suspended State .85
 5.3.13 Execution Failed and Rollback Failed States .86
 5.3.14 System Backup, Restart, and Fallback Operations .86

6 Upgrade Campaign Specification . 87

 6.1 Common Elements . 87
 6.1.1 Action Element .87
 6.1.1.1 Administrative Operation .88
 6.1.1.2 Configuration Change Bundle .88
 6.1.1.3 CLI Command .88
 6.1.1.4 Customized Callback Action .88
 6.1.1.4.1 Timing of Customized Callback Actions .89
 6.2 Campaign Information . 90
 6.2.1 Campaign Period .90
 6.2.2 Configuration Base .90
AIS Specification SAI-AIS-SMF-A.01.02 7

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 6.3 Campaign Initialization . 91
 6.3.1 Required Software Bundles .91
 6.3.2 New AMF Entity Types .91
 6.3.3 Initialization Actions .92
 6.3.3.1 Generic Initialization Action .92
 6.3.3.2 Predefined Conditions for Customized Callback Actions .92
 6.3.3.2.1 Callback at Campaign Initialization .92
 6.3.3.2.2 Callback at Campaign Backup Creation .93
 6.3.3.2.3 Callback at Campaign Rollback .93
 6.4 Campaign Body . 93
 6.4.1 Outage Information .94
 6.4.2 Upgrade Method Specification .95
 6.4.2.1 Specification of Rolling Upgrades .95
 6.4.2.1.1 Target Node .96
 6.4.2.1.2 Activation Unit Template .96
 6.4.2.1.3 Target Entities .99
 6.4.2.1.4 Update Template .100
 6.4.2.1.5 Upgrade Step of a Rolling Upgrade .101
 6.4.2.1.6 Timing of Callback Actions Within the Procedure .101
 6.4.2.2 Specification of Single-Step Upgrades .102
 6.4.2.2.1 Deactivation Unit Specification .102
 6.4.2.2.2 Activation Unit Specification .103
 6.4.2.2.3 Symmetric Activation Unit Specification .103
 6.4.2.2.4 Upgrade Step of a Single-Step Upgrade .104
 6.5 Campaign Wrap-Up . 104
 6.5.1 Completion of the Upgrade Campaign .105
 6.5.2 Committing the Upgrade Campaign .106

7 Entity Types File . 107

 7.1 Software Bundle . 107
 7.1.1 XML Schema for Software Bundles .107
 7.1.1.1 Bundle Identification .107
 7.1.1.2 Bundle Handling Operations .108
 7.1.1.3 Schema Summary .108
 7.2 AMF Entity Types and their Prototypes . 109
 7.2.1 Naming and Versioning .109
 7.2.2 Other Attributes .111
 7.2.3 XML Schema for AMF Entity Prototypes .111
 7.2.3.1 Component Prototype .112
 7.2.3.1.1 Provided CS Prototypes .112
 7.2.3.1.2 Component Category .113
 7.2.3.1.3 CLC-CLI Commands .114
 7.2.3.1.4 Upgrade Awareness .114
 7.2.3.1.5 Software Bundle Reference .115
 7.2.3.1.6 Schema Summary .115
 7.2.3.2 Component Service Prototype .119
 7.2.3.2.1 Schema Summary .119
8 SAI-AIS-SMF-A.01.02 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 7.2.3.3 Service Unit Prototype .120
 7.2.3.3.1 Schema Summary .121
 7.2.3.4 Service Group Prototype .122
 7.2.3.4.1 Schema Summary .123
 7.2.3.5 Service Prototype .124
 7.2.3.5.1 Schema Summary .124
 7.2.3.6 Application Prototype .125
 7.2.3.6.1 Schema Summary .125

8 Software Management Framework API . 127

 8.1 Include File and Library Name . 128
 8.2 Type Definitions . 128
 8.2.1 Handles Used by the Software Management Framework .128
 8.2.2 SaSmfPhaseT .129
 8.2.3 SaSmfUpgrMethodT .129
 8.2.4 SaSmfOfflineCommandScopeT .130
 8.2.5 Types for State Management .131
 8.2.5.1 SaSmfCmpgStateT .131
 8.2.5.2 SaSmfProcStateT .132
 8.2.5.3 SaSmfStepStateT .132
 8.2.5.4 SaSmfStateT .133
 8.2.5.5 SaSmfEntityInfoT .133
 8.2.6 SaSmfCallbackScopeIdT .133
 8.2.7 SaSmfCallbackLabelT .134
 8.2.8 Label Filters .134
 8.2.8.1 SaSmfLabelFilterTypeT .134
 8.2.8.2 SaSmfLabelFilterT .135
 8.2.8.3 SaSmfLabelFilterArrayT .135
 8.2.9 SaSmfCallbacksT .136
 8.3 Library Life Cycle . 137
 8.3.1 saSmfInitialize() .137
 8.3.2 saSmfSelectionObjectGet() .139
 8.3.3 saSmfDispatch() .141
 8.3.4 saSmfFinalize() .142
 8.4 Registration and Unregistration of the Scope of Interest . 143
 8.4.1 saSmfCallbackScopeRegister() .143
 8.4.2 saSmfCallbackScopeUnregister() .145
 8.5 Upgrade Campaign Progress Signaling and Response . 146
 8.5.1 SaSmfCampaignCallbackT .146
 8.5.2 saSmfResponse() .148

9 Administrative API . 151

 9.1 Include File and Library Name . 151
 9.2 Type Definitions . 151
 9.2.1 SaSmfAdminOperationIdT .151
AIS Specification SAI-AIS-SMF-A.01.02 9

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 9.3 Software Management Framework Administrative API . 151
 9.3.1 SA_SMF_ADMIN_EXECUTE .152
 9.3.2 SA_SMF_ADMIN_COMMIT .154
 9.3.3 SA_SMF_ADMIN_SUSPEND .155
 9.3.4 SA_SMF_ADMIN_ROLLBACK .157

10 SMF UML Information Model . 159

 10.1 Notes on the Conventions Used in UML Diagrams . 159
 10.2 DN Formats for Software Management Framework UML Classes . 159
 10.3 Software Catalog Classes . 160
 10.4 Upgrade Campaign Model Classes . 162
 10.4.1 Upgrade Campaign Model Overview .162
 10.4.2 Upgrade Campaign, Upgrade Procedure, and Upgrade Step Classes .163
 10.4.3 SMF Deactivation Unit, Activation Unit, and Image-Nodes Classes .165

11 Alarms and Notifications . 167

 11.1 Setting Common Attributes . 167
 11.2 Software Management Framework Alarms . 168
 11.3 Software Management Framework Notifications . 168
 11.3.1 Software Management Framework State Change Notifications .169
 11.3.1.1 Upgrade Campaign State Change Notify .169
 11.3.1.2 Upgrade Procedure State Change Notify .170
 11.3.1.3 Upgrade Step State Change Notify .171

Index of Definitions . 173
10 SAI-AIS-SMF-A.01.02 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
List of Figures
Figure 1: The Software Management Framework in the SA Forum Ecosystem 25
Figure 2: Basic Information Model of the Software Catalog . 26
Figure 3: Upgrade Campaign Activity Diagram . 35
Figure 4: Typical Software Management Information Flow for an Upgrade . 49
Figure 5: Upgrade Step State Model Diagram . 73
Figure 6: Upgrade Procedure State Model Diagram . 78
Figure 7: Upgrade Campaign State Model Diagram . 81
Figure 8: SMF Bundle Class . 161
Figure 9: SMF Upgrade Campaign Status View . 162
Figure 10: SMF Upgrade Campaign, Upgrade Procedure, and Upgrade Step Classes 164
Figure 11: SMF Deactivation Unit, Activation Unit, and Image-Nodes Classes 165

List of Tables
Table 1: Reversing Actions Depending on the Upgrade Step . 64
Table 2: Reversing Action Depending on the Step Rollback Actions . 68
Table 3: Valid Symmetric Activation Unit Specifications Using Templates . 99
Table 4: XML Schema Elements of the Software Bundle Specification . 109
Table 5: AMF Entity Types Specification . 109
Table 6: XML Schema Elements for Component Prototypes Specification . 116
Table 7: XML Schema Elements for CS Prototypes Specification . 119
Table 8: XML Schema Elements for SU Prototypes Specification . 121
Table 9: XML Schema Elements for Service Group Prototypes Specification 123
Table 10: XML Schema Elements for Service Prototypes Specification . 124
Table 11: XML Schema Elements for Application Prototype Specification . 125
Table 12: Matching Algorithm for Each Filter Type . 136
Table 13: DN Formats . 159
Table 14: Upgrade Campaign State Change Notify . 169
Table 15: Upgrade Procedure State Change Notify . 170
Table 16: Upgrade Step State Change Notify. 171
AIS Specification SAI-AIS-SMF-A.01.02 11

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
1 Document Introduction

1.1 Document Purpose
This document defines the Software Management Framework (SMF) of the Applica-
tion Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum) to
support software upgrade in a single SA Forum system. SMF is the software entity
that orchestrates the migration of a live system from one deployment configuration to
another while ensuring service availability by tight collaboration with the Availability
Management Framework of the Service AvailabilityTM Forum.

Typically, the Service AvailabilityTM Forum Software Management Framework specifi-
cation will be used in conjunction with the Service AvailabilityTM Forum Application
Interface Specification and the Service AvailabilityTM Forum Hardware Platform
Interface Specification (HPI).

1.2 Document’s Organization
Chapter 1 contains the introduction to this document. Chapter 2 provides an overview
of software management and the scope of this specification. Chapter 3 describes the
functionality of the Software Management Framework and introduces its basic infor-
mation model and phases. Chapter 4 defines the failure detection and failure han-
dling. The state model for the upgrade is defined in Chapter 5. Chapter 7 provides
guidance for software vendors for the use of the entity types file, while Chapter 6 clar-
ifies the usage of the upgrade campaign specification schema. Chapter 8 specifies
the upgrade API and Chapter 9 contains the administrative API. Chapter 10 presents
the SMF UML Information Model.
Chapter 11 defines the alarms and notifications. An index of definitions used in this
document is presented at the end of the document.

1.3 History
The first and only previous release of the Software Management Framework specifi-
cation is:

SAI-AIS-SMF-A.01.01

This section presents the changes of the current release, SAI-AIS-SMF-A.01.02, with
respect to the SAI-AIS-SMF-A.01.01 release. Editorial changes that do not change
semantics or syntax of the described interfaces are not mentioned.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 1 13

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.1 New Topics
⇒ In version A.01.02, as an optional optimization of a rolling upgrade procedure,

multiple upgrade steps can be executed concurrently. This extension is
described
• in a new paragraph on page 44 (Section 3.3.3.2.1) and
• in a new paragraph on page 95 (Section 6.4.2), which introduces the
saSmfProcDisableSimultanExec attribute of the rollingUpgrade ele-
ment.

The saSmfProcDisableSimultanExec attribute is shown in
FIGURE 10 on page 164.

⇒ As the distribution of entities on nodes may not be known, the upgrade campaign
specification for single step allows for (a) a template definition and (b) an IMM
modify operation. The corresponding changes are:
• additions to Section 6.4.2.2 on page 102,
• entire replacement of Section 6.4.2.2.1 on page 102,
• entire replacement of Section 6.4.2.2.2 on page 103, and the introduction of
• a new Section 6.4.2.2.3 on page 103.

1.3.2 Clarifications
⇒ The usage of the upgrade campaign configurationBase attribute has been

clarified in the description of prerequisite 5. on page 53 (Section 4.1.1) and in a
paragraph on page 90 (Section 6.2.2).

⇒ On page 76 (Section 5.2.2), a sentence has been added to clarify that setting the
freeze flag has no impact after the procedure verification has started.

⇒ The term prototype (defined in Section 3.2.1.2.2) has been introduced where
necessary to distinguish partially specified versioned entity types used by soft-
ware vendors to describe their product from fully specified versioned entity types
expected by, for example, the Availability Management Framework to be able to
manage their entities. Appropriate changes were made all across the document.

1.3.3 Deleted Topics

Chapter 12 of the Software Management Framework A.01.01, which was only a
“placeholder” for a Management Interface to be provided in future, has been
removed.
14 SAI-AIS-SMF-A.01.02 Section 1.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
1.3.4 Other Changes
⇒ As a consequence of placing the Software Management Framework objects

under the Software Management Framework service application object in IMM,
changes were made
• in a paragraph on page 32 (Section 3.2.4) and
• in Table 13 on page 159.

⇒ In the description of the prerequisites for starting an upgrade campaign
(Section 4.1.1), Prerequisite 8. and its description on page 54 have been added
to specify that the Software Management Framework must be able to obtain
administrative ownership for at least the objects manipulated in the campaign.

⇒ To align with the Availability Management Framework, which supports the specifi-
cation of a healthcheck type for a proxied component type, the entity types file
schema has been modified to allow for it. Additionally, this schema has been
extended to allow the specification of the CS prototype through which
• a component of a proxy component prototype can proxy a given component of

a proxied component prototype, or
• a component of a container component prototype can contain a given compo-

nent of a contained component prototype.

For the corresponding changes, refer to a paragraph on page 112
(Section 7.2.3.1.1) and to the description of the saAware element on page 113
(Section 7.2.3.1.2).

⇒ The scope of impact of offline operations has been extended to take into account
the scope of a CLM node ([5]). This alignment implied changes in
Section 7.1.1.2 on page 108 and in Section 7.1.1.3 on page 108. The
SaSmfOfflineCommandScopeT enumeration type, which was missing in ver-
sion A.01.01, is now defined in Section 8.2.4 on page 130. This enumeration
uses the name “PLM” in the name definitions; however, no assumption is made
regarding the correct use of these values with respect to the Platform Manage-
ment Service.

⇒ An inconsistency between the XML schema for SU prototype and the corre-
sponding description with respect to the number of component instances has
been corrected in a paragraph on page 120 (Section 7.2.3.3).

⇒ A typo has been corrected in the SaSmfCmpgStateT enumeration in
Section 8.2.5.1 on page 131: The name
SA_SMF_CMPG_ROLLBACK_COMMITTED was misspelled in SMF A.01.01 as
SA_SMF_CMPG_ROLLBACKC_COMMITTED. The header file for SMF A.01.01 on
the SA Forum Web site does not show this typo.
AIS Specification SAI-AIS-SMF-A.01.02 Section 1.3.4 15

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
⇒ In Section 8.2.9 on page 136, a “;” has been added to the declaration of the only
member of the SaSmfCallbacksT structure.

⇒ The SaSmfAdminOperationIdT enumeration type was defined differently in the
saSmf.h file and in the document. The definition in the header file was the
intended variant, which is aligned with similar definitions of other AIS Services.
Therefore, the definition (Section 9.2.1) in the specification document was
aligned with the header file and appropriate corrections have been made as nec-
essary.

⇒ In the SaSmfSwBundle class, the saSmfBundleInstallCmdArgs attribute
has been replaced with the saSmfBundleInstallOnlineCmdArgs and
saSmfBundleInstallOfflineCmdArgs attributes. Similarly, in the same
class, the saSmfBundleRemoveCmdArgs attribute has been replaced with the
saSmfBundleRemoveOnlineCmdArgs and
saSmfBundleRemoveOfflineCmdArgs attributes. These modifications are
shown in FIGURE 8 on page 161.

1.3.5 Superseded and Superseding Functions

None

1.3.6 Changes in Return Values of API and Administrative Functions

None

1.4 References
The following documents contain information that is relevant to this specification:

[1] Service AvailabilityTM Forum, Service Availability Interface, Overview, SAI-Over-
view-B.04.03

[2] Service AvailabilityTM Forum, Application Interface Specification, Availability
Management Framework, SAI-AIS-AMF-B.03.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.02.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.02.01

[5] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.03.01

[6] Service AvailabilityTM Forum, Hardware Platform Interface Specification, SAI-
HPI-B.02.01

[7] Service AvailabilityTM Forum, Information Model in XML Metadata Interchange
(XMI) v2.1 format, SAI-XMI-A.03.02.xml.zip
16 SAI-AIS-SMF-A.01.02 Section 1.3.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction
[8] Service AvailabilityTM Forum, SMF Entity Types File XML Schema Definition,
SAI-AIS-SMF-ETF-A.01.02.xsd 1

[9] Service AvailabilityTM Forum, SMF Upgrade Campaign Specification XML
Schema Definition, SAI-AIS-SMF-UCS-A.01.02.xsd1

[10] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

References to these documents are made by placing the number of the document in
square brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum Web site (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to partici-
pate in the Forum complete a membership application. Once completed, a represen-
tative of the Service Availability™ Forum will contact you to discuss your membership
in the Forum. The Service Availability™ Forum Membership Application can be com-
pleted online by following the pertinent links provided on the SA Forum Web site
(http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the SA Forum Web site (http://www.saforum.org).

1. Files SAI-AIS-SMF-ETF-A.01.02.xsd and SAI-AIS-SMF-UCS-A.01.02.xsd are packaged
together; they are contained in a zip archive named SAI-AIS-SMF-XSD-A.01.02.zip.
AIS Specification SAI-AIS-SMF-A.01.02 Section 1.5 17

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the SA Forum
Web site (http://www.saforum.org).
18 SAI-AIS-SMF-A.01.02 Section 1.7.2 AIS Specification

http://www.saforum.org
http://www.saforum.org
http://www.saforum.org

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Overview
2 Overview

2.1 Overview to the Software Management Framework
SA Forum systems are required to provide highly available services to their users
over a long period of time during which the systems may undergo changes due to
growth and evolution, bug fixes, or enhancement of services. These changes may
require addition, removal, replacement, or reconfiguration of hardware or software
elements. High service availability requires that such changes cause no (or only min-
imal) loss of service.

The different kinds of software that execute on an SA Forum system can be classified
as firmware, system software (including hypervisors, operating systems, and middle-
ware), and application software. Such software is constituted of binary or interpreted
code that can be executed on the system along with some provisioning data that is
required for the software to execute properly.

Some SA Forum Services such as the Availability Management Framework [2] are
responsible for controlling the execution of the software on the system (e.g. applica-
tion software, in the case of the Availability Management Framework). Each SA
Forum Service defines its own set of logical entities that are used to either (1) repre-
sent instances of software execution under its control or (2) describe the manage-
ment policies and relationships among these various execution instances.

For example, in the case of the Availability Managed Framework, instances of soft-
ware execution are represented as components while relationships among various
components and recovery policies are described through services units, service
groups, and so on.

In the context of the Software Management Framework, all these various logical enti-
ties that are used to represent and control software execution are designated as soft-
ware entities (or simply entities, where there is no ambiguity). For details on
software entities, see Section 3.2.1.1.

A collection of software for these software entities is delivered to the SA Forum sys-
tem in the form of a software bundle (see Section 3.2.1.3). The Software Manage-
ment Framework maintains the information about the availability, the contents, and
the deployment of different software bundles in the SA Forum system. The contents
of a software bundle are described in terms of the types of software entities it deliv-
ers.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 2 19

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Overview
An SA Forum system can be characterized by the deployment configuration, which
consists of the software deployed in the system along with all configured software
entities.

Each software entity is configured in the system as a set of information model objects
that must be instantiated within the Information Model Management Service [4]. SA
Forum Services such as the Availability Management Framework are the implement-
ers of these information model objects. Note that some information model objects
(such as checkpoint or event channel objects) are not software entities, as they do
not represent software execution.

Throughout the life time of an SA Forum system, system evolution is reflected by
changes in the deployment configuration. The Software Management Framework is
also the service in the system that controls such an evolution in a live system by
orchestrating the migration from one deployment configuration to another. This migra-
tion process, often referred to as an upgrade, is realized following an upgrade cam-
paign specification, which is provided in the form of an XML file. For details on the
upgrade campaign, see Section 3.3.1.

During this migration, the Software Management Framework (a) maintains the cam-
paign state model, (b) takes measures that enable error recovery, (c) monitors for
potential error situations caused by the migration, and (d) deploys error recovery pro-
cedures as required. To accomplish all these tasks, the Software Management
Framework interacts with the Availability Management Framework [2] and with other
AIS Services and SA Forum HPI implementation(s) as necessary.

The Software Management Framework also provides an API for client processes to
register their interest in receiving callbacks when a relevant upgrade is initiated in the
cluster and as the upgrade progresses through significant milestones.

The Software Management Framework itself defines a set of logical entities repre-
sented as information model objects in the Information Model Management Service.
The key logical entities implemented by the Software Management Framework are:

• the software bundle, which represents a collection of software and
• the upgrade campaign, which allows the control and monitoring of a campaign

execution.
20 SAI-AIS-SMF-A.01.02 Section 2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Overview
2.1.1 Service Availability Considerations

From the SA Forum perspective, the only case when the upgrade campaign needs to
be designed with service availability in considerations is when

1. software entities under the control of the Availability Management Framework are
upgraded and when

2. an upgrade interferes with the normal operation of any of the AMF entities.

Applications that use AIS (Application Interface Specification, [1]) Services, but are
not managed by the Availability Management Framework are not considered for ser-
vice availability unless they fall into the second category. Software executions that
are not related to any SA Forum specification, such as the operating system or propri-
etary database solutions are also not considered for service availability.

If the system is SA Forum compliant only at the HPI level (Hardware Platform Inter-
face [6]), from the SA Forum perspective, it does not provide service availability;
therefore, service availability does not need to be taken into account during upgrades
of its entities either. HPI provides the Firmware Upgrade Management Instrument
(FUMI) API set to support upgrades at HPI level.

2.2 Scope of the Software Management Framework Specification
The Software Management Framework specification defines:

• the functionality provided by the Software Management Framework,
• the software management basic information model and the related XML

schema,
• the basic concepts that describe upgrade campaigns and the related XML

schema and IMM object classes,
• the basic concepts of error handling during upgrade campaigns,
• the set of administrative APIs to control the execution of an upgrade campaign

and the related state model, and
• the set of APIs that client processes can use to register their interest in upgrade

campaigns and in receiving callbacks.
AIS Specification SAI-AIS-SMF-A.01.02 Section 2.1.1 21

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Overview
As a result, the Software Management Framework specification enables one

• to describe the content of some software collection to be delivered to the SA
Forum system,

• to maintain an inventory of the software available in the SA Forum system,
• to specify an upgrade campaign designed according to some availability criteria

that deploys some software, and
• to control the campaign execution.

The level of service availability that can be provided during the execution of an
upgrade campaign is inherently built into the upgrade campaign specification, and it
must be considered when designing the upgrade campaign specification. An imple-
mentation of the Software Management Framework executes an upgrade campaign
specification, as specified in the XML file provided by the campaign designer. The
Software Management Framework specification does not require from an implemen-
tation that it must take any measures to maintain service availability beyond those
measures specified in the campaign itself.

2.2.1 Scope of the Current Release

The current release of the Software Management Framework specification is limited
in its scope.
Its primary goal is to enable the upgrade of software entities managed by the Avail-
ability Management Framework; therefore, it is limited to the Availability Management
Framework’s scope in terms of the types entities managed during an upgrade cam-
paign and the administrative operations the Software Management Framework
applies to them. Based on this scope, this release also intends to set the direction
and a common understanding for software management in SA Forum systems.

The specification of image management is out-of-scope for this release; however, the
information that is necessary to describe the Availability Management Framework-
related contents of software bundles is included. The format of the information to be
delivered with software bundles is defined by an XML schema.

With respect to the upgrade campaign specifications, this release focuses on the
specification of upgrade campaigns for AMF entities of a single cluster using the
(node-based) rolling and the single-step upgrade methods. The XML schema for
such campaigns is also included.
22 SAI-AIS-SMF-A.01.02 Section 2.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3 System Description and System Model

3.1 Software Management in SA Forum Systems

The main focus of software management in this document is software upgrade. There
are two distinguishable phases of a software upgrade:

1. software delivery: the delivery of a new (version of the) software to the SA
Forum system;

2. software deployment: the act of migrating software entities of the current
deployment configuration to the desired deployment configuration, which may
use newly delivered software.

These two phases can be executed separately in time. However, in case a new soft-
ware is deployed, the deployment phase requires the successful accomplishment of
the software delivery phase.

A new version of a software is developed by a software vendor and it is normally sup-
plied as a group of files stored in packages according to some predefined format, for
example, as Linux RPM packages. A package may contain other related information
such as its dependency on other packages, configuration of the new software, its rel-
ative installation location, and so on. In SA Forum terms, a collection of such depen-
dent packages and any associated files is referred to as a software bundle (for
details, see Section 3.2.1.3).

A software bundle becomes available in the SA Forum system when it has been
delivered to the software repository, a storage location associated with the system.
From the software repository, a software bundle can be installed in one or more loca-
tions within the system to enable the execution of the included software. It is not
specified how the software is packaged within software bundles and how the software
bundles are delivered to the software repository. The related requirements and
assumptions are described in Section 3.2 including the information that describes
each software bundle. The contents of a software bundle are described in a descrip-
tor file, called entity types file (see Section 3.2.5). The exact format of this file is
defined in [8] by an XML schema. This file provides the software vendor’s input to
help system integration and configuration.

The Software Management Framework maintains information about the availability,
the contents, and the deployment of different software bundles in the SA Forum sys-
tem. This information is part of the information model maintained by the Software
Management Framework. The information model contains the types of software enti-
ties available in the system, their versions, and references to the bundles that deliv-
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 3 23

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
ered them. The collection of software bundles available in the SA Forum system and
the types they delivered is referred to as the software catalog (see Section 3.2.1).

During the deployment phase, the SA Forum system is migrated from the current
deployment configuration to the desired deployment configuration by executing an
upgrade campaign. The upgrade campaign describes the steps and procedures of
the migration. This document defines the XML schema [9] to be used to specify
upgrade campaigns. Its usage is explained in Chapter 6.

A software upgrade may impact entities that provide highly available services and are
managed by the Availability Management Framework. The Software Management
Framework coordinates its actions with the Availability Management Framework to
avoid or minimize any service loss during such a migration to the desired deployment
configuration. This coordination is based on the upgrade campaign specification.

The Software Management Framework takes certain measures to enable error recov-
ery during upgrades, as described in Section 4.2.1. During an upgrade campaign, it
continuously monitors for errors according to Section 4.1. It also handles the recovery
and repair actions in case of failures during the upgrade campaign, as specified by
Section 4.2 and in Chapter 5.

To allow monitoring and the control of an upgrade campaign, the UML model main-
tained by the Software Management Framework is provided in Section 3.3.1. An
upgrade is initiated and controlled by using administrative operations (see Chapter 9)
applied to the upgrade campaign object, as defined in Section 3.3 and Chapter 5.
The model also reflects the progress of the upgrade campaign according to the state
models specified in Chapter 5, facilitating this way the monitoring task.

For applications that need to be aware of an ongoing upgrade campaign within the
SA Forum system, the Software Management Framework provides a set of API func-
tions (see Chapter 8) to enable them to coordinate their actions with the progress of
the campaign. The Software Management Framework drives these registered appli-
cations along the stages defined in the upgrade campaign by invoking the appropri-
ate callback function.

FIGURE 1 summarizes the collaboration of the Software Management Framework
with other SA Forum Services within the SA Forum ecosystem.
24 SAI-AIS-SMF-A.01.02 Section 3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 1 The Software Management Framework in the SA Forum Ecosystem

The Software Management Framework administrative interface is exposed by the
Information Model Management Service (IMM, see [4]). Besides, the Software Man-
agement Framework also uses IMM to manage the software management informa-
tion model, which consists of two parts.

• The software catalog, which describes the software available in the system.
• The upgrade campaign model, which allows one to monitor and control the

progress of an upgrade campaign within the system.

As a part of the upgrade process, the Software Management Framework uses the
administrative API of the Availability Management Framework (AMF, see [2]), which
is exposed by the IMM Service to maintain service availability during the upgrade.

The Software Management Framework relies on the SA Forum Notification Service
([3]) to be notified about errors that may be the result of the upgrade process. In
particular, the Software Management Framework subscribes to state change
notifications issued by the Availability Management Framework to correlate them with
the ongoing upgrade process. The Software Management Framework also publishes
state change notifications about state changes in the upgrade campaign model.

The Software Management Framework may use other SA Forum Services such as
Cluster Membership, Logging, and the Hardware Platform Interface ([6]). It is imple-

Software Management
Framework

Availability
Management
Framework

Hardware Platform
Interface

Other AIS ServicesOther AIS Services
Other AIS Services

Information Model
Management Service

AMF Entity

OM-API OI-API

Service API

HPI-API

SMF-API

AMF-API

Admin
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.1 25

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
mentation-specific when and in what manner these other SA Forum Services are
used by the Software Management Framework.

3.2 Software Delivery
This section describes some assumptions that were made with respect to the han-
dling of software packages that compose software bundles, as this is outside the
scope of the current document. It also presents the software catalog portion of the
information model.

3.2.1 Software Catalog

As shown in FIGURE 2, the software catalog portion of the software management
information model contains information about the available software entity types in
the system, their versions, and references to the software bundles that delivered
them and to the entities that deploy them.

FIGURE 2 Basic Information Model of the Software Catalog

This basic information model is further specialized for the different services of the SA
Forum system. The current document only presents the model’s specialization for the
Availability Management Framework entity types (see Section 7.2).

<<CONFIG>>
SaSmfVersionedEntityType

<<CONFIG>>
SaSmfBaseEntityType

<<CONFIG>>
SaSmfSoftwareEntity

<<CONFIG>>
SaSmfSwBundle

0..*0..1
0..*

1

0..*

1

26 SAI-AIS-SMF-A.01.02 Section 3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The Software Management Framework uses the Information Model Management
Service to store and manage the software catalog built according to specializations of
the model.

3.2.1.1 Software Entity

As discussed in Section 2.1, each SA Forum Service defines its own set of logical
entities that are used to either

• represent instances of software execution under its control or
• describe the management policies and relationship among these various execu-

tion instances.

In the context of the Software Management Framework, all these various logical enti-
ties are designated as software entities. However, the Software Management
Framework does not implement these software entities; instead, it only configures
them in terms of adding, removing and modifying them, as specified by an upgrade
campaign.

Software entities are configured in the system as information model objects of the
Information Model Management Service [4]. SA Forum Services such as the Avail-
ability Management Framework are the implementers of these information model
objects as appropriate.

3.2.1.2 Software Entity Type

The generalization of similar software entities is called a software entity type (or
simply a type, if the context permits). Any software entity that is present in an SA
Forum system and needs to be manipulated by the Software Management Frame-
work must be of certain type.

The software management information model distinguishes two classes of software
entity types:

• base entity types and
• versioned entity types.

3.2.1.2.1 Base Entity Type

Base entity types are not directly associated with executable pieces software;
instead, they represent a common functionality these pieces of software deliver, each
of which is versioned. Thus, the base entity type is a container of versioned entity
types that are grouped together by some common functionality.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.2.1.1 27

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
The base entity type has a name to which all its versions refer.

This document presents the base entity types defined for the SA Forum Availability
Management Framework in Section 7.2.

3.2.1.2.2 Versioned Entity Type and Prototype

A base entity type can be implemented by different versions of software. Each such
version is represented as a versioned entity type (or simply as a version, if the con-
text permits).

A versioned entity type expands the base entity type with versioning and version-spe-
cific information. It describes the deployment constraints such as the list of compati-
ble and required versions of other versioned entity types. It also defines all the
attributes (together with their default values) that are inherited by its instances. Soft-
ware usually allows for different configurations, which is reflected in allowing vendors
only to partially specify their versioned entity types. In other words, they specify ver-
sioned entity prototypes, from which fully specified versioned entity types are
derived for deployment as part of the system or site integration task.

For the Availability Management Framework, this document specifies the versioned
entity prototypes in Section 7.2, as they must be used by a software vendor. The
Availability Management Framework specification [2], on the other hand, specifies
versioned entity types, as they must be used in a running system, which reflects the
vendor’s information tailored to the specifics of a particular system.

To be deployed, a base entity type must have at least one version delivered to the
system. This parent-child relation between a base and versioned types is implicitly
defined by their naming. The naming of AMF entity types is specified in Section 7.2.1.

A versioned entity type may be related to an entity type that is not its parent. For
example, different versions of a component type provide the same component ser-
vice type. Such a relationship needs to be specified explicitly as an attribute.

Software bundles deliver versioned entity prototypes.

3.2.1.3 Software Bundle

The software bundle of the information model represents a collection of interdepen-
dent software packages and associated files that has been delivered to the system’s
repository. The software bundle is the smallest unit recognized by the Software Man-
agement Framework and that is represented in the information model.
28 SAI-AIS-SMF-A.01.02 Section 3.2.1.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
A software bundle may deliver different versioned entity (proto)types; however, it will
typically not deliver multiple versions of the same base type. The software bundle
object is referenced by all the versioned entity types whose software is delivered by
the bundle.

3.2.2 Handling of Software Bundles

3.2.2.1 Repository Management

It is assumed that an SA Forum system is associated with a logically single storage
that collects all software bundles available in the system. In the software delivery
phase, software bundles are made available to the system by copying them to the
software repository. The source could be a remote file server, a CD, or some other
media. The Software Management Framework specification currently does not spec-
ify how software packages and, as a consequence, software bundles are imported to
the repository and made available to the system.

When software bundles are delivered to the software repository, they should be veri-
fied in an implementation-specific way (for instance, by the use of package handling
utilities of an operating system or by other means). This verification should include for
each software bundle:

• A check of the integrity and the origin of all software packages that make up the
bundle.

• A check that all other packages indicated in the package dependency list are
available in the repository or have been delivered at the same time.

• A check that the bundle has been properly added to the repository and can,
therefore, be used as an installation source.

When all these operations and checks are successfully completed, the software bun-
dle becomes available for the system and allows one to add an IMM object represent-
ing the software bundle to the information model of the software catalog.

If any of these operations fails, the bundle may not be added either to the repository
or to the information model.

When the IMM object representing a software bundle is deleted from the information
model of the software catalog, the associated bundle becomes unavailable for the SA
Forum system and needs to be removed from the software repository. The bundle is
removed in an implementation-specific way. This should not happen while the soft-
ware is still in use within the system.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.2.2 29

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.2.3 Software Installation and Uninstallation

Software installation means the creation of an executable form at a location from
which the software can be executed on a target node. The source of the installation is
a software bundle in the software repository. Saying that the software is installed
means that it can be used to instantiate software entities according to their configura-
tion. Software uninstallation means the removal of an installed software from such
a target location; however, the software bundle remains available in the software
repository.

Depending on the nature of the software and the execution environment, the installa-
tion and uninstallation may or may not interfere with software entities executing (or
which can potentially execute) in the system. Based on this characteristic, the Soft-
ware Management Framework distinguishes two categories of installation and unin-
stallation operations: online and offline.

An online operation does not interfere with any software entity in the system, espe-
cially not with one that is managed by the Availability Management Framework. An
online operation can be executed at any time, as it does not require availability man-
agement of entities. The online software installation may be part of the delivery
phase. The Software Management Framework may execute such online operations
without initiating an upgrade campaign, as a preparation for an upgrade campaign - in
case of software installation - or after the completion of the campaign - in case of an
uninstallation.

Operations that do not satisfy the above criteria fall into the offline category. To pre-
vent any interference, the impacted entity and maybe other entities need to be taken
out of service for the time of the operation. Accordingly, an offline operation has a
scope of impact that requires availability management. As a result, offline operations
may only be executed as part of an upgrade campaign. For proper handling, the min-
imal scope of impact needs to be indicated by the software vendor.

For each bundle, the following must be specified in form of CLI commands:

• the portions of the installation and uninstallation that can be executed online,
• the portions of the installation and uninstallation that need to be executed offline,

together with the minimum scope of impact that must be taken into account at
campaign design.

A software bundle is always installed or uninstalled as a whole at a target location.
This means that all entity types included in the bundle are installed or uninstalled and
become available or unavailable at that target location after the execution of the pair
of online and offline CLI commands of the appropriate operation.
30 SAI-AIS-SMF-A.01.02 Section 3.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.3.1 Ordering of the Operations for Upgrade

The installation and uninstallation operations are executed in the following order
when a software bundle is used to upgrade an existing installation at a given target
location:

1. online installation of the new software
2. offline uninstallation of the old software
3. offline installation of the new software
4. online uninstallation of the old software

The operations 1. and 4. may be executed outside a campaign, whereas operations
2. and 3. are always executed within the scope of the upgrade campaign.

The successful completion of an operation is a prerequisite for initiating the subse-
quent operation. Some of these operations may be empty, in which case they are
considered to be successful.

The CLI commands used to perform the installation and uninstallation operations
must be implemented so that when the same operation is executed on the same tar-
get location a second time, the installation status of the software is verified and cor-
rected as necessary.
Example of a second operation on the same target location: the online installation
(operation 1.) is executed when the package is delivered. After some time, the rele-
vant upgrade campaign is initiated. During this campaign, the Software Management
Framework must be able to re-use operation 1. to verify the already installed software
and correct it if necessary.

The operation should succeed in any of the following cases:

• installation exists, and it is correct;
• installation exists, but it was corrupted, and a successful repair was performed;
• installation did not exist; therefore, a new successful installation was performed.

After completion of operation 2., the old software is no longer available for execution
at the target location. After completion of operation 4., the old software must be com-
pletely removed from the target location.

After completion of operation 3., the new software must be ready for execution at the
target location. For example, if an Availability Management Framework component is
delivered by this software, the Availability Management Framework should be able to
instantiate it using the CLC-CLI command specified for the component.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.2.3.1 31

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
To speed up any recovery operation, operation 4. is typically not performed before the
upgrade campaign has completed.

3.2.3.2 Ordering of the Operations for Recovery

The operations to restore the old software (for example, due to a campaign failure or
to other reasons) are performed as follows:

1. online installation of the old software
2. offline uninstallation of the new software
3. offline installation of the old software
4. online uninstallation of the new software

If the old software was not yet removed, operation 1. verifies and corrects the installa-
tion of the old software. Operation 4. may or may not be performed until the campaign
(in this case, its rollback) completes.

The Software Management Framework mandates that for each bundle each of these
operations is specified as a CLI command to be initiated at the target location, that is,
in the execution environment of the appropriate cluster node.

3.2.4 Software Bundle Object Class

The software catalog of the information model is populated with objects of the soft-
ware bundle object class, which is presented in Section 10.3. These objects repre-
sent software bundles available in the software repository.

Software bundles must have a unique distinguished name (DN).The relative distin-
guished name (RDN) has the form of:

safSmfBundle=...

To minimize name conflicts, the RDN should include a prefix specific to the particular
vendor. The stock symbol or the Internet domain name of the company providing the
software bundle are examples for such a prefix. This unique DN is used by the Soft-
ware Management Framework for the software bundle object in the software man-
agement information model.

The CLI commands for the bundle handling operations are presented as URIs. In
addition, the software bundle object class defines a default timeout that is used to
limit the CLI operations.
32 SAI-AIS-SMF-A.01.02 Section 3.2.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
3.2.5 Entity Types File

The entity types file is a target system-agnostic description of the content of a soft-
ware bundle delivered to an SA Forum system. Each SA Forum-compliant software
bundle delivered to the software repository must be associated with an entity types
file. One entity types file may refer to multiple software bundles, each of which must
be identified according to the XML schema defined in [8] and discussed in Chapter 7.
Some of these bundles may already be part of the software repository, and from the
identification information, it must be possible to determine their identity. The entity
types file also shall specify the CLI commands to be used to install and uninstall each
referenced bundle.

The entity types file is the means by which a software vendor shall describe the SA
Forum-relevant contents and features of its product and any implementation-specific
constraint that needs to be taken into account by a deployer wanting to use the prod-
uct.

Accordingly, additional information on each software entity prototype needs to be
given as necessary to facilitate the following tasks:

• identification of software entities that are potential targets for the upgrade using
the software delivered in the bundle;

• verification of the compatibility of the delivered entity prototypes with those cur-
rently available in the system and the software entities deploying them;

• proper configuration of those software entities that were selected for upgrade;
• generation of an upgrade campaign specification.

The XML schema for the different entity prototypes that are recognized by the SA
Forum Software Management Framework is specified in [8]. This release only consid-
ers Availability Management Framework entity types, which are discussed in more
details in Section 7.2.

3.3 Software Deployment

3.3.1 Upgrade Campaign

The deployment configuration of an SA Forum system may need to be changed at
any time, for example, to tune its performance by creating new instances of an entity
type available in the software catalog, by modifying parts of the configuration, or by
removing some of the existing instances. In some cases, it is necessary to down-
grade entities to an earlier version of their base entity type.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.2.5 33

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
Whenever a new software bundle is delivered to the SA Forum system, it creates the
potential for adding new entities of the newly delivered types to the system configura-
tion. If there are already software entities in the system that belong to the earlier ver-
sion of the base entity type of a version delivered by the bundle, these software
entities become upgradable to the new version.

Any of these operations require the migration of the current deployment configuration
to a new one, which is performed by the Software Management Framework as an
upgrade campaign following the instructions of an upgrade campaign specification.

FIGURE 3 presents the major activities comprising an upgrade campaign.

An upgrade campaign is handled in the manner of transactions, and, accordingly, it is
initiated and committed or terminated. These operations determine the transaction
boundaries.

At the initiation of the upgrade campaign (action initiate campaign in
FIGURE 3), the Software Management Framework determines whether the upgrade
campaign can proceed according to some prerequisites (see details in Section 4.1.1).
If it cannot proceed, the upgrade is terminated (terminate campaign); otherwise,
a cluster-wide backup is created (create backup) as described in Section 4.2.1.1.

In the cluster-wide backup, both the system and the applications are requested to
save their own information as necessary. With the backup, some logs may also be
started to capture permanent changes that occur after the backup (Section 4.2.1.4).
These permanent changes will be reapplied to the state restored from the backup in
case a fatal failure demands so (Section 4.2.2.4.1). Consequently, if the backup or
any of these preparative actions fail for any reason, the upgrade cannot proceed.

If the upgrade proceeds, there are virtually two configurations in effect: the current
deployment configuration and a new desired configuration. The Software Manage-
ment Framework’s task is to orchestrate the transition between the two according to
the upgrade campaign specification.
34 SAI-AIS-SMF-A.01.02 Section 3.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
FIGURE 3 Upgrade Campaign Activity Diagram

Upgrade Campaign

Upgrade Step

Upgrade Procedure

Initiate Campaign

Create Backup

upgrade permitted

Terminate Campaign
cannot upgrade

Execute Step

Verify Step

Verify Procedure

Commit Campaign

cannot upgrade

success

failure

Undo Step

retry

success

else

no more steps

success

Fallback

Rollback

fallback

rollback

failure

success

failure rollback

fallback

Verify Campaign

failure

success

Commit Rollback

An Upgrade Step
is composed of a
series of actions

Verify upgrade step;
partial checks shall be
interleaved with actions
within the step

Call back registered users
to backup their data/state,
start logs, create a
cluster-wide backup

Notify registered users
that an upgrade is about
to start to obtain their
consent, check prerequisites

Verify the upgrade
procedure if its
entire scope is in
the expected state

Check cluster-wide
consistency, if it's safe
to leave the system in
this state; requires
application level verifications
over some time and wait for
admin confirmation

Remove history, backups, etc.
notify users and stop logs.

Restore
backed
up state

Notify users,
stop history,
remove duplicates...

no more procedures

Restore original
configuration by
reverting procedures
step by step
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.1 35

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
Assume a configured entity of the deployment configuration that needs to be
upgraded. This entity must refer to the versioned entity type it instantiates. To
upgrade this entity to a new version of its type, the new version must be delivered
first. After the upgrade, the configured entity needs to point to this new version, which
is the desired configuration. This transition is performed as part of an upgrade cam-
paign when the Software Management Framework has completed all the necessary
actions that allow the entity to be instantiated from the new version. These actions
are performed in an upgrade step (execute upgrade step). An upgrade step
may transition a single entity or a set of them (Section 3.3.2) to their new configura-
tion.

In order to maintain availability, an upgrade campaign typically does not migrate all
entities of a given type simultaneously; instead, the actions that are necessary to per-
form the migration are structured and organized into upgrade steps and procedures
to distribute them in time in a synchronized way, so that service availability can be
maintained by the system. An upgrade procedure iterates the same upgrade step
over sets of similar software entities (Section 3.3.3). An upgrade campaign may
define one or more upgrade procedures (Section 3.3.1).

The actions are continuously verified (verify step). Besides the step level, addi-
tional verification may be performed at the procedure and campaign levels (see
Section 4.1).

If the verification of an upgrade step fails, it may be retried after undoing the actions
of the failed step (Section 4.2.2.2). If retry is not possible, or a procedure verification
fails, the campaign should roll back all the way to the start (complete rollback),
as described in Section 4.2.2.3. In some cases, the rollback is not possible, for
instance, when the system is in an unknown faulty state, or when the rollback
requires more time than it is available in the current maintenance window. In such
cases, a fallback is triggered (Section 4.2.2.4) to restore the state saved during the
backup operation. A fallback may also be triggered if a failure occurred during roll-
back. In most of these cases, the Software Management Framework suspends the
campaign when the fault is detected and the administrator has to decide how to pro-
ceed.

Once all the upgrade procedures are completed, the entire system is checked for
consistency. This check may also involve application level verification. If it is deter-
mined that the system is in a consistent operational state, the upgrade campaign is
committed and wrapped up (commit campaign). These actions include freeing
some or all of the resources (for instance, history, logging) that were used during the
upgrade campaign.
36 SAI-AIS-SMF-A.01.02 Section 3.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
If the final verification fails, the initial system configuration needs to be restored by
rollback, if possible, or by a fallback.

The Software Management Framework does not make the decision about the suc-
cess of the campaign automatically. The administrator is expected to commit the
campaign after checking the information presented by the Software Management
Framework, and possibly after performing some manual verifications.

3.3.1.1 Upgrade Campaign Model

An upgrade campaign is specified and provided to the Software Management Frame-
work as an XML file, which is discussed in details in Chapter 6. The schema for the
upgrade campaign specification file is contained in [9].

The upgrade campaign specification file is provided by the administrator as an input
parameter at the creation of an campaign object in the information model. This cam-
paign object is used as the target object for administrative operations controlling the
campaign execution.

From the upgrade campaign specification file, the Software Management Framework
completes the upgrade campaign model in the information model, allowing an admin-
istrator to also monitor the status of the execution. For the upgrade campaign model,
refer to FIGURE 9 in Section 10.4.1.

As discussed in Section 3.3.1, an upgrade campaign is staged in a set of upgrade
procedures, each of which is executed as a sequence of upgrade steps.

3.3.1.1.1 Upgrade Campaign Object Class

The upgrade campaign is a configuration object class. An upgrade campaign object
must be configured before the campaign can be executed. The upgrade campaign
object includes an attribute which specifies the associated upgrade campaign XML
file.

The upgrade campaign XML file completely specifies the process of migration of a
live system from one deployment configuration to another desired one. The upgrade
campaign is composed of an ordered set of upgrade procedures, which are repre-
sented as children of the upgrade campaign object.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.1.1 37

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
An upgrade campaign is named (see upgradeCampaign element in Chapter 6), and
its RDN has the format:

safSmfCampaign=<name>

Typically, an upgrade campaign can be applied to a system only once successfully. It
may also be tied to a given deployment configuration that it should upgrade to the
desired one; therefore, it typically cannot be applied if the deployment configuration
has changed.

The administrative control of an upgrade is applied to the campaign object, which is a
configuration object of the SaSmfCampaign class with a single configuration
attribute, the location of the upgrade campaign specification file in form of a URI.

The information model object (see FIGURE 10 in Section 10.4.2) reflects the state of
the upgrade campaign according to the state model described in Section 5.3 and
other significant information about the campaign, such as the time stamp of the IMM
content (see Prerequisite 5. on page 53) to which the campaign is relevant, the
expected and elapsed execution time (see Section 3.4.2), and any additional informa-
tion on detected errors.

3.3.1.1.2 Upgrade Procedure Object Class

An upgrade procedure applies the same upgrade step over a set of typically identical
groups of entities according to a selected upgrade method. The upgrade method
determines the number of upgrade steps, the sequence of their execution, and possi-
bly other constraints that need to be observed during the execution.

Within a campaign, each procedure is named (see upgradeProcedure element in
Section 6.4) and represented by a procedure runtime object of the class
SaSmfProcedure in the information model (see FIGURE 10 in Section 10.4.2). The
format of the upgrade procedure RDN is:

safSmfProcedure=<name>

Depending on their execution level, upgrade procedures may be executed simulta-
neously. Those of different execution levels must be executed sequentially in the
order determined by the execution level, starting with the lowest execution level.

An important attribute of the upgrade procedure is the service outage (see
Section 3.3.4) it is allowed to introduce during execution. This acceptable service out-
age is expressed as service instances that may be disrupted (become unassigned)
for the time of the execution of the upgrade procedure. The service outage is taken
38 SAI-AIS-SMF-A.01.02 Section 3.3.1.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
into account when the upgrade campaign is initiated. Once the execution has started,
it is not guaranteed that the actual service outage will not exceed this acceptable
level.

The information model object also reflects the current state of each procedure in the
campaign according to the state model (see Section 5.1.9).

3.3.1.1.3 Upgrade Step Object Class

An upgrade step is a sequence of actions that logically belong together and that are
applied to a group of software entities to migrate some or all of them from their cur-
rent configuration to their intended configuration. An upgrade step may also add new
entities to the configuration or remove some entities.

Such a change is typically achieved by deactivating the current set of entities and
reactivating the same or a modified set of entities at the end of the upgrade step.
Hence, the two sets are referred to as deactivation and activation units and repre-
sent the most important attributes of the upgrade step object.

The Software Management Framework generates an RDN for each upgrade step in
the format of

safSmfStep=<integer>

These objects are runtime objects of the SaSmfStep object class (see FIGURE 10 in
Section 10.4.2). In addition to the mentioned attributes, they reflect the state accord-
ing to the state model of Section 5.1.

3.3.2 Upgrade Step

An upgrade step is a sequence of actions, each of which is carried out on a set of
software entities. These actions logically belong together, as they are necessary to
migrate this group of software entities to the desired configuration.

The deactivation and activation units may specify entities that are not targeted
directly by the upgrade. This is because some actions of the upgrade step may affect
the behavior and availability of entities that are not being upgraded. To manage the
availability of these affected entities, they also must be included in the deactivation or
activation units as necessary.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.1.1.3 39

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
3.3.2.1 Deactivation Unit

To perform an upgrade step without service disruption, the affected software entities
need to be taken out of service. The collection of these entities is called the upgrade
step’s deactivation unit (see FIGURE 11 in Section 10.4.3).

By definition, the actions of an offline uninstallation and an offline installation (see
Section 3.2.3) of a software bundle impact some software entities in the system. The
minimum scope of this disturbance is given as an attribute of the software bundle
descriptor (see Section 7.1.1.2) for each of the operations. When designing the cam-
paign, these minimum scopes and the target system's characteristics need to be
taken into account to determine the set of entities that needs to be deactivated during
the upgrade step.

The Software Management Framework deactivates the entities within the deactiva-
tion unit by executing the appropriate administrative operations: It first locks each
entity listed in the deactivation unit and then terminates them. Therefore, the deacti-
vation unit must list all the entities on which these operations need to be issued. The
current document considers only AMF administrative operations: lock, for taking AMF
entities out of service and lock-instantiation, for terminating them.

After terminating the entities of the deactivation unit, the offline uninstallation and
offline installation operations shall be carried out. Each software bundle that is
removed from a set of nodes by the upgrade step is represented by a runtime object
of the class SaSmfImageNodes (see FIGURE 11 in Section 10.4.3). Software bun-
dles that are installed by the step are presented as objects of the same type but
appended to the activation unit information model object.

The campaign designer must consider all actions of the upgrade step when the deac-
tivation unit is specified. In particular, the deactivation unit must be at least the union
set of the impacted entities. Some other considerations are also necessary, such as
the available set of AMF administrative operations. For instance, a component cannot
be deactivated on its own by acting on it directly, but only by deactivating the enclos-
ing service unit. If components of different service units need to be deactivated, all
the enclosing service units need to be deactivated; thus, it may happen that in some
cases the deactivation of the entire AMF node is more feasible than the deactivation
of single service units located on the node.

The deactivation unit may be empty, in which case the upgrade step shall not impact
the behavior of any of the entities in the system (at a minimum, no offline package
handling operation is required), or the impacted entities do not provide directly or indi-
40 SAI-AIS-SMF-A.01.02 Section 3.3.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
rectly highly available services, that is, none of the directly or indirectly impacted enti-
ties are managed by the Availability Management Framework.

3.3.2.2 Activation Unit

At the end of the upgrade step, some or all of the deactivated entities and the newly
added software entities need to be activated or reactivated. The collection of software
entities that are put back into service is called the upgrade step’s activation unit (see
FIGURE 11 in Section 10.4.3).

Before this activation or reactivation may happen, all the software installations must
be completed for the entities of the activation unit. Each software bundle that is
installed on a set of nodes by the upgrade step is represented by a runtime object of
the SaSmfImageNodes object class (see FIGURE 11 in Section 10.4.3). Also all the
information model updates must be applied to reflect the desired configuration for all
entities in the activation unit.

For those software entities within the activation unit that have a configuration attribute
to indicate the maintenance status of the entity by containing the DN of any ongoing
maintenance campaign impacting the entity, and that are being upgraded by the
upgrade step, the Software Management Framework must set this attribute to the DN
of the upgrade campaign object. If an entity does not have such an attribute, the
attribute must be set for the closest encapsulating entity as applicable. For example,
the B.03.01 release of the Availability Management Framework specification defines
such an attribute only for service units (saAmfSUMaintenanceCampaign). This
attribute must be set by the Software Management Framework to the upgrade cam-
paign DN for a particular service unit if any of the following apply:

• the service unit itself is being upgraded by the upgrade step;
• any component within the service unit is targeted by the upgrade step; or
• the AMF node hosting the service unit is specified as the target of the upgrade

step.

The Software Management Framework activates the entities within the activation unit
by executing the appropriate administrative operations. Typically, it first issues an
instantiation operation for all the entities in the activation unit and then unlocks them
to put them back into service. The activation unit must list all the entities on which
these operations need to be issued. For AMF entities, these operations are the
unlock-instantiation and the unlock administrative operations respectively.

To guarantee controlled activation, entities newly added by the upgrade step must be
added in a deactivated state. For AMF entities with administrative state, this means
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.2.2 41

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
that the initial administrative state needs to be locked, which needs to be taken into
account at the specification of the appropriate IMM create operation.

The activation unit may be left empty if the campaign only intends to remove certain
entities from the configuration.

Finally, the activation unit is equivalent to the deactivation unit when only existing
entities are upgraded, no entities are removed from the system, or added to it. Such
an activation unit is termed a symmetric activation unit.

If the upgrade of entities in a symmetric activation unit requires neither offline unin-
stallation nor offline installation (and therefore no lock and unlock operations), the
campaign specification may merge the termination and the instantiation operations
into a restart operation, if it is available for the symmetric activation unit.

3.3.2.3 Actions of the Upgrade Step

The current document defines the following ordered set of standard actions for an
upgrade step.

1. Online installation of new software
2. Lock deactivation unit
3. Terminate deactivation unit
4. Offline uninstallation of old software
5. Modify information model and set maintenance status
6. Offline installation of new software
7. Instantiate activation unit
8. Unlock activation unit
9. Online uninstallation of old software

Alternatively, for restartable entities, a reduced set of actions is defined:

1. Online installation of new software
2. Modify information model and set maintenance status
3. Restart symmetric activation unit
4. Online uninstallation of old software

To maintain availability, the actions set in bold must be performed within the upgrade
step. Note that the activation unit or the deactivation unit may be empty.
42 SAI-AIS-SMF-A.01.02 Section 3.3.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The old and new software are the sets of software bundles that need to be uninstalled
and installed respectively. For each bundle, it is identified on which nodes these oper-
ations need to be performed.

The online installation of the new software (first action) may be performed in advance,
in which case the first action—if performed within the step—acts as a verification of
that installation.

The online uninstallation may be delayed for as long as required. To shorten recovery
time in case of failure, it may be desirable to postpone the online uninstallation until
the entire upgrade campaign has completed successfully.

3.3.3 Upgrade Procedure

An upgrade procedure applies the same upgrade step over a set of typically identi-
cal deactivation-activation unit pairs according to some constraints defined by an
upgrade method.

3.3.3.1 Upgrade Scope

The composite set of deactivation units defines the deactivation scope of the
upgrade procedure. The composite set of activation units defines the activation
scope. The upgrade scope is the union of the activation and the deactivation
scopes. The scope of symmetric activation units that belong to the same AMF parent
entity, such as a service group or the cluster, is referred to as symmetric upgrade
scope.

Entities within the upgrade scope usually have tighter dependency than those outside
of the scope. For example, entities in the upgrade scope participate in the same
redundancy schema and protect the same services.

3.3.3.2 Upgrade Method

The dependency among the software entities within the upgrade scope and the tar-
geted service availability together determine the upgrade method appropriate for the
upgrade procedure.

The upgrade method defines the constraints that must be observed when the
upgrade steps are combined into a procedure; these constraints can be, for instance,
the number of iterations, if any, and the ordering in which the upgrade steps are car-
ried out. A particular upgrade method may define different sets of actions for its differ-
ent upgrade steps.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.3 43

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
This document defines the following upgrade methods:

• rolling upgrade and
• single-step upgrade.

3.3.3.2.1 Rolling Upgrade

The rolling upgrade iterates the same upgrade step (the same set of actions as
defined in Section 3.3.2.3) over a set of similar deactivation-activation unit pairs one
by one until the entire upgrade scope is covered.

The main advantage of the rolling upgrade is that it takes out of service one deactiva-
tion unit at a time for upgrade while the rest of the system is providing the service.

By selecting the deactivation and activation units in accordance with the redundancy
model, the rolling upgrade ensures that there will be no service outage, or it will be
limited to the outage caused by a single deactivation unit during the execution of the
upgrade procedure (provided that failures do not reduce the number of redundant
entities).

The limitation of this method is that entities of different versions of the base entity type
coexist within the system without any restrictions; therefore, they must be able to col-
laborate for high-availability purposes. For example, they may need to act as peer
entities within the same redundancy schema protecting the same service, which may
require them to exchange state information.

Provided that the required availability of services can be maintained, some optimiza-
tion of a rolling upgrade procedure may be possible by executing multiple upgrade
steps concurrently. However, by default, such an optimization is not permitted. If such
optimization is desirable, it needs to be enabled in the upgrade campaign specifica-
tion by setting the appropriate attribute of each upgrade procedure for which it is
applicable. The implementation of this optimization feature is optional.

3.3.3.2.2 Single-Step Upgrade

A single-step upgrade means that the upgrade scope is not divided into multiple
deactivation activation unit pairs. There is only one such pair. The upgrade step is
applied to all software entities in the upgrade scope simultaneously by taking out of
service the entire deactivation unit at the beginning of the step and then re-activating
the entire activation unit after the completion of the upgrade step.

Since the upgrade is carried out simultaneously on all software entities of the upgrade
scope, none of them can provide service during this operation. This causes service
44 SAI-AIS-SMF-A.01.02 Section 3.3.3.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
outage for all service instances that rely exclusively on the entities involved in such
an upgrade.

The advantage or the reason why this method is still applied is that it eliminates the
compatibility issues among the entities of the upgrade scope. This is also the sim-
plest upgrade method to implement. It is appropriate for entities that are not providing
services any more and need to be removed from the deployment configuration or for
new entities that need to be added to the deployment configuration.

In certain cases—after a failure—single-step upgrade may be the only applicable
method.

3.3.3.3 Procedure Execution Level

Dependencies between scopes, such as, for example, compatibility requirements,
may impose a certain ordering of the upgrade procedures. To facilitate such ordering,
each upgrade procedure has an assigned execution level. Procedures of the same
execution level may be executed in parallel. A procedure with a higher execution
level cannot be started before all procedures of the lower execution level have been
successfully completed.

Thus, an upgrade campaign can be defined as an ordered set of upgrade proce-
dures. The scope of any of these procedures may have dependency only on scopes
of procedures that are upgraded earlier in the same campaign.

3.3.4 Service Outage

From an availability perspective, the most important concern of upgrades is whether
all the services of the cluster can be provided or not during the campaign.

To protect against failures, AMF applications deploy redundancy, which may also be
used during upgrade operations by upgrading these redundant entities in a sequence
(for example, as described in Section 3.3.3.2.1), so there is always some entities that
provide the services. Obviously, deactivating some software entities during the
upgrade may reduce the capacity of the system; however, the services can still be
provided. Such a reduction in the capacity is referred to as service degradation.

It may also happen that some of the services cannot be provided at all during the
upgrade; this interruption of services is referred to as service outage. Software enti-
ties that are not deployed in redundancy cannot be upgraded without service outage.
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.3.3.3 45

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
With respect to service outage, this document considers only AMF entities. There-
fore, the service outage is defined as the list of service instances that cannot be pro-
vided during the upgrade (that is, their assignment state becomes unassigned).

For each procedure of the upgrade campaign, a minimum service outage can be
calculated by matching its deactivation units against the deployment configuration in
which all service instances are fully-assigned and there are no disabled entities. This
is the service outage that is unavoidable for the given upgrade procedure. Based on
this, an acceptable service outage is defined for each upgrade procedure. The
acceptable service outage must be at least the minimum service outage to be able to
satisfy the campaign prerequisites at least under ideal conditions. The acceptable
service outage may allow for further unassigned service instances.

The difference between the minimum service outage and the acceptable service out-
age signifies the importance or the urgency of an upgrade campaign. Ultimately, an
upgrade may allow for all service instances to be unassigned. Such an essential
upgrade could be one that increases system security or fixes bugs, and so prevents
further service degradations and outages.

The acceptable service outage attribute of an upgrade procedure is used before initi-
ating an upgrade campaign: Similarly, as at the calculation of the minimum service
outage, the deactivation units are matched against the actual deployment configura-
tion with the actual assignment state of the service instances at the time the upgrade
campaign is about to start. This gives the expected runtime outage that must not
exceed the acceptable service outage of the procedure. If it does, the campaign can-
not start.

Note that once the campaign has started, as it unfolds, the service outage may
exceed the acceptable service outage, but this fact will not terminate the campaign.

3.4 Upgrade Periods

3.4.1 Upgrade Procedure Period

For each upgrade procedure, a time estimate is defined within which the procedure is
expected to complete. It is called the upgrade procedure period (). This time esti-
mate should allow for the completion of the upgrade procedure itself () and for the
verification of the upgrade scope (). Accordingly, the upgrade procedure period is

. (EQ 1)

τ
pτ

vτ

vp τττ +=
46 SAI-AIS-SMF-A.01.02 Section 3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
The upgrade procedure period helps to estimate the length of the expected service
outage caused by the procedure; it is also used to estimate the upgrade campaign
period.

3.4.2 Upgrade Campaign Period

For each upgrade campaign, and based on the upgrade procedure period and the
sequencing of the procedures, a time estimate can be calculated within which the
campaign is expected to complete. It is called the upgrade campaign period (T).

This time estimate consists of the addition of three time durations:

• Time for the completion of the upgrade campaign itself (Tc). The time necessary
for the completion of the upgrade campaign depends on the periods of the indi-
vidual upgrade procedures and their sequencing. The upper limit is:

, (EQ 2)

where n is the number of procedures in the campaign and is the period of the
ith procedure.

• Time for the verification of the system (Tv) after the completion of the campaign.
Note that the verification of the individual scopes is included in the upgrade pro-
cedure period. This is an additional time that shall allow cross-system verifica-
tion and that may include even an observation period.

• Slack time (Ts)—optional buffer period.

Accordingly, the upgrade campaign period is

T = Tc + Tv + Ts. (EQ 3)

The upgrade campaign period is used

• to schedule a proper maintenance window (T<Tw) for the planned upgrade cam-
paign,

• in comparison with the elapsed time to estimate the time remaining until the
completion of the upgrade campaign, and

• in case of failure to determine whether a rollback or a fallback is more appropri-
ate.

Since the rollback procedure is typically symmetric to the upgrade campaign itself, it
is assumed that it will take as much time to roll the system back from its current con-

∑
=

=
n

i
icT

0

τ

∑ iτ
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.4.2 47

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
figuration to the one at the beginning of the campaign as it took for the campaign to
reach the current configuration. At the end of the rollback, the system also needs to
be verified; therefore, the time needed for verification must be accounted for. This
means that if the failure occurs at the moment t (elapsed time) of the upgrade cam-
paign, it is expected that it will take t+Tv to rollback the campaign and verify the roll-
back. Thus, the duration of the entire operation will be 2 x t + Tv. If the maintenance
window does not permit this duration, system fallback could be considered a faster
way to bring the system back into an operational state1.

3.5 Upgrade-Aware Entities

For applications that require application-level actions associated with an upgrade
campaign, an API is exported by the Software Management Framework: the Software
Management Framework API allows client processes to register their interest in being
informed about upgrade campaigns initiated by the Software Management Frame-
work and about their progress. The Software Management Framework informs regis-
tered client processes about the progress by invoking the appropriate callback; these
registered processes can in turn synchronize application-level actions with the
upgrade campaign. The registered processes report the result of these application-
level actions with a response. The Software Management Framework uses these
responses in its decisions about the course and the outcome of the upgrade cam-
paign.

This API interface is described in detail in Chapter 8; it is expected to be used by
management entities within an application that are capable of interpreting such call-
backs and coordinate application-level actions accordingly. These entities are
referred to as upgrade-aware entities.

If an upgrade-aware entity initializes the Software Management Framework interface
while an upgrade is already in progress, and one of its process registers a callback
with the Framework, the Framework only invokes subsequent callbacks.

3.6 Typical Software Management Information Flow
FIGURE 4 shows the typical flow of information for software upgrades.

When a software vendor provides a new software bundle, an entity types file describ-
ing the content of the software bundle shall be supplied with the bundle. The format of
the entity types file must follow the XML schema described in Chapter 7.

1. The fallback time is typically expected to be similar to the system startup time.
48 SAI-AIS-SMF-A.01.02 Section 3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description and System Model

1

5

10

15

20

25

30

35

40
This entity types file is expected to be processed by some tool—referred to in the fig-
ure as Campaign Builder—which is used by the site designer or integrator to gener-
ate an upgrade campaign specification.

Besides the entity types file, the Campaign Builder will need additional input:

• Information about the current configuration of the SA Forum system to be
upgraded. This configuration shall be obtained from the Information Model Man-
agement Service. The format of this information is standardized by the IMM
specification [4].

• Other input specific to the site and to the Campaign Builder tool, such as perfor-
mance expectations, non-SA Forum-related application characteristics, and so
on. This portion of the input information is not standardized by the SA Forum in
any way.

FIGURE 4 Typical Software Management Information Flow for an Upgrade

IMM
Campaign

Builder

SW
Bundle

IMM XML

Software
Repository

From the
Vendor

Software
Management
Framework

Upgrade Campaign
Specification (XML)

Configuration + Migration process

Other
Input

Initial Configuration

Current Configuration

(Un)Install
CLI command

Add to/
Remove from
Repository

Entity Types
File (XML)

OM-API
AIS Specification SAI-AIS-SMF-A.01.02 Section 3.6 49

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
System Description and System Model
For a running system, the Campaign Builder shall generate an upgrade campaign
specification file in XML according to the XML schema provided in Chapter 6. Such
an upgrade campaign specification file contains information about the new configura-
tion of the SA Forum system and the process that shall be followed to migrate the
cluster to this new configuration.

The upgrade campaign specification file is provided as an input to the Software Man-
agement Framework. To be able to execute the upgrade campaign, the software bun-
dle must also be delivered to the system’s software repository. This delivery is
performed in an implementation-specific way, as image management is out of the
scope of the current release.

Once the software bundle has been delivered to the software repository, and the
upgrade campaign specification has been provided to the Software Management
Framework, the administrator may initiate the execution of the upgrade campaign
using the SMF administrative API.

As part of the initialization of the upgrade campaign, the Software Management
Framework must update the software catalog based on the information provided in
the campaign specification. This means that it creates or verifies the software bundle
and all the entity type objects in the information model. Currently, it is not specified
how the presence of a software bundle in the software repository is verified against
the software bundle information model object.

During the execution of the campaign, the Software Management Framework will
update the upgrade campaign model in IMM to reflect the status of the execution. It
will also interact with the Availability Management Framework and other SA Forum
Services as specified in the upgrade campaign specification. Particularly, it will use
the installation and uninstallation CLI commands specified by the software bundle
object to install the software bundle to target locations and to remove the software
bundle from target locations.

FIGURE 4 also shows that such a Campaign Builder tool can be used to generate an
initial configuration for an SA Forum system. However, in this case, the initial configu-
ration is specified in the format required by the Information Model Management Ser-
vice, which shall use it to create the internal representation of the system’s initial
information model. SA Forum Services must obtain their respective configuration
from the Information Model Management Service directly in this scenario. This sce-
nario also assumes that all the necessary software bundles are available in the soft-
ware repository and have been installed on the target locations within the cluster.
50 SAI-AIS-SMF-A.01.02 Section 3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
4 Failure Detection and Failure Handling

4.1 Failure Detection
As an upgrade campaign unfolds, its actions need to be verified continuously, so that,
if an error is detected, corrective actions may take place as soon as possible.

The Software Management Framework verifies initially whether it is feasible to initiate
an upgrade campaign at the given moment in the given state of the system, that is,
the campaign prerequisites are checked.

Subsequent verifications are done as follows.

• The Software Management Framework must evaluate the result of each individ-
ual action performed, such as the success or failure of a CLI operation during an
upgrade step.

• The Software Management Framework must evaluate the results reported back
by registered processes of upgrade-aware entities. These are processes that
register with the Software Management Framework to be called back during the
upgrade campaign under certain circumstances (see Section 6.1.1.4).

• The Software Management Framework must monitor the operational state
change notifications generated by the Availability Management Framework that
indicate that the disabled entity was involved in a maintenance campaign (see
Section 3.3.2.2).

• The Software Management Framework may monitor other notifications and
alarms in the system to correlate them with the actions performed by the cam-
paign.

Prerequisites are checked only once at the initiation of the upgrade campaign. All
other type of verifications are performed regardless of whether the upgrade campaign
is in its forward (upgrade) path or it is in a rollback (recovery) path.

The following subsections mainly contains recommendations on the inputs that shall
be used for verification. The exact decision mechanism using these and possibly
other inputs is implementation-specific.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 4 51

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
4.1.1 Upgrade Prerequisites

Before an upgrade campaign starts, the following prerequisites must be checked at a
minimum.

1. The Software Management Framework is operational.
2. The software repository is accessible.
3. There is no other upgrade campaign in progress.
4. The currently running version of the software is available in the software reposi-

tory.
5. The specifics of the upgrade campaign have been provided, and the campaign is

still applicable.
6. The desired version of the software is available in the software repository, and all

the dependencies of the required packages have been checked and are satis-
fied.

7. All affected nodes are able to provide the resources (for instance, sufficient disk
space and proper access rights) needed to perform the upgrade campaign.

8. The Software Management Framework is able to obtain the administrative own-
ership for all necessary information model objects.

9. The target system is in a state such that the expected service outage does not
exceed the acceptable service outage defined for the campaign.

10.Upgrade-aware entities are ready for an upgrade campaign.
11. Any necessary backup is created.

If any of these checks fails, the upgrade campaign must not start. If the upgrade cam-
paign has been initiated, it must terminate immediately. Note that after the correction
of the failed prerequisite, the campaign may be re-attempted.

Prerequisites 1. and 2.

Prerequisites 1. and 2. are verified in an implementation-specific way.

Prerequisite 3.

Prerequisite 3. is verified based on the Software Management Framework Informa-
tion Model by checking that no upgrade campaign object shows the campaign in a
state that is not an initial or a final state according to the state model (see
Section 5.3).
52 SAI-AIS-SMF-A.01.02 Section 4.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
Prerequisite 4.

Prerequisite 4. is partially verified based on the Software Management Framework
Information Model by checking that all the configured entities refer to versioned entity
types that have their software bundle objects in the software catalog. The actual
images associated with the software bundles are checked in an implementation-spe-
cific way.

Prerequisite 5.

An upgrade campaign is specified in the upgrade campaign specification file (see
Chapter 6) provided to the Software Management Framework. The Software Man-
agement Framework in turn checks the correctness of the XML file and whether the
campaign is still applicable. An upgrade campaign is applicable as long as the time
stamp referring to the deployment configuration based on which this upgrade cam-
paign was created is not older than the time stamp associated with the current
deployment configuration (see Section 6.2.2). If no time stamp is given in the cam-
paign specification, the campaign specification is applicable at any time.

If the verification of this prerequisite is successful, the Software Management Frame-
work is allowed to create the upgrade campaign model based on the provided
upgrade campaign specification file.

Note that the verification of this prerequisite may need to be performed in several
stages to take into consideration that (a) the administrative action of adding the
upgrade campaign object to the information model changes the time stamp associ-
ated with the current deployment configuration and that (b) there might be a time gap
between the addition of the upgrade campaign object to the information model and
the actual execution of the upgrade campaign represented by the upgrade campaign
object.

Prerequisite 6.

The upgrade campaign specification file indicates the software bundles that are nec-
essary for the execution of the campaign. The Software Management Framework
must verify that these bundles are already in the software catalog of the Software
Management Framework Information Model. The actual images associated with the
software bundles are checked in an implementation-specific way.

If the software bundles are not in the catalog yet, the Software Management Frame-
work shall check in an implementation-specific manner that these bundles have been
added to the software repository, and, if this is the case, the Software Management
Framework adds the corresponding objects to the software catalog.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.1.1 53

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
Prerequisite 7.

Prerequisite 7. shall be verified in an implementation-specific way.

Prerequisite 8.

As part of the verification of prerequisite 8., the Software Management Framework
shall obtain (using the IMM OM-API) the administrative ownership for at least the
information model objects that represent entities

• listed in any of the deactivation or symmetric activation units of any upgrade pro-
cedures within the upgrade campaign and

• targeted by any actions of the upgrade campaign, namely, by actions specifying
administrative operations or information model changes.

Prerequisite 9.

Prerequisite 9. is verified by projecting the deactivation units of the different proce-
dures onto the current state of the AMF cluster and by determining whether they
would cause a service outage that is still acceptable, as indicated for each procedure
in the upgrade campaign specification (see also Section 3.3.4 and Section 6.4.1).
This document does not define any further how this comparison is carried out.

Prerequisite 10.

Prerequisite 10. is verified using callbacks to registered processes of upgrade-aware
entities. When such a process receives a callback at campaign initiation, it shall
respond whether it is ready for the start of an upgrade campaign. This means that the
registered process is currently not involved in any activity that may be jeopardized by
an upgrade campaign (for example, its activity could be affected by the reduced
redundancy during the upgrade), or that it would not jeopardize the success of the
upgrade campaign.

The upgrade campaign specification explicitly distinguishes such callbacks (see
Section 6.3.3.2.1) from other custom callbacks. It is up to the upgrade campaign
developer to determine the need of this verification. The registered process must be
able to evaluate the conditions under which the upgrade campaign shall be rejected
and communicate the result to the Software Management Framework.

Prerequisite 11.

Prerequisite 11. requires the successful creation of a backup at system-level and, if
necessary, at application-level.
The creation of the system backup is implementation-specific; however, it needs to be
aligned with requirements stated in Section 4.2.1.4.
54 SAI-AIS-SMF-A.01.02 Section 4.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
The Software Management Framework requests the creation of the application-level
backup by invoking the appropriate callbacks of registered processes. The callback
parameters are defined in the upgrade campaign specification (see
Section 6.3.3.2.2). The registered processes shall indicate in a response the result of
the operation. These responses and the success of the system backup are evaluated
to determine if the campaign may start.

4.1.2 Upgrade Step Verification

During an upgrade campaign, two types of actions are carried out.

• Actions that return their result immediately (for instance, CLI commands for the
installation), and this result is directly applicable to the upgrade step within which
it is performed (see Section 4.1.5). The Software Management Framework can
use this return value immediately to decide about the outcome of the upgrade
step.

• Actions that do not return their result immediately. The Software Management
Framework needs to rely on the error reports propagated by the Notification Ser-
vice. These notifications and alarms may occur with some delay; therefore, the
failures they report are referred to as asynchronous failures and are handled at
the campaign level, as described in Section 4.2.1.3.

Application-level verification is performed by the registered processes of upgrade-
aware entities. Upon a callback, these processes perform the actions identified by the
callback parameters (see Section 6.1.1.4), and they shall report in a response to the
Software Management Framework any failure they detect. The Software Manage-
ment Framework uses these responses to determine how the campaign shall pro-
ceed (see Section 8.5.2). Note that a failure detected at the application level may be
caused by an entity other than those affected by the current upgrade step; however, if
a failure is reported in response to a callback during the step, the Software Manage-
ment Framework interprets it as a failure of the upgrade step. Also, if a registered
process fails to respond within the time limit specified for the callback in the campaign
specification, this timeout does not cause the upgrade step or the upgrade campaign
to fail. This approach was taken because the upgrade-awareness is not a basic
requirement for software upgrades. The timeout value is given merely to provide
some time for application level processes to perform their actions and respond,
before the upgrade step is considered completed by the Software Management
Framework.

The upgrade step is considered to be completed successfully after all actions are
completed successfully, and the Software Management Framework has received the
acknowledgement of the success from the registered processes of upgrade-aware
entities that were called back in the given step, or the callbacks timed out.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.1.2 55

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
If any part of the step verification fails, the failure handling takes over as described in
Section 4.2.2.

4.1.3 Upgrade Procedure Verification

Once the upgrade procedure is completed, its entire scope needs to be verified.

To wrap up a procedure, the upgrade campaign specification described in Chapter 6
allows for the specification of verification actions at the end of each procedure in
accordance with Section 6.1.1. The procedure verification may include the execution
of CLI commands, administrative operations, IMM operations, application-level verifi-
cation using the upgrade API, or a combination of these actions.

If any part of the procedure verification fails, the upgrade failure handling takes over
as described in Section 4.2.2.

It is recommended that upgrade procedures are designed so that any potential failure
will manifest as soon as possible in the system. For example, in case of a rolling
upgrade in two steps, it is desirable that the upgraded entities of the first step receive
an active assignment before the entities of the second step are upgraded. This way, if
an upgraded entity of the first step fails, only entities of the first activation unit need to
be repaired by rolling back. Entities of the second activation unit remain intact and
can provide service.

4.1.4 Upgrade Campaign Verification

Once the last upgrade procedure is completed, the Software Management Frame-
work must verify that the entire system is operational and no further actions are nec-
essary. Since the verification of the individual upgrade procedures cannot guarantee
that all the upgraded entities are fully capable of operating and providing their ser-
vices integrated into their runtime environment, this verification action is essential for
the proper completion of the upgrade campaign. This system-wide verification is nec-
essary even if the campaign failed and was rolled back.

As part of the campaign verification, the upgrade campaign specification (see
Chapter 6) allows for the specification of verification actions. These actions may
include the execution of CLI commands, administrative operations, IMM operations,
application-level verification using the upgrade API, or a combination of these
actions. These verification actions must be performed before the campaign may be
committed (see Section 6.5.1).

Due to the delay in the manifestation of some errors, an observation period may also
be specified. If specified, the upgrade campaign may not be committed before the
expiration of this timer.
56 SAI-AIS-SMF-A.01.02 Section 4.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
After all the verification actions have succeeded, the timer for the observation period
has expired (if specified), and no error has been detected, the campaign may be
committed. The success of the upgrade campaign or its rollback must always be con-
firmed by an administrator by issuing the commit administrative operation (see
Section 9.3.2).

If the upgrade campaign has been committed, the Software Management Framework
proceeds with the remaining wrap-up actions specified for the upgrade campaign
(see Section 6.5.2). The results of these actions do not impact the outcome of the
campaign any more. These actions may include execution of CLI commands, admin-
istrative operations, IMM operations, application-level verification using the upgrade
API, or a combination of these actions. As part of the wrap-up actions, the Software
Management Framework must reset the maintenance status of all entities for which it
has been set during the campaign.

The upgrade campaign specification may also specify a second timer that ensures
that an administrator triggered system fallback operation (see Section 4.2.2.4) can
still recover the system state stored in the backup at the beginning of the campaign.

If the upgrade is deemed to have failed, the Software Management Framework com-
mences with the recovery action ordered by the administrator as described in
Section 4.2.2.

4.1.5 Exit Status

The valid range for the exit status for any CLI command initiated by the Software
Management Framework is

0 <= exit status <= 255.

CLIs have a zero exit status in case of success, non-zero in case of failure. Values in
the range

200 <= exit status <= 254

have either predefined meanings or are reserved for future usage. The reaction of the
Software Management Framework to these errors is described as necessary in the
next sections.

4.2 Failure Handling
During the upgrade campaign, the Software Management Framework deploys some
protective measures to facilitate recovery operations as part of the upgrade failure
handling. This section first presents the protective measures taken before and during
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.1.5 57

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
an upgrade campaign and then describes how they are used in the different recovery
operations to handle different failures.

4.2.1 Protective Measures

The purpose of the different protective measures is to minimize losses due to failures
during the upgrade campaign and to speed up the system’s recovery. The mandatory
measures that must be implemented by a Software Management Framework imple-
mentation are:

• the backup and
• the upgrade history.

In addition, upgrade-aware entities may synchronize their following actions with the
upgrade campaign:

• application log used together with application-level backup and
• application checkpoint.

Appropriately, the relevant callbacks need to be specified in the upgrade campaign
specification for all interested applications, which shall register with the Software
Management Framework to receive the callbacks at the specified stages.

4.2.1.1 Backup

A system backup is a persisted image that can be used after the system was ordered
a full cold restart to restore the system to the state in which it was at the moment the
backup was created. Depending on the implementation, this requirement introduces
further requirements with respect to the content of the saved image.

This document only defines the requirements from the perspective of the Information
Model Management Service and the Availability Management Framework.

The Information Model Management Service stores the cluster configuration and all
the persistent state information; therefore, it is mandated that a copy of the IMM con-
tents is created and included in the system backup. This copy shall cover all the
needs of the Availability Management Framework to restore the state of the entities it
manages. Note, however, that a particularly AMF component has an associated soft-
ware installation that the Availability Management Framework uses to control the life
cycle of the component. Since image management is not in the scope of the current
release of Software Management Framework specification, it is left to the implemen-
tation to resolve the issue of restoring the appropriate software images that have
potentially changed during a (failed) campaign.
58 SAI-AIS-SMF-A.01.02 Section 4.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
In addition to the Availability Management Framework and Information Model Man-
agement Service, applications may have their own data that need to be saved, so
that the state of the application can be restored. Only the application itself is aware of
such a need; therefore, the Software Management Framework shall invoke a callback
to the registered processes of the application to inform them about the necessity to
create such a backup (see Section 6.3.3.2.2). It is recommended that an application
that requires the synchronization of its backup with an upgrade campaign is upgrade-
aware, and that the upgrade campaign specification specifies the necessary callback.

The backup needs to be created when the system is stable and consistent, that is, its
state is suitable to be restored in case of a fatal failure. As discussed above, the
backup must contain all the necessary information to restore this stable state even
after a cold restart. The backup image must be stored in a way that neither a system
failure nor a cold start can affect it. On the other hand, it should be easily accessible
during recovery to minimize the recovery time.

The system backup is created as part of the prerequisite checks when an upgrade
campaign is initiated. The Software Management Framework is responsible for initiat-
ing the backup at system-level and triggering the initiation of the application-level
backup through callbacks. If the backup fails, the upgrade campaign must be termi-
nated immediately.

The backup is required for the fallback recovery action; therefore, its implementation
is mandatory.

4.2.1.2 Upgrade History

During the upgrade, the Software Management Framework maintains a history of the
executed actions. This upgrade history needs to contain enough information to allow
for

1. undoing the executed actions of the current upgrade step of a procedure, and for
2. rolling back the upgrade campaign.

The executed actions need to be undone in reverse order to restore the deployment
configuration to the state that was in effect at the beginning of the upgrade step. This
restoration is expected to be possible from the current running state even after a fail-
ure. Section 4.2.2.1 describes how this information is used.

For rolling back, it is necessary to remember the current configuration information of
the entities targeted by the upgrade, as it represents the configuration information to
which the system needs to return during a rollback. Section 4.2.2.3 describes the roll-
back operation.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.1.2 59

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
The implementation of the upgrade history is mandatory, as it is required for the roll-
back recovery operation. It is also necessary to undo any partially completed upgrade
step. This document does not specify how this feature is implemented.

4.2.1.3 Detection of Asynchronous Failures of AMF Entities

For some software entities, an attribute indicating their maintenance status is speci-
fied. In particular, the Availability Management Framework defines the
saAmfSUMaintenanceCampaign configuration attribute for service units. This
attribute must be used by the Software Management Framework as follows.

The Software Management Framework must determine all the software entities that
are partially or fully upgraded by an upgrade step and set their maintenance status to
contain the current campaign name, after the IMM modification actions have been
performed. For AMF entities, this means that if a service unit is upgraded by an
upgrade step, its saAmfSUMaintenanceCampaign attribute must be set by the
Software Management Framework before the activation unit is activated. If a compo-
nent is upgraded by an upgrade step, the attribute of the enclosing service unit must
be set as if the service unit itself was upgraded.

This setting blocks any auto-repair performed on failed entities by the object imple-
menter, in particular by the Availability Management Framework. Instead of the auto-
repair, the failed entity, such as a service unit, is disabled right away when its failure is
detected, and an operational state change notification is generated by the object
implementer. This operational state change notification indicates as additional infor-
mation an infoId = SA_AMF_MAINTENANCE_CAMPAIGN_DN and its infoValue
is the DN of the upgrade campaign.

The Software Management Framework must subscribe to operational state change
notifications generated by object implementers, particularly by the Availability Man-
agement Framework; and must monitor them if an ongoing campaign is indicated as
the reason for disabling. If such an operational state change notification is received,
the Software Management Framework must interpret it as a potential failure of the
upgrade campaign and suspend the campaign execution according to Section 5.3,
Section 9.3.1, and Section 9.3.4.

It is the administrator’s responsibility to resolve the situation and decide whether the
campaign is continued, rolled back, or a fallback is performed. The administrator also
has to take all the measures appropriate to this choice. The Software Management
Framework must facilitate the administrator’s task by indicating the failed service unit
that triggered the campaign suspension in the saSmfCmpgError attribute of the
upgrade campaign object (see Section 3.3.1.1.1). It must also collect similar subse-
60 SAI-AIS-SMF-A.01.02 Section 4.2.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
quent service unit failures and update the saSmfCmpgError attribute until the
administrator issues further administrative operations. For example, if the administra-
tor decides that the failure is not the consequence of the upgrade, and the campaign
should continue, the administrator may decide to repair the failed service units to
make them available again, as the Availability Management Framework is blocked to
perform such a repair.

When the Software Management Framework receives an execute (Section 9.3.1) or
rollback (Section 9.3.4) administrative operation, it clears the saSmfCmpgError
attribute of the upgrade campaign object and assumes that the administrator was
aware of all the failures that were detected up until that moment and therefore has
taken care of them. In other words, the Software Management Framework is not
expected to perform any kind of checking, verification, or repair.

When an upgrade campaign is committed, the Software Management Framework
must reset all the maintenance status attributes that refer to the campaign being com-
mitted. Beyond this point, it cannot determine whether a failed entity was upgraded
by the campaign or not.

4.2.1.4 Handling Persistent Changes During Upgrade

An SA Forum system continues to provide its services during an upgrade campaign,
which means that some of the information saved in the backup image may become
obsolete due to changes occurring as results of the normal operation and administra-
tive actions. Thus, if the backup is restored in a fallback operation these changes are
lost.

Transaction-based applications and systems use logs to recover such changes. In
such a log, they record any change with respect to the saved backup image. If the
backup image needs to be restored, after its restoration, these logged changes are
re-applied to recover the lost state. This procedure is referred to as rollforward.

Persistent changes that occur while a system is upgraded fall into two categories:

• those that are the result of the upgrade campaign itself and
• changes due to the normal operation.

4.2.1.4.1 Changes Caused by the Upgrade

The intention of the restoration of a backed up image is to get rid of the changes that
were introduced by the upgrade, as they might have led to an inconsistent system
state. Therefore, these changes must not be logged.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.1.4 61

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
The information model maintained by the Information Model Management Service is
part of the backup image. The model is manipulated by the upgrade campaign, and
these changes must not be restored after a fallback. Therefore, this specification
does not require that the Software Management Framework or the Information Model
Management Service maintain any logs during an upgrade.

This also means that during the upgrade campaign any persistent change to the
information model that is not part of the upgrade —even if it is caused by normal
operation or administrative actions—may be lost after a fallback, as far as the Soft-
ware Management Framework or the Information Management Service are con-
cerned (see also the next section).

4.2.1.4.2 Changes Caused by Normal Operation

Changes due to normal operation that have to be recovered after a fallback need to
be recorded in a log, so they can then be used together with the backup image.

The current document does not identify any SA Forum-specific data that need to be
restored in addition to the backup image and, therefore, would require logging. Appli-
cations, however, may have such data.

Since the Software Management Framework is not aware of any persisted data
changes at the application-level, any such log needs to be maintained by the applica-
tion itself. It is also the responsibility of the application to apply these logs automati-
cally after a fallback, when the application state is restored from the backup.

If the application level backup and logging needs to be synchronized with the
progress of an upgrade campaign, the application shall utilize the Software Manage-
ment Framework API, and the upgrade campaign needs to specify the relevant call-
backs. The Software Management Framework is not required to signal the rollforward
action to upgrade-aware entities.

4.2.2 Recovery Operations

When an action within an upgrade step fails, and the Software Management Frame-
work can detect this failure immediately, the first reaction of the Software Manage-
ment Framework is to undo the effects of the already completed actions of this
upgrade step to bring the system state back into a known state, namely the state at
the beginning of the upgrade step. This recovery is done automatically. Depending on
the success of this recovery operation, the impact of the failure is contained at the
step level or needs to be widened to the campaign.
62 SAI-AIS-SMF-A.01.02 Section 4.2.1.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
If a failure is detected with some delay (e.g. asynchronously through notifications as
described in Section 4.1.2), or at a procedure or campaign verification, the failure
affects the entire campaign.

Accordingly, different recovery operations become applicable to the campaign.

In case the failure is contained at step level

• retry of the upgrade step.

In case the failure affects the campaign

• rollback of the campaign or
• system fallback

In case of a failure during rollback

• system fallback

Only the retry of an upgrade step is executed automatically by the Software Manage-
ment Framework (details are in Section 4.2.2.2). All the other recovery operations
need to be selected or confirmed by the administrator explicitly before the Software
Management Framework embarks on their execution.

4.2.2.1 Undoing an Upgrade Step

Section 3.3.2.3 presents the standard actions of an upgrade step. The Software Man-
agement Framework may encounter an error during the execution of any of these
actions. To undo such a failed step, the effects of its already executed actions need to
be reversed. This is done using the upgrade history maintained by the Software Man-
agement Framework.

The actions recorded in the history and which belong to the failed step are undone
one by one in a reverse order by executing the reversing actions of the recorded
action. The reversing actions for each of the actions of the standard upgrade step are
presented in the following table.

Note that even if the old software was not completely uninstalled during the failed
step, it is necessary to execute the installation operation to verify the installation. If
the offline uninstallation action was not empty, its reversing action should fulfill this
need. However, if the offline uninstallation action was empty, only the online installa-
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.2.1 63

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
tion operation can provide this functionality even if the online uninstallation was not
executed yet.

If undoing the step succeeds, and the retry of the failed step is permitted, the re-exe-
cution of the step is initiated automatically by the Software Management Framework
(see Section 4.2.2.2). In this case, the failure is considered to be contained.

If undoing the step succeeds, but a retry is not permitted, or the allowed number of
retry attempts has been exceeded, the impact of the failure is widened to the upgrade
procedure and to the entire campaign. An administrative intervention is required to
proceed (see Section 5.1.6).

The choices available for the administrator are:

1. correct the error that caused the failure of the step and force a retry of the failed
step (see Section 4.2.2.2),

2. initiate a rollback (see Section 4.2.2.3), or
3. initiate a system fallback (see Section 4.2.2.4).

The first option should cover error situations for which the problem can be easily fixed
by the administrator on the spot, for example, if it turns out during software installation
that there is not enough disk space at the target location. Typically, these are errors

Table 1 Reversing Actions Depending on the Upgrade Step

Upgrade Step Action Reversing Action

Online installation of new software Online uninstallation of new software

Lock deactivation unit Unlock deactivation unit

Terminate deactivation unit Instantiate deactivation unit

Offline uninstallation of old software Offline installation of old software

Modify information model and set mainte-
nance status for activation unit

Reverse information model modifications and
set maintenance status for deactivation unit

Offline installation of new software Offline uninstallation of new software

Instantiate activation unit Terminate activation unit

Unlock activation unit Lock activation unit

Restart activation unit Restart activation unit

Online uninstallation of old software Online installation of old software
64 SAI-AIS-SMF-A.01.02 Section 4.2.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
that can be detected immediately during the execution of the upgrade step (see
Section 4.1.2).

If undoing the step also fails, the system state is considered to be unknown due to the
double-failure. As a result, the administrator is left with no other choice than to initiate
a system fallback. See also Section 5.1.5.

If rollback is selected by the administrator, the Software Management Framework
shall inform the registered processes of upgrade-aware entities about the initiated
recovery operation.

4.2.2.2 Retry of an Upgrade Step

Once the upgrade step is undone, and if the retry is permitted, the Software Manage-
ment Framework automatically initiates the re-execution of the upgrade step.

The number of permitted retry attempts is configurable. With each retry attempt, a
retry count is incremented, and once it exceeds the configured number of retry
attempts, any subsequent failure of the given upgrade step results in widening the
failure scope to the procedure and to the campaign, which will be suspended.

From the suspended state, an administrator may still force a retry attempt of the
upgrade step using administrative operations. It is left to the discretion of the adminis-
trator to decide if this forced re-execution is appropriate and perform any necessary
repair actions. See also Section 5.1.6, Section 5.2.3, Section 5.3.7, and
Section 9.3.1.

4.2.2.3 Rollback

Rollback is the recovery operation that reverts the successfully completed steps of
an upgrade campaign to recover the deployment configuration effective at the begin-
ning of the upgrade campaign. It is applicable only at step boundaries. Rollback is a
graceful recovery, as the system continues to provide its services during rollback,
similarly as it does before during the campaign.

Nevertheless, rollback does not necessarily restore the system state that was in
effect at the beginning of the campaign, as any changes that happened due to the
system’s normal operations generally remain intact. Some losses may occur, but they
are limited at application-level typically to the restoration of the last checkpoint.

The administrator may initiate the rollback almost any time during the upgrade cam-
paign after having suspended it (see Section 5.3.8). However, the rollback is usually
initiated by an administrator after an upgrade step has been undone because either
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.2.2 65

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
the retry was not permitted, or the allowed number of attempts was exceeded (see
Section 5.3.7).

The campaign may not be in a final failure state at the initiation of a rollback (see
Section 5.3.13).

Rollback is applied to the entire campaign. Thus, all executing procedures of the
campaign must be suspended at a step boundary first (see Section 5.3.7 and
Section 5.3.8), and then the rollback may be applied (see Section 9.3.4).

The Software Management Framework informs registered processes of upgrade-
aware entities that a rollback has been initiated. After the rollback has been signaled,
upgrade-aware entities must interpret subsequent callbacks as part of the rollback
operation.

At its completion, the outcome of the rollback must be verified the same way as it is
verified for an upgrade (see Section 4.1.4).

The rollback operation uses the upgrade history as described in the following section.

4.2.2.3.1 Campaign Rollback

The campaign rollback is symmetrical to the upgrade campaign itself. It initiates the
rollback of each procedure in the reverse order to their execution level, starting from
the current execution level.

4.2.2.3.2 Procedure Rollback

The rollback of a given procedure is symmetric to its forward execution. During the
procedure rollback, completed steps are rolled back one by one in reverse order.

4.2.2.3.3 Step Rollback

The step rollback is similar to its forward execution, except that it deactivates the enti-
ties in the original activation unit and reactivates those of the original deactivation
unit. The configuration information of the former deactivation unit shall be available
from the upgrade history.

Step rollback defines the following actions:

1. Online installation of old software
2. Lock activation unit
3. Terminate activation unit
4. Offline uninstallation of new software
66 SAI-AIS-SMF-A.01.02 Section 4.2.2.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
5. Modify information model to old configuration and set maintenance status
for deactivation unit

6. Offline installation of old software
7. Instantiate deactivation unit
8. Unlock deactivation unit
9. Online uninstallation of new software

Alternatively, the reduced set of actions for restartable entities is the following:

1. Online installation of old software
2. Modify information model to old configuration and set maintenance status
3. Restart symmetric activation unit
4. Online uninstallation of new software

The first action in both cases restores the installation of the old software if it was unin-
stalled after the completion of the upgrade step. If this is not the case, it verifies the
installation.

The maintenance status needs to be set for entities that are being restored by the
rolling back step.

The last action in both cases can be postponed indefinitely.

The actions set in bold must be executed as part of the step rollback to ensure avail-
ability.

4.2.2.3.4 Failure During Rollback

A failure of an action during the rollback is treated similarly to an error during the
upgrade campaign, except that the possible recovery options are reduced.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.2.3.4 67

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling
If an action of a rolling back step fails, the Software Management Framework immedi-
ately tries to undo the already completed actions of this rolling back step by reversing
each of the performed actions in reversed order (see Section 5.1.7).

If the undoing of the rolling back step is successful, and retry is permitted, the step
rollback is retried automatically (see Section 5.1.8).

If the undoing of the rolling back step fails, or if it is undone successfully, but no more
retries are permitted (see Section 5.1.9), the failure is widened to the entire cam-
paign, and the only allowed recovery option is the system fallback. Note that a forced
retry is not permitted at rollback1. See also Section 5.2.7 and Section 5.3.13.

4.2.2.4 Fallback

A fallback typically means a complete (cold) system restart using the image saved
during the system backup. In other words, after the restart, the system is restored to
the state that was in effect at the time when the backup was created.

Table 2 Reversing Action Depending on the Step Rollback Actions

Step Rollback Action Reversing Action

Online installation of old software Online uninstallation of old software

Lock activation unit Unlock activation unit

Terminate activation unit Instantiate activation unit

Offline uninstallation of new software Offline installation of new software

Modify information model to old and set
maintenance status for deactivation unit

Reverse information model modifications and
set maintenance status

Offline installation of old software Offline uninstallation of old software

Instantiate deactivation unit Terminate deactivation unit

Unlock deactivation unit Lock deactivation unit

Restart activation unit Restart activation unit

Online uninstallation of new software Online installation of new software

1. This decision was made to keep the state machines simple and was not due to technical considerations and
limitations.
68 SAI-AIS-SMF-A.01.02 Section 4.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Failure Detection and Failure Handling

1

5

10

15

20

25

30

35

40
A fallback is initiated by an administrator. It is implementation-specific how the initi-
ated fallback operation is performed. As many of its aspects are beyond the current
scope of SA Forum specifications, this document provides only information that
needs to be considered by an implementer of the operation. The operation itself must
be provided by an implementation. An implementation needs to be able to restore the
software images appropriate to the deployment configuration together with the
deployment configuration that was saved in the system backup. During fallback, the
system is not expected to provide services.

System fallback reverses all the changes that happened to the different entities dur-
ing the upgrade campaign. Any configuration change (applied by using the Informa-
tion Model Management Service) that happened during the upgrade is lost after a
fallback operation (see also Section 4.2.1.4).

To recover data losses at application-level, an application may maintain its own log. It
shall be able to use this upgrade log to execute a rollforward operation as part of the
restart operation automatically without expecting a callback or other actions from the
Software Management Framework (see also Section 4.2.1.4.2).

4.2.2.4.1 Rollforward

The rollforward operation recovers changes that have taken place after a backup was
created by reapplying the logged changes to the system state restored from the
backup. It is typically used in connection with the fallback operation to restore
changes resulting from normal operation of the system during the upgrade that would
have been lost due to a fallback.

The current document neither defines nor requires rollforward for any SA Forum Ser-
vice.
AIS Specification SAI-AIS-SMF-A.01.02 Section 4.2.2.4.1 69

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5 State Models
An upgrade campaign is modeled by a set of communicating finite state machines
(FSM). A state machine is maintained for each object in the upgrade campaign model
(see Section 3.3.1), that is, for the upgrade campaign, for each upgrade procedure
within the campaign, and for each step within each procedure. The state of the
upgrade campaign and its constituent parts are defined by the states of these finite
state machines, as described in this chapter.

There is one upgrade campaign FSM in the Software Management Framework Infor-
mation Model for each upgrade campaign specified by an XML file. The execution of
this upgrade campaign is controlled by administrative operations applied to the
upgrade campaign object. These administrative operations are interpreted as input
signals to the associated finite state machine. The campaign FSM receives these sig-
nals from the administrator, reacts by state transitions and by communicating the
appropriate signals to the FSMs representing the upgrade procedures of the cam-
paign. This way, the campaign FSM controls the execution of procedure FSMs,
receives the results of their execution (which is also reflected in state changes as
appropriate), and returns the results to the administrator.

In turn, each upgrade procedure FSM communicates with the FSMs of its upgrade
steps in a similar manner to control them and receive their results.

The following notation is used in the subsequent state diagrams:

• A double circle denotes the initial state of the FSM, the FSM is created in this
state.

• A fat lined circle represents a final state, no exit transition is defined from such a
state.

• Arrows represent transitions between states.
• Each transition is labeled with an input signal that triggers the state transition

and an output signal that is produced as a result of the transition, if applicable.
The input and output signals are separated by a slash.

• If a signal is received from an FSM or sent to another FSM, the signal is tagged
with that FSM such as Cmpg for the campaign FSM, Proc for the procedure, and
Step for the step. Signals with no tags are consumed by the FSM that produced
them (for instance, Done / Proc:Completed).

• Signals in capital letters represent administrative operations (for brevity, the
SA_SMF_ADMIN prefix is omitted). An administrative operation may span several
states (for instance, SA_SMF_ADMIN_EXECUTE); therefore, its return is indicated
as an output signal with the prefix RTN_<admin operation>. Signals in angle
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 5 71

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
brackets (for instance, <fallback>) are currently not standardized, but
expected to be available in an implementation.

5.1 Upgrade Step State Model
FIGURE 5 presents the state diagram of an upgrade step FSM.

5.1.1 Initial State

The step FSM is created in the Initial state. The execution of the step is initiated
when the Proc:Execute signal is received from the finite state machine of the
upgrade procedure to which the upgrade step belongs. This signal moves the step
FSM into the Executing state.

5.1.2 Executing State

In the Executing state, the actions of the upgrade step are executed one by one as
described in Section 3.3.2.3.

If no failure is detected during the execution, and all actions —including possible
verifications —complete successfully (Done), the step FSM transitions to the
Completed state while it signals Proc:Completed to the procedure FSM to which it
belongs.

If a failure occurs during execution (Failure), the step FSM moves to the Undoing
state.

5.1.3 Completed State

The Completed state is the targeted state for all step FSMs in the campaign; how-
ever, it is not a final state, as the campaign may be rolled back by the administrator.
Rollback applies only to step FSMs in Completed state.

If a campaign rollback is initiated administratively, this decision is propagated to the
step FSM in Completed state as a Proc:Rollback signal, which then moves the
step FSM to the Rolling Back state.
72 SAI-AIS-SMF-A.01.02 Section 5.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
FIGURE 5 Upgrade Step State Model Diagram

Executing

Initial

Proc:Execute /

Done /
Proc:Completed

Failure /

Retry Count Exceeded /
Proc:Undone

Retry /

Undoing

Undo Failure /
Proc:Failed

Rolling Back

Proc:Rollback /

Undoing
Rollback

Failure /

Retry /

Rolled Back

Done /
Proc:Rolled Back

Undo Failure /
Proc:Rollback Failed

Retry Count Exceeded /
Proc:Rollback Undone

Failed

Rollback
Failed

Rollback
Undone

Proc:Execute /

UndoneCompleted
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.1.3 73

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.1.4 Undoing State

In the Undoing state, the already performed actions of the step are undone accord-
ing to Section 4.2.2.1.

If the step is undone successfully, and a Retry is permitted, the step FSM returns to
the Executing state and re-executes the actions of the step; otherwise, if the retry
count was exceeded (Retry Count Exceeded), the step FSM moves to the
Undone state and signals this transition to the procedure FSM (Proc:Undone).

If another failure (an Undo_Failure) occurs while undoing the actions of the failed
step, that is, while the step FSM is in the Undoing state (which means that the failed
step cannot be undone), the step FSM moves to the Failed state. This transition is
communicated to the procedure FSM as a Proc:Failed signal.

5.1.5 Failed State

The Failed state is a final state for the step FSM representing a double failure situa-
tion (that is, the step could not be executed, and the already executed actions could
not be reverted).

5.1.6 Undone State

While the step FSM is in the Undone state, which is a state similar to Initial state,
it may receive a Proc:Execute signal from the procedure FSM due to an administra-
tive attempt of a forced retry (to allow for cases when the administrator is able to elim-
inate the root cause of the Failure such as some disk space limitation). In this case,
the step FSM is moved back to the Executing state, and the step is retried.

5.1.7 Rolling Back State

In the Rolling Back state, the actions of the step are rolled back according to
Section 4.2.2.3.3.

If the rolling back succeeds (Done), the step FSM moves to the Rolled Back state
and reports this transition to the procedure FSM with a Proc:Rolled Back signal.
The Rolled Back state is a final state for the step FSM.

If a failure is detected while rolling back (Failure), the step FSM moves to the
Undoing Rollback state, where the already performed actions are undone as
described in Section 4.2.2.3.4. If this undoing succeeds, and a Retry is permitted,
the step rollback is re-attempted after having transitioned the step FSM back into the
Rolling Back state.
74 SAI-AIS-SMF-A.01.02 Section 5.1.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.1.8 Undoing Rollback State

If undoing the rollback is successful, but no retry is permitted
(Retry Count Exceeded), the step FSM moves to the Rollback Undone final
state and signals Proc:Rollback Undone to the procedure FSM. No forced retry is
permitted in this state. 1

If undoing of the actions of the rollback fails (Undo Failure), the step FSM termi-
nates in the Rollback Failed state while issuing the appropriate
Proc:Rollback Failed signal to the procedure FSM.

5.1.9 Rolled Back, Rollback Undone, and Rollback Failed States

The Rolled Back, Rollback Undone, and the Rollback Failed states are
final states for the step FSM.

5.2 Upgrade Procedure State Model
FIGURE 6 presents the state diagram of the upgrade procedure FSM.

5.2.1 Initial State

The procedure FSM is created in the Initial state. The execution of the procedure
is initiated by the Cmpg:Execute signal received from the upgrade campaign finite
state machine, which moves the procedure FSM into the Executing state, where it
signals a Step:Execute to its first step. In addition, the freeze internal flag is reset.
Since any suspension operation is applied at step boundaries, this flag is set to
remember that such an operation was issued while the execution of a step is in
progress, and to apply it when the next step boundary is reached.

5.2.2 Executing State

The procedure FSM remains in the Executing state until it receives the outcome of
the initiated step from the step FSM. If in this state a Cmpg:Suspend is received from
the campaign FSM, the freeze flag is set, as it is applied only at step boundary.

Depending on the result received from the step FSM, the following transitions
become available in the Executing state.

1. This is a design choice that was made partially to simplify the FSMs and partially because the system is
already in a failure correction mode (i.e., it is rolling back); therefore, faster escalation of the failure is desirable.
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.1.8 75

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
1. If the current step reports that it has completed successfully by a
Step:Completed signal,
• if there is another step within the procedure that is still in Initial state, and

the freeze flag is not set, a Step:Execute is signaled to the next step,
which is still in Initial state. The procedure FSM remains in the
Executing state.

• If there are no more steps in Initial state and all of them reached the
Completed state, and the freeze flag is not set, then, after successful verifi-
cation (see Section 4.1.3), the procedure is also completed, and the procedure
FSM moves to the Completed state and reports this transition to the cam-
paign FSM with a Cmpg:Completed signal. If the procedure verification fails,
the procedure FSM moves to the Failed state and reports this transition to
the campaign FSM with a Cmpg:Failed signal.
Note that setting the freeze flag has no impact after the procedure verifica-
tion has started.

• If the freeze flag is set, the procedure moves into Suspended state, report-
ing its suspension to the campaign with a Cmpg:Suspended signal.

2. If the current step reports an error by a Step:Failed signal, the procedure FSM
reports this failure immediately to the campaign FSM with a Cmpg:Failed signal,
and the procedure FSM moves to the Failed final state.

3. If the current step does not succeed and reports Step:Undone, the procedure
FSM moves into the Step Undone state and reports this transition to the cam-
paign FSM with a Cmpg:Step Undone signal.

5.2.3 Suspended and Step Undone States

The procedure FSM remains in the Suspended state or in the Step Undone state
until the campaign FSM signals to which state it shall move next. From both states,
two transitions are available, depending on the administrative operation issued at the
campaign level.

• If a rollback is selected by the administrator, this is propagated to the procedure
FSM by a Cmpg:Rollback signal. The procedure FSM shall reset its freeze
flag and signal Step:Rollback to the last step that was completed. It also
moves to the Rolling Back state.

• If an execute is selected at campaign level, this is propagated by a
Cmpg:Execute signal to the procedure FSM, which, as a result, transitions into
the Executing state and resets its freeze flag at the same time. In the
Executing state, if there is a step in Undone state, the procedure FSM signals
Step:Execute to this step; otherwise, it signals Step:Execute to the next step
which is still in Initial state. If there are no more steps, the procedure FSM
proceeds with the verification.
76 SAI-AIS-SMF-A.01.02 Section 5.2.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.2.4 Completed State

The Completed state is the targeted state for all procedure FSMs. Ideally, the cam-
paign completes when all of its procedures are in this state.

If the campaign is rolled back, every completed procedure and those that are in the
Step Undone or Suspended state shall receive a Cmpg:Rollback signal from the
campaign FSM in due time. This moves the procedure FSM into the Rolling Back
state while issuing a Step:Rollback to its last completed step.

5.2.5 Rolling Back State

The procedure FSM remains in the Rolling Back state until it receives the result of
the currently rolling back step. If in this state a Cmpg:Suspend is received from the
campaign FSM, the procedure FSM sets the freeze flag.

If the current step rollback completes successfully, a Step:Rolled Back is received
and the freeze flag is not set, then the procedure signals Step:Rollback to its
next step which is still in Completed state. If there are no more steps in Completed
state, the procedure rollback is completed. Thus, after successful verification (see
Section 4.1.3), the procedure FSM terminates in the Rolled Back state and signals
this transition to the campaign FSM with a Cmpg:Rolled Back signal. If the verifica-
tion fails, the procedure FSM moves to the Rollback Failed state and sends a
Cmpg:Rollback Failed signal. Both Rolled Back and Rollback Failed are
final states.

If the freeze flag was set when the Step:Rolled Back signal was received, the
procedure FSM moves to the Rollback Suspended state.

If the step rollback cannot be completed by any reason, a Step:Rollback Undone
or Step:Rollback Failed is received by the procedure FSM. This fails the proce-
dure rollback; thus, the procedure FSM terminates in the Rollback Failed state
and reports this fact also to the campaign FSM.
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.2.4 77

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
FIGURE 6 Upgrade Procedure State Model Diagram

Initial

Executing

Rolling Back

Cmpg:Execute /
freeze=0,

Step:Execute

Step:Rolled Back /
Cmpg:Rolled Back

Rolled Back

Step:Undone /
Cmpg:Step Undone

Step:Completed &
freeze==1 /

Cmpg:Suspended

Cmpg:Rollback /
Step:Rollback,

freeze=0

Rollback
Suspended

Step:Rolled Back &
freeze==1 /

Cmpg:Rollback Suspended

Cmpg:Execute / freeze=0

Cmpg:Rollback / freeze=0

Step:Rollback Undone or
Step:Rollback Failed or

Verification failed /
Cmpg:Rollback Failed

Step:Failed or
Verification failed /

Cmpg:Failed

Cmpg:Execute /
Step:Execute, freeze=0

Cmpg:Rollback /
Step:Rollback,

freeze=0Cmpg:Rollback /
Step:Rollback

Step:Completed /
Cmpg:Completed

Failed

Suspended

Rollback
Failed

Step:Completed &
freeze==0 /
Step:Execute

Cmpg:Suspend /
freeze=1

Step:Rolled Back &
freeze==0/
Step:Rollback

Cmpg:Suspend /
freeze=1

Completed

Step
Undone
78 SAI-AIS-SMF-A.01.02 Section 5.2.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.2.6 Rollback Suspended State

The procedure FSM remains in the Rollback Suspended state until it receives
from the campaign FSM a Cmpg:Rollback signal permitting it to move back to the
Rolling Back state to continue the rollback. This transition also resets the freeze
flag. If there are any steps still in the Completed state, a Step:Rollback is sig-
naled to the next step. If there is no such step, and depending on the result of the ver-
ification, the procedure FSM terminates in either the Rolled Back state or in the
Rollback Failed state and issues the respective signal to the campaign FSM.

5.2.7 Rolled Back, Failed, and Rollback Failed States

The Rolled back, Failed, and Rollback Failed states are final states for the
procedure FSM.

5.3 Upgrade Campaign State Model
FIGURE 7 presents the state diagram of the upgrade campaign FSM, which is also
created in the Initial state.

5.3.1 Initial State

The execution of the campaign is initiated by the EXECUTE1 administrative operation,
which initiates the prerequisite check as described in Section 4.1.1, including the cre-
ation of the system backup according to Section 4.2.1.1. If any of the operations fail,
the campaign cannot be started and remains in the Initial state. The administra-
tive operation returns with the error indicating that the campaign could not be initi-
ated. The execution can be re-attempted at a later time when the cause of the failure
has been corrected.

If the prerequisite check including the backup operations succeed, the campaign
FSM moves to the Executing state while it signals Proc:Execute to all procedures
of the first execution level (see Section 3.3.3.3).

The campaign FSM remains in the Executing state until it receives the outcome
from all the initiated procedures or an administrative intervention happens.

5.3.2 Executing State

Depending on the outcome received from a procedure FSM, the following transitions
become available in the Executing state:

1. The SA_SMF_ADMIN_ prefix is omitted for all administrative operations.
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.2.6 79

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
1. If all the currently executing procedures (that is, all procedures of the current exe-
cution level) successfully report Proc:Completed,
• if there is another execution level that was not initiated yet, a Proc:Execute

is initiated on each procedure FSMs of the next execution level. The campaign
FSM remains in the Executing state.

• If there are no more execution levels, and after successful verification, includ-
ing the consideration of any observation period (see Section 4.1.4), the cam-
paign FSM moves to the Execution Completed state. This transition also
results in the successful completion of the EXECUTE administrative operation
(RTN_EXECUTE(OK)). The campaign remains in the Execution Completed
state until the administrator decides whether the campaign can be committed.

2. If any of the procedures fails and reports a Proc:Failed while the campaign still
in the Executing state,
• the campaign FSM signals Proc:Suspend to all running procedures; addition-

ally, it reports the failure to the administrator by returning the
RTN_EXECUTE(Cmpg_failed) signal and moves into the
Execution Failed state.

3. If any of the currently running procedures reports a Proc:Step Undone, the
campaign FSM moves into the Error Detected state and signals
Proc:Suspend to the procedures still executing to suspend them as well.

4. If the Software Management Framework receives a signal reporting the failure of
an AMF entity (Async_failure, see also Section 4.2.1.3) while the campaign
is in the Executing state, the campaign is automatically suspended. As a con-
sequence, the campaign FSM signals Proc:Suspend to all currently executing
procedures and moves into the Error Detected state.

5. If a SUSPEND administrative operation is requested while the campaign FSM is in
the Executing state, the campaign FSM signals Proc:Suspend to all currently
executing procedures, interrupts the EXECUTE administrative operation by
returning a RTN_EXECUTE(Suspending) signal, and moves into the
Suspending Execution state.
80 SAI-AIS-SMF-A.01.02 Section 5.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
FIGURE 7 Upgrade Campaign State Model Diagram

Initial

Executing

Rolling Back

EXECUTE /
Proc:Execute

All Proc:Rolled Back
RTN_ROLLBACK(OK)

First Proc:Step Undone or
Async failure /
Proc:Suspend

All Proc:Suspended /
RTN_SUSPEND(OK)

ROLLBACK /
Proc:Rollback

Rollback
Suspended Proc:Rollback Failed /

RTN_SUSPEND
(RB_failed) or

RTN_ROLLBACK
(RB_failed)

ROLLBACK /
Proc:Rollback

Proc:Rollback Failed /
Proc:Suspend

RTN_ROLLBACK
(RB_failed)

Proc:Failed /
Proc:Suspend

RTN_EXECUTE
(Cmpg_failed)

EXECUTE /
Proc:Execute

ROLLBACK /
Proc:Rollback

Execution
Suspended

Campaign
Commited

COMMIT /
Delete all procedures

and their steps,
RTN_COMMIT(OK)

Rollback
Commited

COMMIT /
Delete all procedures

and their steps
RTN_COMMIT(OK)

Proc:Failed /
RTN_EXECUTE
(Cmpg_failed)

Error Detected

All (Proc:Suspended or
 Proc:Step Undone) /

RTN_EXECUTE
(Error detected)

All Proc:Completed /
Proc:Execute

All Proc:Rolled Back /
Proc:Rollback

Execution
Completed

Rollback
Completed

Suspended by
Error Detected

Any except
Initial

<fallback>

Suspending
Rollback

SUSPEND /
Proc:Suspend,

RTN_ROLLBACK
(Suspending)

Or
Async failure /
Proc:Suspend

All Proc:Rollback
Suspended /

RTN_SUSPEND(OK) or
RTN_ROLLBACK

(Suspended)

Suspending
Execution

SUSPEND /
Proc:Suspend,

RTN_EXECUTE
(Suspending)

Proc:Failed /
RTN_SUSPEND

(Cmpg_failed)

First Proc:Step Undone or
Async_failure /

Error Detected
in Suspending

Proc:Failed /
RTN_SUSPEND

(Cmpg_failed)

All (Proc:Suspended or
 Proc:Step Undone) /

RTN_SUSPEND
(Error detected)

Execution
Failed

Rollback
Failed

All Proc:Completed and
no more exec levels/
RTN_EXECUTE(OK)

EXECUTE /
Proc:Execute

ROLLBACK /
Proc:Rollback

Initial

EXECUTE /
RTN_EXECUTE
(Cannot_initiate)

<fallback> admin operation
MUST be available in an

implementation specific way
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.3.2 81

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.3.3 Execution Completed State

In the Execution Completed state, the administrator has the option of committing
the campaign by issuing the COMMIT administrative operation. This administrative
operation triggers the wrap-up operations of the campaign and moves the FSM into
the final Campaign Committed state, while confirming the COMMIT with a
RTN_COMMIT signal.

Alternatively, the administrator may decide that the campaign cannot be committed
and needs to be rolled back. This results in a Proc:Rollback signal sent to all pro-
cedures of the last execution level, and the campaign FSM moves to the
Rolling Back state.

While in the Execution Completed state, the Software Management Framework
still must collect the information on any asynchronous failure of AMF entities as
described in Section 4.2.1.3. However these failures trigger no state transition.

5.3.4 Error Detected State

The campaign remains in the Error Detected state until one of the two following
situations occur.

• A procedure fails and reports a Proc:Failed. The campaign FSM reports the
failure to the administrator by returning the RTN_EXECUTE(Cmpg_failed)
signal and moves into the Execution Failed state.

• All executing procedures finish and all of them report Proc:Completed or
Proc:Step Undone (i.e. none of them report a Proc:Failed). In this case,
the campaign FSM moves to the Suspended by Error Detected state.
This fact is reported to the administrator by returning an
RTN_EXECUTE(Error_detected).

It is possible that further AMF entity failures are detected in the Error Detected
state. These failures trigger no state transition.

5.3.5 Suspending Execution State

If the execution was suspended by the administrator, the campaign FSM remains in
the Suspending Execution state until one of the following situations occurs.

1. All the running procedures reached the Suspended state successfully, and each
of them sent a Proc:Suspended signal. When all of these signals arrive, the
campaign FSM moves to the Execution Suspended state and returns an
RTN_SUSPEND(OK) in response to the SUSPEND administrative operation.
82 SAI-AIS-SMF-A.01.02 Section 5.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
2. Any of the procedures reports a failure by the Proc:Failed signal. The cam-
paign returns an RTN_SUSPEND(Cmpg_failed) signal to the administrator, and
the FSM moves to the Execution Failed state.

3. Any of the procedures reports Proc:Step Undone, or the failure of an AMF
entity is detected. The campaign FSM moves into the
Error Detected in Suspending state.

5.3.6 Error Detected in Suspending State

In the Error Detected in Suspending state, one of the following transitions are
available.

• if a procedure reports a failure by the Proc:Failed signal, the campaign ter-
minates in the Execution Failed state and returns an
RTN_SUSPEND(Cmpg_failed) signal to the administrator;

• if no procedure reports a failure, but all of them reach the Suspended or
Step Undone state, the campaign FSM moves to the
Suspended by Error Detected state and returns the
RTN_SUSPEND(Step_undone) signal to the administrator.

It is also possible that further AMF entity failures are detected in the
Error Detected in Suspending state; however, these failures trigger no state
transition.

5.3.7 Suspended by Error Detected State

In the Suspended by Error Detected state, the administrator is given the
opportunity to fix the problem that prevented the completion of the steps that are in
the Step Undone state.

If the reason for reaching this state was the occurrence of one or more asynchronous
failures, the administrator needs to decide whether these failures are related to the
upgrade campaign or not.

In either case, an attempt to retry the campaign from its current state can be forced
by issuing a new EXECUTE administrative operation, which is propagated to all proce-
dures of the execution level as a new Proc:Execute, and the campaign FSM moves
back to Executing state.

Alternatively, the administrator may decide that the campaign cannot be completed
and issues a ROLLBACK operation. This decision is propagated to all procedure
FSMs of the current execution level by Proc:Rollback signals, and it also moves
the campaign FSM into Rolling Back state.
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.3.6 83

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
Regardless of whether the campaign is retried or rolled back, it is expected that the
administrator has completed any necessary repair and enabled the failed entities as
appropriate before issuing the administrative operation.

5.3.8 Execution Suspended State

The campaign FSM remains in the Execution Suspended state until the next
administrative operation determines to which state it should move. If a new EXECUTE
administrative operation is issued, it is propagated to all procedures of the execution
level as a new Proc:Execute, and the campaign FSM moves back to the
Executing state. Alternatively, a ROLLBACK may be ordered, which is propagated to
all procedure FSMs of the current execution level by Proc:Rollback signals.

While in the Execution Suspended state, the Software Management Framework
still must collect the information on any asynchronous failure of AMF entities as
described in Section 4.2.1.3. However these failures trigger no state transition.

5.3.9 Rolling Back State

The campaign remains in the Rolling Back state until it receives the result from all
currently rolling back procedures.

1. If the rolling back of all procedures of the current execution level completes suc-
cessfully, and a Proc:Rolled Back is received from each of them.
• If there is an execution level lower than the current one, the campaign signals
Proc:Rollback to all procedures with the next smaller execution level and
remains in the Rolling Back state.

• If there are no more execution levels to roll back, and all the verifications,
including the consideration of any observation time are successful, the cam-
paign rollback is completed, the campaign FSM moves to the
Rollback Completed state, which is indicated to the administrator by
returning RTN_ROLLBACK(OK) in response to the ROLLBACK operation.

2. While in the Rolling Back state, if any of the procedure rollbacks cannot be
completed due to a failure that is reported by a Proc:Rollback Failed signal,
or if the final verification of the rollback fails, the campaign rollback also fails and
the FSM moves to the Rollback Failed state. This transition is also reported
by an RTN_ROLLBACK(RB_failed) signal.

3. An administrator may also issue a SUSPEND administrative operation to suspend
a rollback. Similar to what happens in the Executing state, this administrative
operation causes a Proc:Suspend signal to be sent to all running procedures, a
response of RTN_ROLLBACK(Suspending) to be sent the administrator, and the
transition of the campaign FSM to the Suspending Rollback state.
84 SAI-AIS-SMF-A.01.02 Section 5.3.8 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
4. It may happen that during rollback a signal is received that reports the failure of
an AMF entity (see Section 4.2.1.3). This signal suspends the rollback; as a
result, a Proc:Suspend signal is sent to each running procedure, and the cam-
paign FSM moves to the Suspending Rollback state.

5.3.10 Rollback Completed State

In Rollback Completed state, the administrator still needs to explicitly commit the
rollback by issuing a COMMIT administrative operation. This triggers the wrap-up
operations of the campaign, after which the COMMIT is confirmed by an RTN_COMMIT,
and the campaign FSM moves into the final Rollback Committed state.

While in the Rollback Completed state, the Software Management Framework
still must collect the information on any asynchronous failure of AMF entities as
described in Section 4.2.1.3. However these failures trigger no state transition.

5.3.11 Suspending Rollback State

The campaign remains in the Suspending Rollback state until

1. all Proc:Rollback Suspended signals are received from all running proce-
dures. If so, the campaign moves into the Rollback Suspended state. If the
rollback was suspended due to an administrative operation, an
RTN_SUSPEND(OK) is returned; if the rollback was suspended due to an asyn-
chronous error, an RTN_ROLLBACK(Suspended) is returned to the administrator.

2. If any of the procedures report a failure by a Proc:Rollback Failed signal,
the campaign FSM moves to the Rollback Failed state and reports this tran-
sition with an RTN_SUSPEND(RB_failed) or RTN_ROLLBACK(RB_failed) sig-
nal as appropriate.

While the campaign is in Suspending Rollback state, subsequent asynchronous
failures may be detected; however, they do not result in a state change.

5.3.12 Rollback Suspended State

To resume the rollback of the campaign in the Rollback Suspended state, the
administrator must issue a new ROLLBACK administrative operation, which is propa-
gated as Proc:Rollback signals to procedures at the current execution level, and
the campaign moves back to the Rolling Back state.

While in the Rollback Suspended state, the Software Management Framework
still must collect the information on any subsequent asynchronous failure of AMF enti-
ties as described in Section 4.2.1.3. However these failures trigger no state transition.
AIS Specification SAI-AIS-SMF-A.01.02 Section 5.3.10 85

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
State Models
5.3.13 Execution Failed and Rollback Failed States

In the final Execution Failed and Rollback Failed states, the only possible
administrative operation is to initiate a fallback (Section 4.2.2.4).

5.3.14 System Backup, Restart, and Fallback Operations

An upgrade campaign cannot be started without the creation of a system backup.
Once an upgrade campaign has been initiated, and the campaign FSM has moved
away from the Initial state, no new system backup may be created that may over-
write this initial backup until the upgrade campaign is terminated in one of the Com-
mitted states: Campaign Committed or Rollback Committed. The backup
operation must be blocked, or the backed up image must be protected in some other
ways to ensure that during the campaign it is always possible to return to the initial
system state by issuing a system fallback, which requires the backup created when
the campaign was initiated.

Until the campaign is committed in the Campaign Committed or the
Rollback Committed state, at any time and in any state other than the Initial
state, the administrator may order a campaign fallback. This should restore the sys-
tem to the state saved in the system backup, which was created in the Initial state
of the campaign. Once the campaign is committed in the Campaign Committed or
the Rollback Committed state, there is no guarantee that a fallback operation
restores the system backup taken at the beginning of the campaign. See also
Section 4.2.1.1, Section 4.2.2.4, and Section 6.5.2.

It is possible that a cluster restart is initiated outside of an executing upgrade cam-
paign. For example, a cluster restart could be initiated by an administrator in order to
recover from a fatal failure. Such a restart should be escalated into a fallback opera-
tion except if the campaign FSM is in Initial, Execution Completed,
Campaign Committed, Rollback Completed, or Rollback Committed
states. Note that even in these states the restart may result in the loss of some or all
the information represented by the upgrade procedure and upgrade step runtime
objects.
86 SAI-AIS-SMF-A.01.02 Section 5.3.13 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
6 Upgrade Campaign Specification
An upgrade campaign is specified in an XML file that follows the upgrade campaign
XML schema provided in [9]. This chapter gives additional information on the
intended usage of the XML elements defined in the schema.

The upgrade campaign specification can be perceived as a description of the execu-
tion flow of the upgrade campaign, which, besides the procedural elements, also con-
tains the configuration change information embedded in these procedural elements,
so they can be applied at the appropriate moment within the execution flow.

An XML file that specifies an upgrade campaign shall contain the
upgradeCampaign element, which has a name attribute containing the RDN of the
campaign object that shall be created from the campaign specification. There are four
mandatory elements within the campaign element:

• campaignInfo, which provides general information about the upgrade cam-
paign specified in the file,

• campaignInitialization, which specifies information necessary for the
prerequisite check and also for other preparatory actions that may be necessary
for the campaign,

• upgradeProcedure, which specifies one or more upgrade procedures of the
upgrade campaign, and

• campaignWrapup, which specifies conditions for committing the campaign and
also actions that may need to be performed to complete the campaign.

In this chapter, the subtree of elements under each of these four elements is referred
to as a section.

6.1 Common Elements
The XML elements of this section are used in different parts of the upgrade campaign
specification.

6.1.1 Action Element

The action element can be used to specify an administrative operation, an IMM con-
figuration bundle, a CLI command, or a customized callback action.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 6 87

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
6.1.1.1 Administrative Operation

The administrative operation element is used to specify any administrative operation
that can be executed using the IMM OM-API. These administrative operations are
specified by the operation Id and the DN of the targeted IMM object. Optionally, a set
of attributes can be specified with their name, type, and value set.

The administrative operations need to be specified in pairs: the doAdminOperation
element defines the administrative operation executed on the forward path of the
upgrade campaign; the undoAdminOperation element defines the administrative
operations that are executed on the rollback path of the campaign to “undo” the
effects of the forward path operation.

6.1.1.2 Configuration Change Bundle

Any Information Model Management Service configuration change bundle (CCB) is
described by specifying the individual operations within the CCB. In case of a roll-
back, the original content of IMM must to be restored. This specification does not
describe how this is achieved by a given implementation. The specification of the
operations follow the IMM API specification, and the attributes and elements match
the appropriate function signatures.

6.1.1.3 CLI Command

Similarly to the administrative operations, CLI commands need to be specified in
pairs for the forward (doCliCommand) and the rollback (undoCliCommand) paths.
These elements specify the command and the args strings as attributes. In addition,
the node element lists the nodes on which the CLI commands must be executed by
the Software Management Framework. The result of a CLI command must be
according to Section 4.1.5.

6.1.1.4 Customized Callback Action

The upgrade campaign allows for the specification of a number of callbacks during
the campaign. These callbacks are used to report the progress of the upgrade cam-
paign and also to perform application-level actions synchronized with the campaign
(see also Section 7.2.3.1 and Section 8.5.1).

Accordingly, each callback specified in the campaign needs to be customized by the
following attributes:

• A callback is identified by the mandatory callbackLabel attribute, which is a
string. This string is matched against the filters registered by the different user
processes, and those processes that specified a filter that the label matches
88 SAI-AIS-SMF-A.01.02 Section 6.1.1.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
shall receive a callback from the Software Management Framework. The call-
back label is passed onto the user process in the callback.

• The second optional attribute that is passed in the callback to the registered pro-
cess is the content of the stringToPass string. It is not interpreted by the Soft-
ware Management Framework, and the string is passed in the callback without
any change.

• The optional timer attribute specified for the callback action determines
whether the Software Management Framework must wait for a response from
the called back process and the upper limit of this waiting period. If no timer is
specified, the campaign may continue right after the Software Management
Framework has issued the callbacks to all interested processes. If a timer is
specified the Software Management Framework must wait for the responses for
the specified period. If all responses have been received, the campaign may
continue according to the results returned in the response. When the timer
expires, the missing answers are taken as a success.

When a callback is invoked, the Software Management Framework passes to the
process a parameter that identifies whether the callback is performed on the forward
or the rollback path of the campaign execution (see Section 8.5.1), and the process
uses this parameter to determine the appropriate application-level actions.

6.1.1.4.1 Timing of Customized Callback Actions

The timing of a customized callback within the flow of the upgrade campaign can be
specified in different ways.

The obvious way is based on the placement and the order of the customized callback
actions within the upgrade campaign specification, which defines also the execution
order.

For some cases, such ordering is unfeasible or cannot be determined. For example, it
is unknown in advance whether and when a rollback is going to be ordered during the
campaign. For such cases, a number of elements are predefined in the XML schema.
These elements represent certain conditions or operations within the campaign exe-
cution flow that can be associated with customized callbacks. The callbacks are then
invoked when the condition is fulfilled. See also Section 7.2.3.1, Section 6.3.3.2.1,
Section 6.3.3.2.2, Section 6.3.3.2.3, and Section 6.5.2.
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.1.1.4.1 89

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
6.2 Campaign Information
The campaignInfo element provides general information about the upgrade cam-
paign. This is the only section intended to be human readable, if necessary. Two ele-
ments are associated with the campaignInfo element, as described in the following
subsections.

6.2.1 Campaign Period

The campaign period (campaignPeriod) provides an estimate of the time that the
whole upgrade campaign is expected to take (see Section 3.4.2). It shall be used by
the administrator to schedule the execution of the upgrade campaign in an appropri-
ate maintenance window. During the execution of the campaign, the elapsed time can
be compared with this time to decide what administrative action is the most appropri-
ate in a given situation. For example, if a failure is detected when most of the cam-
paign period was already consumed, and, therefore, it is not likely that a rollback can
be completed within the available maintenance window, it may be more appropriate
to order a fallback.

The Software Management Framework itself is not expected to use the campaign
period value.

6.2.2 Configuration Base

It is optional to specify a reference to the deployment configuration
(configurationBase) based on which this upgrade campaign was created and to
which the upgrade campaign should be applied. If the deployment configuration has
changed compared to the configuration identified by configurationBase, the
campaign may not be relevant any more or may even jeopardize availability in some
cases; therefore, if such a reference is given in the campaign specification, it must be
respected, which means that the Software Management Framework must not pro-
ceed with the execution of the campaign if it detects that the configuration has
changed compared to the reference configuration. See also prerequisite 5. of
Section 4.1.1.

The Information Model Management Service maintains the time stamp of the last
configuration change in its content. The configurationBase is a time stamp that
specifies when the IMM content was exported. This time stamp is used as a basis of
the upgrade campaign specification. If the configurationBase is set, the Software
Management Framework must guarantee that the only configuration change between
the time specified by configurationBase and the time of the execution of the
upgrade campaign was the creation of the upgrade campaign object representing the
campaign to be executed.
90 SAI-AIS-SMF-A.01.02 Section 6.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
6.3 Campaign Initialization

6.3.1 Required Software Bundles

The campaignInitialization element specifies additional information neces-
sary for the prerequisite check described in Section 4.1.1. In particular, for checking
prerequisite 6., the software bundles required for the campaign are listed as
softwareBundle elements that are to be added to the information model
(addToImm).

Using this list, the Software Management Framework must check whether the speci-
fied software bundle objects exists in the Information Model Management Service. If
they are part of the software catalog, it checks in an implementation-specific way
whether the associated images indeed are in the software repository. If the bundle
objects are not in the catalog, the Software Management Framework needs to verify
in an implementation-specific way if the associated bundles are available in the soft-
ware repository, and, if this is the case, the Software Management Framework adds
the corresponding objects to the software catalog. If any of the checks fails, the
upgrade campaign may not proceed.

Notice that the information provided to identify the required bundles is similar to the
information that is expected from the software vendors in the entity types XML file
(see Section 7.1.1). However, the installation and removal elements shall con-
tain all the information adjusted to the current deployment configuration of the target
system and not necessarily the information that was provided by the vendor
(Section 7.1.1.2). In addition, a default timeout (defaultCliTimeout) that is appro-
priate for the system is defined for these CLI operations.

6.3.2 New AMF Entity Types

As part of the campaign initialization, the new software entity types are added to the
information model. Currently, this includes only AMF entity types (amfEntityTypes)
within the addToImm element.

The XML schema for new AMF entity types specified in the upgrade campaign XML
is NOT the same as the one defined for the entity types file, which specifies entity
prototypes!

As discussed in Section 7.2.2, the attributes that need to be specified for the deploy-
ment configuration are more specific than those expected from the software vendor.
While the vendor only needs to specify the boundary conditions for deployment, the
AMF entity types contained in the information model specify configuration values for
common attribute and default values for all of their entities.
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.3 91

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
The amfEntityTypes element specifies the XML schema for the AMF entity types
to be added to the system’s information model in accordance with the object class
definitions of the Availability Management Framework [2]. Whenever possible, the
attribute name in the schema was chosen to be the same as the attribute name of the
UML model for which the attribute in the schema provides the values.

6.3.3 Initialization Actions

The campaign initialization section also includes any actions that may be required to
prepare for the execution of the campaign. It allows for a more generic action element
and for three predefined conditions for customized callbacks.

6.3.3.1 Generic Initialization Action

The campInitAction element can be used to specify:

• any administrative operation,
• any Information Model Management Service configuration change bundle

(CCB),
• any CLI command, or
• any customized callback,

as described in Section 6.1.1.

6.3.3.2 Predefined Conditions for Customized Callback Actions

Three conditions are predefined in the campaign initialization section. These condi-
tions are associated with customized callback actions. All of them are optional. The
customized callback specification must follow Section 6.1.1.4.

6.3.3.2.1 Callback at Campaign Initialization

The campaign initialization callback actions (callbackAtInit) are used to specify
callbacks that signal to registered processes of upgrade-aware entities that an
upgrade campaign is about to start. If such an action is specified in the upgrade cam-
paign specification, then when an upgrade campaign is initiated, the Software Man-
agement Framework shall call back all processes that registered their interest in the
campaign initialization. The campaign shall not start until all of them indicated their
consent to the campaign. The time limit specified is used by the Software Manage-
ment Framework to delay the campaign: it will wait for an answer at most for this
period. If no response is received, it is taken as a consent. Negative answers may be
taken by an implementation as a reason to terminate the campaign (Section 4.1.1,
prerequisite 10.). If no time limit is specified, the campaign shall commence without
waiting for the responses.
92 SAI-AIS-SMF-A.01.02 Section 6.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
A callback is also invoked on a process that registers one of the specified callback
labels when the campaign is already in progress. However, in these circumstances,
the time limit and any response from the process are ignored, as the campaign is
already in progress.

6.3.3.2.2 Callback at Campaign Backup Creation

The campaign callback actions (callbackAtBackup) allow the invocation of a call-
back to solicit applications to create their own application-level backup, synchronized
with the upgrade campaign. It is also specified whether the Software Management
Framework shall wait for application backups to complete and the maximum waiting
period. Failing to receive a response within the waiting period does not prevent the
campaign to proceed. Only a negative response fails the associated prerequisite
check (Section 4.1.1, prerequisite 11.).

6.3.3.2.3 Callback at Campaign Rollback

The campaign rollback callback actions (callbackAtRollback) allow one to spec-
ify callbacks that are invoked when the campaign is rolled back due to an administra-
tive decision (see Section 4.2.2.3, Section 5.3.8, Section 5.3.7, and Section 9.3.4). If
these actions are specified, and the administrator orders the campaign to rollback,
the Software Management Framework calls back registered processes to inform
them about the initiation of the rollback. It waits for responses for at most the time
specified for the callback. If a negative response is received, the Software Manage-
ment Framework must interpret it as a failure in the execution of the rollback as
described in Section 5.3.9 and move the campaign state machine to the
Rollback Failed state.

6.4 Campaign Body
The campaign body consists of the specification of a set of upgrade procedures
(upgradeProcedure). Each procedure has a name and an execution level attribute.
Within each procedure, two mandatory elements are expected, the outage informa-
tion (outageInfo) and the upgrade method (upgradeMenthod).

In addition, one may optionally specify procedure initialization (procInitAction)
and procedure wrap-up (procWrapupAction) actions according to Section 6.1.1. In
particular, procedure wrap-up actions can be used for the verification of the proce-
dure by executing scripts or invoking customized callbacks. These optional elements
are not discussed further in this document.
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.3.3.2.2 93

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
6.4.1 Outage Information

The outage information specifies the acceptable service outage
(acceptableServiceOutage) in terms of service instances that may become
unassigned during the execution of the given upgrade procedure. This information is
used at the check of prerequisite 9. of Section 4.1.1. Based on the current assign-
ment state of service instances in the system and the deactivation units of the proce-
dure, the Software Management Framework calculates whether the acceptable
service outage can be met for each procedure within the campaign.

During the campaign, the outage information may be used when the Software Man-
agement Framework reacts to failures reported by the Availability Management
Framework. The campaign should not be suspended due to the Availability Manage-
ment Framework failing to assign an SI during a procedure for which this SI is
allowed to become unassigned.

The acceptable service outage is specified as one of the following options:

⇒ all

Allows for any SI and all SIs to become unassigned during the upgrade proce-
dure; this option is typically used for urgent and/or mandatory upgrades where
the necessity of the upgrade overrides the availability requirements.

⇒ none

Does not permit any service instance to become unassigned. Note that it still
allows for SIs to become partially assigned. This option is appropriate for
upgrades that are not urgent and that should take place only if it is expected that
no SI during any procedure will become unassigned. If it is expected that any SI
may become unassigned during the campaign, the campaign must not start.

⇒ a combination of
• max

The maximum number of SIs that may become unassigned from all SIs, or
from those not mentioned in the mustKeepAssignedSI list, or from those on
the mayGoUnassignedSI list, if specified. In the last case, max must be less
than the size of the list. The max option is typically used when the SIs are
equally ranked. If the Software Management Framework determines that a
higher number of SIs will become unassigned than indicated by this value, the
campaign must not start.
94 SAI-AIS-SMF-A.01.02 Section 6.4.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
• and a choice of
• mustKeepAssignedSI

The list of service instances that are not allowed to go unassigned during
the procedure. In addition, the number of SIs that may go unassigned may
be limited by max. If the Software Management Framework determines that
any SI from the list will become unassigned, the campaign must not start.

• mayGoUnassignedSI

The list of service instances that are allowed to go unassigned during the
procedure. mayGoUnassignedSI may be used together with max. If the
Software Management Framework determines that any SIs other than
those on the list will become unassigned, the campaign must not start.

These calculations need to be carried out by the Software Management Framework
before starting the execution of the campaign, that is, before it initiates the execution
of any of the procedures within the campaign (see also Section 3.3.4) as part of the
check of prerequisite 9. of Section 4.1.1.

The second element, the procedure period (procedurePeriod), is primarily infor-
mative and is used to evaluate the expected outage time for those SIs that may
become unassigned and also to be able to judge the progress of the campaign during
execution (see also Section 3.4.1).

6.4.2 Upgrade Method Specification

The current XML schema allows for specifying upgrade procedures using either the
rolling upgrade (Section 3.3.1.1.1) or the single-step upgrade (Section 3.3.3.2.2)
methods. Each of these upgrade methods requires the specification of the upgrade
scope (Section 3.3.3.1) and the upgrade step (Section 3.3.2) options.

The saSmfProcDisableSimultanExec attribute of the rollingUpgrade ele-
ment indicates whether procedure optimization - that is, simultaneous execution of
upgrade steps - is permitted for the procedure being specified.

6.4.2.1 Specification of Rolling Upgrades

Currently, the upgrade scope for rolling upgrades is specified by templates. A tem-
plate is based on similarities; therefore, it can be used to select entities of a symmet-
ric scope (Section 3.3.3.1), which also means symmetric activation units
(Section 3.3.2.2).
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.4.2 95

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
The template-based schema can be used to specify the upgrade of existing entities.
Their logical identity remains the same within the information model, but they will
become instances of a different AMF entity type, and, accordingly, some of their con-
figuration attributes are also modified by the upgrade.

The following items must be specified for existing entities:

• the target node(s) and the software bundles to be installed and uninstalled on
them,

• the symmetric activation units (that is, the deactivation unit and the activation
unit contain the same set of entities), and

• the configuration changes for the entities targeted by the upgrade step.

6.4.2.1.1 Target Node

The target nodes for the installation and uninstallation operations are defined by the
AMF cluster or by an AMF node group to which the nodes (as AMF nodes) belong.
The appropriate name needs to be specified in the attribute of the
targetNodeTemplate element.

On each of the nodes selected this way, the software bundles in the swRemove ele-
ments must be uninstalled, and those in the swAdd elements must be installed at the
path indicated by the pathPrefix attribute at the path indicated by the pathPrefix
attribute.

By default, the AMF node is also the symmetric activation unit for the rolling upgrade
specified through templates. In this case, the administrative operations defined for
the upgrade step (Section 3.3.2.3) are also applied to the AMF node. The number of
nodes determines the number of upgrade steps that need to be performed within the
procedure, as each step shall upgrade one node at a time.

If the activation unit is not the entire AMF node, the activationUnitTemplate
element (see next section) can be used.

6.4.2.1.2 Activation Unit Template

The actions requiring administrative operations within an upgrade step are applied to
the entities listed in the symmetric activation unit belonging to the upgrade step.
Thus, the symmetric activation unit template should only identify entities on which the
appropriate administrative operations are valid.

The activationUnitTemplate element specifies the selection criteria for entities
composing the symmetric activation units within AMF nodes. They can include enti-
96 SAI-AIS-SMF-A.01.02 Section 6.4.2.1.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
ties selected based on their type (type), their parent (parent) or the combination of
these.

1. Use of the Parent Element Only

In the parent element, only a service group can be specified. If no type is specified,
the activation units will include the service units of the service group. In this case, the
upgrade procedure must upgrade one service unit at a time within the service group.
This means that a separate upgrade step is performed for each service unit if there
are multiple service units on the same node. The installation and uninstallation opera-
tions of these steps will target the same node, while the administrative operations will
target each service unit on the node separately, as each of them represents a sepa-
rate symmetric activation unit. Note that service units of different service groups can
be collected together into the same symmetric activation unit, which then will include
one service unit of each service group.

It is also possible that there is no service unit of the specified service group hosted on
a node identified as a target node. In this case, still the installation and uninstallation
operations must be performed for these nodes. The order of nodes for these opera-
tions is undefined and irrelevant as, by definition, the activation unit must encompass
all the entities with which these operations may interfere and there are no activation
units on these nodes.

2. Use of the Type Element Only

In the type element, a service unit type or a component type can be specified. If no
parent is specified, the symmetric activation units will be the service units or the com-
ponent of the specified type. Appropriately, if there are multiple entities of the same
type collocated on the node, the upgrade procedure must upgrade one service unit or
component of the specified type at a time. This means that there should be a sepa-
rate upgrade step performed for each such symmetric activation unit. Just as in case
of the parent element, the installation and uninstallation operations of these steps will
target the same node, while the administrative operation will target different symmet-
ric activation units.

Again, components of different component types or service units of different service
unit types may be collected together into the same symmetric activation unit. How-
ever, component types and service unit type must not be used together because a
component type must be used together with the upgrade step’s restart option, as the
only administrative operation available on AMF components is the restart operation.
This means that the upgrade step on these symmetric activation units is executed
according to the reduced set of actions as specified in Section 3.3.2.3.
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.4.2.1.2 97

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
It may also happen that there is no entity of any of the specified types hosted on a
node identified as a target node. The installation and uninstallation operations must
be performed for these nodes as well, but the order of nodes for these operations is
undefined and irrelevant.

3. Use of the Type and the Parent Elements Together

The parent element which defines a service group may be used together with the
type element specifying a component type. In this case, the activation units are com-
posed of the components of the specified type within the service units identified by
the service group. This option must be used together with the upgrade step’s restart
option, as the only administrative operation available on AMF components is the
restart operation, and the upgrade step is executed with the reduced set of actions
(Section 3.3.2.3).

It may also happen that there is no component satisfying the criteria hosted on a
node identified as a target node. The installation and uninstallation operations are
performed for these nodes as well, but the order of nodes for these operations is
undefined and irrelevant.

4. Example

The following example demonstrates the use of these schema elements:

There are four nodes N1, N2, N3, and N4 belonging to a node group NG. Two service
groups are distributed on this same node group. SG1 has three service units {SU1,
SU2, SU3} of type SUT1 that are hosted on nodes N1, N2, and N3 respectively. Ser-
vice Group SG2 has five service units {SU4, SU5, SU6, SU7, SU8} of type SUT2.
SU4 is hosted on N1, SU5 on N2, SU6 on N3 and SU7 is collocated with SU8 on
node N4. SUT1 and SUT2 are built from the same component type CT1, SUT1 hav-
ing two instances of it in each service unit with RDNs c1 and c2, SUT2 allowing one
instance with an RDN c.

Different symmetric activation units can be specified depending on the use of the dif-
ferent schema elements (see Table 3):
98 SAI-AIS-SMF-A.01.02 Section 6.4.2.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
Note that in the second row there is potentially an additional upgrade step that installs
and uninstalls the necessary software bundles on the fourth target node, which hosts
no symmetric activation unit.

Since the last two rows identify activation units that are composed of components
only, the upgrade step must specify the restart option.

6.4.2.1.3 Target Entities

The target entity template element specifies the configuration updates that need to be
in place for each upgrade step to succeed. Thus, the configuration updates may tar-
get any entity that is represented in the Information Model Management Service.
Appropriately, it should be possible to select any such entity and specify the required
modifications.

Within each symmetric activation unit, the entities targeted by the upgrade may only
be a subset of the activation unit. These are the entities the configuration of which
needs to be changed. Therefore, the target entities may be selected in addition to the
specification of the activation unit, but if the symmetric activation units coincide with
the entities that are being upgraded in each step, this selection criteria can be omit-
ted. However, the template for the IMM modification operation still must be specified.

Table 3 Valid Symmetric Activation Unit Specifications Using Templates

Target
node
template

Parent
element

Type
element

Number
of
upgrade
steps

Entities in the symmetric activation units

NG - - 4 {N1}, {N2}, {N3}, {N4}

NG SG1 - 4 {SU1}, {SU2}, {SU3}, {}

NG SG2 - 5 {SU4}, {SU5}, {SU6}, {SU7}, {SU8}

NG SG1
SG2

-
-

5 {SU1, SU4}, {SU2, SU5}, {SU3, SU6}, {SU7}, {SU8}

NG - CT1 11 {SU1/c1}, {SU2/c1}, {SU3/c1}, {SU1/c2}, {SU2/c2},
{SU3/c2}, {SU4/c}, {SU5/c}, {SU6/c}, {SU7/c},
{SU8/c}

NG SG2 CT1 5 {SU4/c}, {SU5/c}, {SU6/c}, {SU7/c}, {SU8/c}
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.4.2.1.3 99

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
As in case of the symmetric activation unit, there are three ways to specify the tar-
geted entities: By the parent entity, by the entity type, or by the combination of these.
These schema elements work in the same way as shown for the activation units.

For example, to upgrade the configuration of the service units of a particular service
group, their parent (the service group) can be specified. Alternatively, if configuration
of components of a particular type need to be modified on each node or in each ser-
vice unit (depending on the symmetric activation unit), the component type can be
given. Finally, if a service unit type used in a service group is composed of multiple
component types, from which only one component type is being upgraded, then both
the parent (the service group) and the type (the component type) can be specified as
target for the IMM modifications described in the template.

For each such target entity set specified, the IMM modification operations are given in
the modifyOperation elements.

There could be multiple target entity templates within a scope. The Software Manage-
ment Framework needs to calculate for each symmetric activation unit the entities
identified by the different target entity templates and apply all the modifications within
the step.

6.4.2.1.4 Update Template

The update template specifies the modification of the attributes of the upgraded enti-
ties. This is given in the modifyOperation element. For each target entity template
a set of modifications can be specified.

The IMM API for modification requires the object name; therefore, the
modifyOperation element allows for an object DN attribute. However, since the
target entity template identifies the entity to be modified, it does not need to be given.
For such an entity, only the attribute modifications need to be given by specifying the
operation, the attribute, and its value(s). These modifications are applied to each tar-
get entity identified by the template on each upgrade step.

For a target entity that is a compound entity, modifications of the member entities can
be specified among the modifications for the target entity itself. In this case, however,
the name of the modified member entity needs to be given, which must be an RDN
relative to the compound entity. Note that this RDN must be applicable to any target
entity selected by the given target entity template.

For example, when the target entities are selected as the service units of a service
group, it is possible that not only the version attributes of the service units, but also
the version attributes of the components of these service units need to be modified
100 SAI-AIS-SMF-A.01.02 Section 6.4.2.1.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
during the upgrade. For the service units, the modifyOperation shall not specify
the name attribute, as they are identified by the service group, and on each step, only
one service unit is upgraded. However, to identify the component whose version
attribute needs to be modified, the modifyOperation element may specify the
RDN relative to the service unit’s name. Alternatively, if there is only one component
of the given type in each service unit, it may be selected by using the parent and the
type elements together in the selection criteria.

6.4.2.1.5 Upgrade Step of a Rolling Upgrade

The upgrade step of the standard rolling upgrade method includes two options:

• the retry option, which specifies the number of times the upgrade step may be
retried in case of failure (Section 4.2.2.2);

• the restart option, which indicates which set of actions of the upgrade step is
applied (Section 3.3.2.3). If the option is set, the simplified set of actions is used
in each upgrade step, which simply restarts the symmetric activation unit after
the modifications are applied to the information model. This simplified upgrade
step does not go through the full locking-termination-instantiation-unlocking
cycle. This option is applicable if the target entities require no offline installation
and uninstallation operations and they are restartable.

Additionally, a number of customized callbacks may be specified for the upgrade
step, which is done by specifying the time a callback needs to be issued
(customizationTime) and the callback itself (callback). Each required callback
is specified as described in Section 6.1.1.4. The timing is determined by the associ-
ated predefined condition elements onStep and atAction, which are described in
the next subsection.

6.4.2.1.6 Timing of Callback Actions Within the Procedure

The onStep element specifies at which step the callback is issued within the proce-
dure. The atAction specifies at which action of the selected step the callback is
invoked.

The onStep element can be one of the following choices:

• on each step (onEachStep), in which case the callback label is used multiple
times within the upgrade procedure, so the registered process needs to distin-
guish the steps if necessary by the DN of the upgrade step object, which is also
provided as a parameter in the callback,

• on the first step (onFirstStep), in which case the callback is issued only once
on the first iteration of the upgrade step,
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.4.2.1.5 101

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
• on the last step (onLastStep), in which case the callback is issued only once
on the last iteration of the upgrade step,

• half way during the procedure (halfWay), in which case the callback is issued
only once on the iteration that is calculated as int(N/2)+1 step of the upgrade
procedure.

Within a given step, the callback may be issued (atAction element) at one of the
following situations:

• before the deactivation unit is locked (beforeLock),
• before the deactivation unit is terminated (beforeTermination),
• after the information model has been modified (afterImmModification),
• after the restart or instantiation of the activation unit (afterInstantiation),

or
• after the activation unit was unlocked (afterUnlock).

If the restart option of the upgrade step is set, only the afterImmModification or
the afterInstantiation options are applicable.

6.4.2.2 Specification of Single-Step Upgrades

The single-step upgrade method specification is intended to be used when new enti-
ties are added to the system and/or when old entities are removed from the system’s
deployment configuration. The single-step upgrade method can also be used to
upgrade existing entities, in particular, when locking the upgrade scope does not cre-
ate a service outage.

A procedure of a single-step upgrade is specified by defining its upgrade scope
(upgradeScope) and upgrade step (upgradeStep) options, regardless of whether
it modifies existing entities or adds new and/or removes old entities.

6.4.2.2.1 Deactivation Unit Specification

The entities to be removed are specified in the deactivation unit portion of the
upgrade scope description of the forAddRemove element.

The deactivation unit is specified by the actedOn element either as a list or as a tem-
plate of entities that compose the deactivation unit. The lock and termination opera-
tions are applied to all of the entities listed and/or matching the template as described
in Section 3.3.2.3.
102 SAI-AIS-SMF-A.01.02 Section 6.4.2.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
Within the deactivation unit, the entities that need to be removed are again either
listed explicitly in the byName element or described by a template in the
byTemplate element. These entities are removed from the information model.

For the uninstallation of the relevant software, the software bundles must be specified
in the swRemove elements. Additionally, for each bundle, the list of nodes on which
these operations are performed may be given by specifying at least one of the AMF
node ([2]) or the CLM node ([5]). If no node is specified, the software bundles need to
be removed from all the nodes that host any entity included in the deactivation unit
(by the actedOn element).

6.4.2.2.2 Activation Unit Specification

The entities to be added to the system configuration are specified in the activation
unit portion of the upgrade scope description of the forAddRemove element.

The activation unit is specified by the actedOn element either as a list or as a tem-
plate of entities that compose the activation unit. The instantiation and unlock opera-
tions are applied to all of the entities listed and/or matching the template of the
actedOn element (see also Section 3.3.2.3).

Within the activation unit, the entities that are being added are completely specified in
the added element. This specification provides the name of the parent object in IMM,
the type of the IMM object that represents the entity, and the values for each of the
necessary attributes. Based on the specification, the Software Management Frame-
work shall create these objects using the IMM OM-API. They should be added to the
model in the locked-instantiation administrative state.

Again, the software bundles (swAdd) must be specified for the software installation.
For each bundle, the list of nodes on which these operations are preformed may be
given by specifying at least one of the AMF node ([2]) or the CLM node ([5]). If no
node is specified, the software bundles need to be installed on all the nodes that host
any entity included in the activation unit by the actedOn element.

6.4.2.2.3 Symmetric Activation Unit Specification

The entities to be modified in the system configuration are specified in the activation
unit portion of the upgrade scope description of the forModify element.

The symmetric activation unit itself is specified by the actedOn element either as a
list or as a template of entities that compose the activation unit. The lock, termination,
instantiation, and unlock or the restart operations are applied to all of the entities
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.4.2.2.2 103

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
listed and/or matching the template as described for the upgrade step (see
Section 3.3.2.3).

The software bundles to be removed (swRemove) and to be installed (swAdd) must
be specified. They will be removed from and/or installed on all the nodes that host
any entity included by the actedOn element.

Within the symmetric activation unit, the entities targeted by the upgrade may only be
a subset of the activation unit. Therefore, the target entities may be selected in addi-
tion to the specification of the activation unit. If the symmetric activation unit coincides
with the entities that are being modified by the single-step upgrade, the parent and
type elements of the targetEntityTemplate can be omitted. However, the tem-
plate for the IMM modification operation still must be specified.

The target entity template element is the same used in the rolling upgrade method
(see Section 6.4.2.1.3). As discussed earlier, there are three ways to specify the tar-
geted entities: by the parent entity, by the entity type, or by a combination of these.
For each such target entity set specified, the IMM modification operations are given in
the modifyOperation elements, as described in Section 6.4.2.1.4.

There could be multiple target entity templates for the single step. For the symmetric
activation unit, the Software Management Framework needs to determine the entities
identified by the different target entity templates and apply all the modifications within
the step.

6.4.2.2.4 Upgrade Step of a Single-Step Upgrade

The upgrade step of the standard single-step upgrade method includes a single
option, the retry option, which specifies the number of times the upgrade step may be
retried in case of failure (Section 4.2.2.2).

It may also specify customized callbacks as described in Section 6.1.1.4. As in this
case only one step is performed, the timing needs to be given within the step by spec-
ifying the atAction element (see Section 6.4.2.1.6) only.

6.5 Campaign Wrap-Up
The campaign wrap-up section specifies any additional actions and timing that may
be necessary for the campaign to be considered completed and committed.

The actions may be part of the campaign verification, actions reversing some of the
effects of actions performed at campaign initialization or otherwise necessary to leave
104 SAI-AIS-SMF-A.01.02 Section 6.4.2.2.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification
the system in a consistent state, or actions related to some cleanup after the com-
pleted campaign.

The timing allows for a staged execution of the campaign wrap-up while still different
levels of error recovery are possible. It requires the specification of two waiting tim-
ers, waitToComplete and waitToAllowNewCampaign, which are explained in
the following subsections.

6.5.1 Completion of the Upgrade Campaign

Even if all the procedures of the campaign have been executed, in many cases, the
campaign cannot be considered completed and cannot be committed right away:
some actions may be required to verify the results or move the system into a consis-
tent state.

Actions that are required for the decision whether the campaign may be committed
must be specified in the campCompleteAction element and must be performed
after all procedures were successfully executed.

In addition, a waiting period may be specified during which the system is under obser-
vation, and the campaign state is still in the Executing state; hence, the detected
failures are still correlated with the campaign and may result in moving the campaign
into a failure state. Accordingly, all the protective measurement taken for the cam-
paign are kept intact for this time. This observation period is specified by the
waitToComplete element.

The waitToComplete timer is started after the campCompleteAction was suc-
cessfully executed. The commit administrative operation may only be issued after the
waitToComplete timer expired. It is valid to set this timer to zero.

When waitToComplete time elapses, the following actions take place:

• the campaign is considered completed, its state changes to Execution Com-
pleted, as described in Section 5.3.3, or to Rollback Completed, as described in
Section 5.3.10;

• the administrator can initiate the commit operation (refer to Section 4.1.4 and
Section 9.3.2).

Once the commit operation has been initiated, resources that would allow campaign
rollback (Section 4.2.2.3) are released. (This includes the resetting of the mainte-
nance status of AMF service units.) However, a fallback (Section 4.2.2.4) operation
still remains possible.
AIS Specification SAI-AIS-SMF-A.01.02 Section 6.5.1 105

Service AvailabilityTM Application Interface Specification
Upgrade Campaign Specification

1

5

10

15

20

25

30

35

40
6.5.2 Committing the Upgrade Campaign

An optional customized callback action (callbackAtCommit) has been predefined
to specify the need to inform registered processes that the commit administrative
operation has been issued. It is specified according to Section 6.1.1.4.

Other actions that are not decisive with respect to committing the campaign may also
be performed after the campaign has been committed. These actions are specified in
the campWrapupAction element, which follows Section 6.1.1. The outcome of
these actions have no impact on the campaign’s success; however, they may impact
the system’s normal operation.

Additionally, the second timer (waitToAllowNewCampaign) may specify a further
time period that shall elapse before all the remaining resources associated with the
campaign are freed up. During this time period, the Software Management Frame-
work cannot correlate errors with the campaign in any more; however, the fallback
operation is still available, should an error associated with the campaign occur. The
fallback operation must be triggered by an administrator. This time period also blocks
the initiation of any new upgrade campaign that, for example, could overwrite the
backup created for this campaign and so preclude the fallback.

Once the waitToAllowNewCampaign timer expires, a new system backup opera-
tion becomes available, enabling this way the initiation of a new campaign. When this
time elapses, the information model is cleaned up and the IMM objects that are not
necessary in the system configuration are removed. In particular, the software bundle
objects and the entity type objects that represent software that is not in use any more
are deleted from the Information Model Management Service. The objects to be
removed are listed by their name in the removeFromImm element.

If the waitToAllowNewCampaign timer is zero, the associated actions
(campWrapupAction and removeFromImm) are completed as soon as the adminis-
trator issues the commit operation.
106 SAI-AIS-SMF-A.01.02 Section 6.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7 Entity Types File
This chapter presents the XML schema for software bundles and for AMF entity pro-
totypes to be used by software vendors to describe their SA Forum-related product in
entity types files [8].

The AMF entity prototypes in the entity types file describe the software implementa-
tion from the perspective of its integration with the Availability Management Frame-
work. That is, the prototypes provide all the information necessary to configure the
derived AMF entity types (in IMM) and their entities using this software as required by
Availability Management Framework.

The assumption is that if a software implementation has no constraints with respect to
an AMF configuration attribute or feature, that is, any configuration (value) is accept-
able, then there is no need to provide any information for that feature or attribute in
the entity types file. Hence, prototypes are only partially specified types. Information
is required when particular values or value ranges are expected in the configuration,
or if there is any limitation on the composition of the entities of the same or different
entity types. Accordingly, the XML schema defined here for the AMF entity prototypes
covers the configuration attributes and features of the different AMF entity types;
however, many of the XML elements and attributes are left as optional, meaning that
if the element or attribute is not specified by the vendor, then any configuration value
or any arrangement of entities are permitted by the software implementation.

The subsequent sections introduce the use of the XML schema for the AMF entity
prototypes from this perspective. This introduction remains at a high level. More
details can be found in the entity types file XML schema.

7.1 Software Bundle
Software bundles must have a unique distinguished name (DN), as described in
Section 3.2.4.

7.1.1 XML Schema for Software Bundles

7.1.1.1 Bundle Identification

Within the entity types file (see Section 3.2.5), each software bundle’s unique name is
used when entity prototypes refer to the bundle.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 7 107

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.1.1.2 Bundle Handling Operations

Section 3.2.3 presented the bundle handling operations and their use. For each soft-
ware bundle, these operations are specified as part of the software bundle descriptor.
The attributes are defined in this section.

The operations are grouped as installation and removal operations. For each group,
the online and the offline portion is specified separately. Each of these portions con-
tains a CLI command, which is specified by two strings, one for the command name
along with the relative path, and another one for the command line arguments.

In addition, the scope of disruption must be provided for the offline operations by
choosing one from the following options:

• Hardware element—the operation may affect any entity within the hardware ele-
ment, such as the physical node (for instance, hardware reboot).

• Execution environment—the operation may affect any entity within the execution
environment of the logical node (for instance, operating system restart).

• CLM node—the operation may affect any entity within the CLM node (for
instance, CLM node lock, see [5]).

• AMF node—the operation may affect any entity within the AMF node (for
instance, AMF node restart, see [2]).

• Service unit—the operation may affect any entity within the service unit (for
instance, service unit restart, see [2]).

The assumption is that if an offline operation is necessary, it will at least affect a ser-
vice unit.

7.1.1.3 Schema Summary

The following table summarizes the XML schema elements for the software bundle,
namely their presence and their attributes. For each element, the parent element is
given and a cross-reference is specified if the element is used in conjunction with or
as an alternative to other elements. The presence is specified as M—mandatory,
108 SAI-AIS-SMF-A.01.02 Section 7.1.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
O—optional, or A—alternative. In the latter case, the Cross-Reference column refers
to the items among which the choice shall be made.

7.2 AMF Entity Types and their Prototypes

7.2.1 Naming and Versioning

The basic information model of the software catalog is refined for software entity
types of the Availability Management Framework, as shown in the following table.

Table 4 XML Schema Elements of the Software Bundle Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 swBundle M name M -

2 removal M 1 -

3 offline O 2, 11 -

4 command M 3, 10 -

5 args M 3, 10 -

6 serviceUnit A 3 6-10

7 amfNode A 3 6-10

8 clmNode A 3 6-10

9 executionEnvironment A 3 6-10

10 hardwareElement A 3 6-10

11 online O 2,11 -

12 installation M 1 -

Table 5 AMF Entity Types Specification

Base Entity Types Versioned Entity Types Entities

component service base type component service type component service instance

service base type service type service instance

component base type component type component
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2 109

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
The main role of the base AMF entity types is to group versioned AMF entity types
that belong together by some criteria. Some of these criteria may be reflected by
some SA Forum-defined attributes; however, in many cases, these criteria are imple-
mentation-specifics that are not represented in any of such attributes.

The grouping of the AMF entity types is reflected primarily by their name.

The name of an AMF base entity type is a DN of the following format:

safXXXType=<name>

Where XXX stands for Comp, Su, Sg, App, Srv, and Cs as appropriate. For example,
safCompType for component types, safSuType for service unit types.

The naming of AMF entity types does not determine any hierarchical relationship
among these types. Any such relationship is defined by other attributes. This allows
for the reuse of the same type in multiple compound entity types, for instance, the
same component type can be used in different service unit types, if required.

The structure of LDAP names is used instead to reflect the association of versioned
entity types with a particular base entity type, as their DN is defined as an RDN fol-
lowed by the base entity type’s DN.

The RDN of an AMF versioned entity type is

safVersion=<version>

The <version> part of a name is not specified in more details. It is an SaStringT.
Future releases of the Software Management Framework may define versioning
rules.

The DN of an AMF versioned entity type is

service unit base type service unit type service unit

service group base type service group type service group

application base type application type application

Table 5 AMF Entity Types Specification (Continued)

Base Entity Types Versioned Entity Types Entities
110 SAI-AIS-SMF-A.01.02 Section 7.2.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
safVersion=<version>, safXXXType=<name>

The upgrade campaign specification [9] allows for the specification of base and ver-
sioned entity types to be added to the system information model.

7.2.2 Other Attributes

The AMF entity types serve a different purpose at software delivery and in a running
system. At delivery, they are partially specified entity prototypes, from which fully
specified entity types need to be derived for runtime.

At software delivery, the most important role of the entity prototypes is to specify any
restriction or limitation a software implementation may have. Based on this informa-
tion, a correct deployment configuration can be determined. Therefore, this descrip-
tion should indicate the widest possible usage of the implementation delivered by a
vendor, and it should typically contain only implementation limitations. This informa-
tion is given as entity prototypes in the entity types XML file accompanying a software
bundle and consists typically of attributes that provide compatibility information
among types and attributes, which specify value ranges valid for the given implemen-
tation.

In a running system, though the information provided by the prototypes about the
valid value ranges is still relevant for writable configuration attributes, it is not enough.
Additional information is necessary to fully specify the types, as the AMF entity types
are used to simplify the Availability Management Framework configuration by:

• collecting attributes that are common for all entities of a given type and specify-
ing their value and by

• specifying the default values for those attributes that may be configured individu-
ally for each entity.

All these categories of attributes must be present and specified for the software cata-
log portion of the information model, so that the deployment configuration is fully
specified. As opposed to this, the XML schema for the entity types file contains few
mandatory elements and attributes of those elements. In the following sections dis-
cussing the XML schema of the AMF entity prototypes, it is always indicated whether
an element or attribute is mandatory or not, particularly if it cannot be determined
from the schema itself.

7.2.3 XML Schema for AMF Entity Prototypes

The complete XML schema is provided in [8]. This section presents only the elements
describing the different AMF entity prototypes to provide a context for their usage for
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.2 111

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
anyone that intends to develop such prototypes and deliver them to SA Forum sys-
tems.

A versioned entity type is associated with a given software implementation or code. In
case of the AMF versioned entity types, it is the component type and the component
service type that are directly associated with a software implementation delivered in a
bundle. Therefore, a software bundle must specify at least the component prototypes
and the component service prototypes it delivers, which is done by providing an entity
types file that describes these AMF entity prototypes. All the other AMF entity proto-
types are optional in the entity types file, and their aim is to facilitate the task of the
system integrator.

7.2.3.1 Component Prototype

The component prototype element (CompType) is mandatory in an entity types file
accompanying a software bundle. Each component prototype element must have a
name and a version attribute. It has the following mandatory elements:

• provided CS prototypes (providesCSType),
• component category, which is a choice of SA-aware (saAware), proxied

(proxied), or non-proxied non-SA-aware (unproxiedNonSaAware), and a
• reference to the software bundle (bundleReference).

Optionally, it may also specify:

• the list of component prototypes with which this prototype is capable of collabo-
rating in a redundancy scheme (peerCompatibility),

• whether the component prototype disallows restart (disableRestart),
• the error recovery action recommended by the vendor (recoveryOnError),
• a default CLC-CLI timeout (defaultClcCliTimeOut),
• the pair of CLC-CLI commands to start and stop active monitoring (amStartCmd

and amStopCmd), and
• whether the component prototype is upgrade aware (upgradeAware).

7.2.3.1.1 Provided CS Prototypes

For each provided CS prototype, the name and the version attributes and the compo-
nent capability must be specified. For any of the CS prototypes that indicate container
role for the component prototype, the isContainer attribute needs to be set. The
component capability is a choice of one of the following:

• x active and y standby (xactiveandystandby),
• x active or y standby (xactiveorystandby),
112 SAI-AIS-SMF-A.01.02 Section 7.2.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
• one active or y standby (oneactiveorystandby),
• one active or one standby (oneactiveoronestandby),
• x active (xactive), or
• one active (oneactive).

For each x and y, an optional element is provided to specify any upper limit of the
number of CSIs a component of the given prototype can take in the appropriate role;
optionally, a default value may be given if there is a default value recommended by
the vendor.

If the component prototype relies on another component prototype in providing the
CS prototype, the optional requiredCompType element shall be used. This can be
further refined by the withCSType element if a particular CS prototype needs to be
provided by this other component prototype. The specification of these elements also
means that components of the required prototype need to be collocated in the same
service unit.

7.2.3.1.2 Component Category

Each component prototype belongs to a given component category. The elements
that can be specified for each category are different:

⇒ saAware
• The saAware element describes component categories that implement the

AMF API. Contained component prototypes require a container component
prototype, which is described by the containerCompType element. Other
categories are independent as they are directly managed by AMF. There is a
mandatory choice between the independent and the containerCompType
elements:
⇒ The independent element—it has

• two mandatory child elements with the instantiate (instantiateCmd)
and the cleanup (cleanupCmd) CLC-CLI commands, and

• one optional child element:
• proxied component prototypes (proxiedCompType) of components

that can be proxied by components (of the given prototype) acting as
proxy. These proxied component prototypes are specified by the name
and version attributes and by the name and version of the correspond-
ing component service prototype. In addition, for each proxied compo-
nent prototype, the healthcheck prototypes that a proxy component
(of the given prototype) recognizes and can implement may be speci-
fied.
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.1.2 113

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
⇒ The containerCompType element—it specifies the name and optionally
the version of the container component prototype and the associated con-
tainer CS prototype that a contained component prototype requires.

• Additional optional elements:
• The quiescingComplete element specifies the time period within which a

component of the given prototype is expected to answer with an
saAmfCSIQuiescingComplete() call. It needs to be specified if the
implementation requires a minimum timeout value for correct operation, in
which case a default value can also be recommended by the vendor.

• The healthcheck prototypes implemented by components of the given
component prototype. Each of them has a mandatory key attribute and an
optional healthcheck variant attribute. Additionally, the timers for health
check period and maximum duration may be specified if they require a min-
imum value or if there is a vendor-recommended default.

⇒ proxied

• An optional element with the cleanup (cleanupCmd) CLC-CLI command that
is required if a component of this prototype is intended to be instantiated as a
local component.

• An optional attribute that specifies if the proxied component prototype is pre-
instantiable. If it is so, the optional quiescingComplete timer may be speci-
fied in the same manner as it is used for saAware component prototypes.

⇒ unproxiedNonSaAware

• Mandatory attributes that are used to provide the instantiate, the terminate,
and the cleanup CLC-CLI commands (instantiateCmd and
terminateCmd).

7.2.3.1.3 CLC-CLI Commands

All CLC-CLI commands are specified as two strings: The first string contains the CLI
command (including a relative path) and the second one specifies any required argu-
ment.

7.2.3.1.4 Upgrade Awareness

The upgradeAware element specifies the parameters of the callbacks recognized
by the component prototype. The upgrade campaign specification predefines a set of
conditions (Section 6.3.3.2) under which the Software Management Framework calls
back registered processes. In the callback itself, a label and a user-defined string are
returned as parameters to the registered process, which together identify for the pro-
cess the condition under which the callback is made.
114 SAI-AIS-SMF-A.01.02 Section 7.2.3.1.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
The labels and the user-defined strings identifying predefined conditions for the com-
ponent prototype are specified in the initCallback, backupCallback,
rollbackCallback, and commitCallback elements. The user-defined string is
optional, and multiple strings can be specified for the same label. For each user-
defined string, the further restrictions are described in the condition string element.
For each of the callbacks, a timer element may specify the minimum waiting time
and the waiting time recommended by the vendor.

Within the upgradeAware element, the otherCallback element is used to specify
additional callbacks that the component prototype is capable of interpreting. They are
specified the same way as the callbacks for predefined conditions, except that the
condition string element must fully describe the condition for such a callback, for
example, whether the callback needs to be invoked on the first step of a rolling
upgrade before locking the deactivation unit.

7.2.3.1.5 Software Bundle Reference

Each component prototype must refer to the software bundle that delivers it
(bundleReference). The reference is provided by the unique name of the software
bundle, as described in Section 3.2.1.3. The software bundle element (Section 7.1.1)
must be provided in the same entity prototypes file regardless of whether the entity
prototypes file is accompanying this given bundle or another one.

7.2.3.1.6 Schema Summary

The following table summarizes the discussed XML schema elements for component
prototypes, namely their presence and their attributes. For each element, the parent
element is given, and a cross-reference is provided if the element is used in conjunc-
tion with or as an alternative to other elements. The presence is specified as M—
mandatory, O—optional or A—alternative.
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.1.5 115

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
Table 6 XML Schema Elements for Component Prototypes Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 CompType M name M

2 version M 1, 5

3 peerCompatibility O name M 1

4 version O 3, 23,
24, 38,
39

5 providesCSType M name M 1

6 xactiveandystandby A 5 6-11

7 xactiveorystandby A 5 6-11

8 oneactiveorystandby A 5 6-11

9 oneactiveoronestand
by

A 5 6-11

10 xactive A 5 6-11

11 oneactive A 5 6-11

12 numMaxActiveCsi O upper-
Bound

M 6, 7, 10

13 default O 12, 14,
16, 18,
19, 31,
32, 43

14 numMaxStandbyCsi O upper-
Bound

M 6, 7, 8

15 saAware A 1 15, 25, 27

16 quiescingCompleteTi
meout

O lower-
Bound

M 15, 25

17 healthcheck O 15
116 SAI-AIS-SMF-A.01.02 Section 7.2.3.1.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
18 period M lower-
Bound

M 17

19 maxDuration M lower-
Bound

M 17

20 independent O

21 instantiateCmd M 20, 27

22 cleanupCmd M 20

23 proxiedCompType O name M 20

24 containedCompType O name M 20

25 proxied A prein-
stantia-
ble

O 1 15, 25, 27

26 cleanupCmd O 25

27 unproxiedNonSaAware A 1 15, 25, 27

28 terminateCmd M 27

29 disableRestrt O 1

30 recoveryOnError O 1

31 defaultClcCliTimeOu
t

O lower-
Bound

M 1

32 defaultCallbackTime
Out

O lower-
Bound

M 1

33 amStartCmd O 1 34

34 amStopCmd O 1 33

35 bundleReference M name M 1

36 command M 21, 22,
26, 28,
33,34

Table 6 XML Schema Elements for Component Prototypes Specification (Continued)

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.1.6 117

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
37 args M 21, 22,
26, 28,
33,34

38 requiredCompType O name M 5

39 withCSType O name M 38

40 upgradeAware O 1

41 initCallback O label M 40

42 condition O string-
Param

M 41, 44-
47

43 timer O lower-
Bound

M 41, 44-
47

44 backupCallback O label M 40

45 rollabckCallback O label M 40

46 commitCallback O label M 40

47 otherCallback O label M 40

Table 6 XML Schema Elements for Component Prototypes Specification (Continued)

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference
118 SAI-AIS-SMF-A.01.02 Section 7.2.3.1.6 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.2 Component Service Prototype

The component service prototype element (CSType) is mandatory in an entity types
file accompanying a software bundle. It is used in association with the component
prototype element. Each component service prototype is defined by the mandatory
name and version attributes.

The CSType element has only an optional element, csAttribute, which is used to
specify the name of an attribute in component service instances. In addition, for each
attribute name, the valueRestriction element may contain further information on
the type and value range of their values. Since the Availability Management Frame-
work passes the attribute values as strings in the CSI assignment, the
valueRestriction element is primarily provided to facilitate the configuration task.

7.2.3.2.1 Schema Summary

The following table summarizes the XML schema elements for CS prototypes.

Table 7 XML Schema Elements for CS Prototypes Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 CSType M name M

2 version M

3 csAttribute O name M 1

4 valueRestriction O type O 3

5 lower-
Bound

O 4

6 upper-
Bound

O 4

7 default O 4
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.2 119

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.3 Service Unit Prototype

The specification of any service unit prototypes in the entity types file is optional.
They can be specified using the SUType element, which has two mandatory
attributes, the name and the version.

For a service unit prototype, the contained component prototypes need to be speci-
fied by their name and version. Optionally, the number of component instances can
be provided for each component prototype by specifying a value range. If no
numInstances element is specified, a service unit of the given prototype may con-
tain only one instance of that given component prototype. If the numInstances ele-
ment is specified, the lower or the upper bound may still not be specified. The default
value for the lower bound is 1 and for the upper bound is no limit.

In the service unit prototype, the provided service prototypes are also listed
(providesServiceType) with their names and versions. Each of them may specify
if any other service prototype is required to provide the service prototype
(requiredServiceType). For required service prototypes, the name is a manda-
tory attribute, but the version is optional.

A service unit prototype may also specify the fail-over element. If it is present, all
CSIs of a service unit of this prototype need to be failed over together when a compo-
nent of the service unit fails. If the fail-over element is not present, only the CSIs of
the failed component need to be failed over; the CSIs of healthy components can be
switched over.
120 SAI-AIS-SMF-A.01.02 Section 7.2.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.3.1 Schema Summary

The following table summarizes the XML schema element for SU prototypes.

Table 8 XML Schema Elements for SU Prototypes Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 SUType O name M

2 version M 1, 3, 6

3 componentType M name M 1

4 numInstances O minValue O 3

5 maxValue O 4

6 providesService
Type

M name M 1

7 requiredService
Type

O name M 6

8 version O 7

9 suFailOver O 1
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.3.1 121

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.4 Service Group Prototype

The specification of any service group prototypes in the entity types file is optional.
They can be specified using the SGType element, which has two mandatory
attributes, the name and the version.

For a service group prototype, the valid service unit prototypes need to be specified
by their name and version. Only these service unit prototypes can be used to build a
service group of this prototype. A service group may be built of service units of differ-
ent prototypes.

A service group prototype must also specify the redundancy model by choosing one
of the following elements:

• 2N (twoN)
• N+M (nPlusM)
• N-way (nWay)
• N-way-active (nWayActive)
• No redundancy (noRedundancy)

The vendor may recommend the auto-repair and the auto-adjust options. The pres-
ence of the auto-repair and the auto-adjust options reflects that the vendor recom-
mends that the Availability Management Framework initiates respectively auto-
repairs and auto-adjustments within a service group of the given prototype.

Finally, the vendor may recommend default values for the timer and the maximum
counter of the component and service unit probations.
122 SAI-AIS-SMF-A.01.02 Section 7.2.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.4.1 Schema Summary

The following table summarizes the XML schema element for service group proto-
types.

Table 9 XML Schema Elements for Service Group Prototypes Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 SGType O name M

2 version M 1 1, 6, 7

3 suType M name M 1

4 redModel M 1

5 autoRepairOption O 1

6 compProbation O period O 1

7 suProbation O period O 1

8 counter-
Max

O 6, 7

9 autoAdjust O period O 1
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.4.1 123

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.5 Service Prototype

The specification of any service prototypes in the entity types file is optional. They
can be specified using the ServiceType element, which has two mandatory
attributes, the name and the version.

For a service prototype, the contained component service prototypes need to be
specified by their name and version. Optionally, the number of component service
instances can be provided for each component service prototype by specifying a
value range. If no number is specified for a component service prototype, a service
instance of the given prototype may have only one CSI of the specified component
service prototype.

7.2.3.5.1 Schema Summary

The following table summarizes the XML schema element for service prototypes.

Table 10 XML Schema Elements for Service Prototypes Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 ServiceType O name M

2 version M 1, 3

3 csType M name M 1

4 numInstances O minValue O 3

5 maxValue O 4
124 SAI-AIS-SMF-A.01.02 Section 7.2.3.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Entity Types File
7.2.3.6 Application Prototype

The specification of any application prototypes in the entity types file is optional. They
can be specified using the AppType element, which has two mandatory attributes,
the name and the version.

For an application prototype, only the contained service group prototypes are speci-
fied by their name and version. Both attributes are mandatory.

7.2.3.6.1 Schema Summary

The following table summarizes the XML schema element for application prototypes.

Table 11 XML Schema Elements for Application Prototype Specification

Item Element Element
Presence Attribute Attribute

Presence
Parent

Element
Cross-

Reference

1 AppType O name M

2 version M 1, 3

3 sgType M name M 1
AIS Specification SAI-AIS-SMF-A.01.02 Section 7.2.3.6 125

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8 Software Management Framework API
The Software Management Framework exports an API for processes that need to be
informed about the initiation and progress of upgrade campaigns in the system in
order to synchronize some application-level actions with the upgrade process. Such a
process represents and acts on behalf of an upgrade-aware entity. In order to do so,
it must initialize the Software Management Framework library and register with the
Software Management Framework.

Typically, upgrade-aware entities are management applications or manager pro-
cesses within applications that are capable of interpreting and acting upon the infor-
mation received from the Software Management Framework.

The Software Management Framework provides callbacks to registered processes
according to the upgrade campaign specification. Registered processes should be
able to interpret these callbacks and initiate (directly or indirectly) the execution of the
necessary application-level operations. These operations may range from check-
pointing of application-level data synchronously with the upgrade campaign to appli-
cation-level verification that would be difficult to carry out in any other way. In this
second case, any detected failure needs to be reported back to the Software Man-
agement Framework to trigger an appropriate recovery operation. Therefore, regis-
tered processes must respond to the callbacks with the results of the application-level
operations associated with the upgrade campaign. The Software Management
Framework must take these responses into account in its decision about the continu-
ation of the upgrade campaign.

There is a time limit the Software Management Framework must wait for responses
to callbacks. If all the responses have been received or the timer has expired, the
campaign proceeds according to the received results and taking timeouts as a suc-
cess.

When a process registers with the Software Management Framework, it needs to
state its scope of interest. The interest is expressed as a set of filters that are
applied to callbacks specified in the upgrade campaign specification. The process will
receive any callback in any upgrade campaign that specifies a label that matches any
of the filters specified by the process.

Once a process unregisters with the Software Management Framework, it stops
receiving callbacks from the Framework that match the particular set of filters that
was given at the registration of that particular scope of interest. The same is true if the
handle that was used at the registration becomes finalized or otherwise invalidated.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 8 127

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
If a process registers with the Software Management Framework while an upgrade
campaign is already in progress, the Software Management Framework is responsi-
ble for providing subsequent callbacks only. To notify the process that a campaign is
already in progress, the Software Management Framework also initiates any callback
that indicates the campaign initiation and matches the newly registered scope of
interest; however, any time limit specified for the callback is ignored at this time.

8.1 Include File and Library Name

The following statement containing declarations of data types and function prototypes
must be included1 in the source of an application using the Software Management
Framework API:

#include <saSmf.h>

To use the Software Management Framework API, an application must be bound with
the following library:

libSaSmf.so

8.2 Type Definitions

The Software Management Framework uses the types described in the following sec-
tions.

8.2.1 Handles Used by the Software Management Framework

typedef SaUint64T SaSmfHandleT;

This type is used for the handle that is supplied by the Software Management Frame-
work to a process during initialization of the Software Management Framework library
and that is used by the process when it invokes functions of the Software Manage-
ment Framework API.

1. The file saSmf.h is packaged together with the AIS C header files.
128 SAI-AIS-SMF-A.01.02 Section 8.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.2 SaSmfPhaseT

The Software Management Framework indicates the phase of the upgrade campaign
in its callbacks to upgrade-aware entities using the SaSmfPhaseT enumeration.

typedef enum{

SA_SMF_UPGRADE = 1,

SA_SMF_ROLLBACK = 2

} SaSmfPhaseT;

The values for the SaSmfPhaseT enumeration are as follows:

• SA_SMF_UPGRADE - The upgrade campaign is in the upgrade phase. When an
upgrade campaign is initiated, it starts in the upgrade phase and remains so until
completion, or until a rollback or a fallback is initiated by an administrative opera-
tion.

• SA_SMF_ROLLBACK - The upgrade campaign is in the rollback phase. Once a
rollback administrative operation was issued on an upgrade campaign, the
upgrade campaign moves to the rollback phase and remains so until completion,
or until a fallback operation is initiated by the administrator.

8.2.3 SaSmfUpgrMethodT

typedef enum{

SA_SMF_ROLLING = 1,

SA_SMF_SINGLE_STEP = 2

} SaSmfUpgrMethodT;

The values for the SaSmfPUpgrMethodT enumeration are as follows:

• SA_SMF_ROLLING - The upgrade procedure uses the rolling upgrade method,
as described in Section 3.3.3.2.1.

• SA_SMF_SINGLE_STEP - The upgrade procedure uses the single-step method,
as described in Section 3.3.3.2.2.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.2.2 129

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.4 SaSmfOfflineCommandScopeT

typedef enum {

 SA_SMF_CMD_SCOPE_AMF_SU = 1,

 SA_SMF_CMD_SCOPE_AMF_NODE = 2,

 SA_SMF_CMD_SCOPE_CLM_NODE = 3,

 SA_SMF_CMD_SCOPE_PLM_EE = 4,

 SA_SMF_CMD_SCOPE_PLM_HE = 5

} SaSmfOfflineCommandScopeT;

The values of the SaSmfOfflineCommandScopeT enumeration are used to indi-
cate, in the entity types file, the minimum scope of disruption anticipated by the soft-
ware vendor during the execution of the offline installation and of the offline
uninstallation commands (see Section 7.1.1.2). This type is also used in the
SaSmfSwBundle object class to indicate the actual scope of disruption associated
with each of the offline commands (see FIGURE 8 on page 161).
130 SAI-AIS-SMF-A.01.02 Section 8.2.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.5 Types for State Management

8.2.5.1 SaSmfCmpgStateT

typedef enum {

SA_SMF_CMPG_INITIAL = 1,

SA_SMF_CMPG_EXECUTING = 2,

SA_SMF_CMPG_SUSPENDING_EXECUTION = 3,

SA_SMF_CMPG_EXECUTION_SUSPENDED = 4,

SA_SMF_CMPG_EXECUTION_COMPLETED = 5,

SA_SMF_CMPG_CAMPAIGN_COMMITTED = 6,

SA_SMF_CMPG_ERROR_DETECTED = 7,

SA_SMF_CMPG_SUSPENDED_BY_ERROR_DETECTED = 8,

SA_SMF_CMPG_ERROR_DETECTED_IN_SUSPENDING = 9,

SA_SMF_CMPG_EXECUTION_FAILED = 10,

SA_SMF_CMPG_ROLLING_BACK = 11,

SA_SMF_CMPG_SUSPENDING_ROLLBACK = 12,

SA_SMF_CMPG_ROLLBACK_SUSPENDED = 13,

SA_SMF_CMPG_ROLLBACK_COMPLETED = 14,

SA_SMF_CMPG_ROLLBACK_COMMITTED = 15,

SA_SMF_CMPG_ROLLBACK_FAILED = 16

} SaSmfCmpgStateT;

This enum represents the states of an upgrade campaign, as defined in Section 5.3.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.2.5 131

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.5.2 SaSmfProcStateT

typedef enum {

SA_SMF_PROC_INITIAL = 1,

SA_SMF_PROC_EXECUTING = 2,

SA_SMF_PROC_SUSPENDED = 3,

SA_SMF_PROC_COMPLETED = 4,

SA_SMF_PROC_STEP_UNDONE = 5,

SA_SMF_PROC_FAILED = 6,

SA_SMF_PROC_ROLLING_BACK = 7,

SA_SMF_PROC_ROLLBACK_SUSPENDED = 8,

SA_SMF_PROC_ROLLED_BACK = 9,

SA_SMF_PROC_ROLLBACK_FAILED = 10

} SaSmfProcStateT;

This enum represents the states of an upgrade procedure, as defined in Section 5.2.

8.2.5.3 SaSmfStepStateT

typedef enum {

SA_SMF_STEP_INITIAL = 1,

SA_SMF_STEP_EXECUTING = 2,

SA_SMF_STEP_UNDOING = 3,

SA_SMF_STEP_COMPLETED = 4,

SA_SMF_STEP_UNDONE = 5,

SA_SMF_STEP_FAILED = 6,

SA_SMF_STEP_ROLLING_BACK = 7,

SA_SMF_STEP_UNDOING_ROLLBACK = 8,

SA_SMF_STEP_ROLLED_BACK = 9,

SA_SMF_STEP_ROLLBACK_UNDONE = 10,

SA_SMF_STEP_ROLLBACK_FAILED = 11

} SaSmfStepStateT;

This enum represents the states of an upgrade step, as defined in Section 5.1.
132 SAI-AIS-SMF-A.01.02 Section 8.2.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.5.4 SaSmfStateT

typedef enum {

SA_SMF_CAMPAIGN_STATE = 1,

SA_SMF_PROCEDURE_STATE = 2,

SA_SMF_STEP_STATE = 3

} SaSmfStateT;

This enum differentiates the sets of states for upgrade campaigns, upgrade proce-
dures, and upgrade steps, as defined in Chapter 5.

8.2.5.5 SaSmfEntityInfoT

typedef enum {

SA_SMF_ENTITY_NAME = 1

} SaSmfEntityInfoT;

The preceding enum is used in Software Management Framework alarms and notifi-
cations (refer to Section 11.3.1) to convey additional information elements in the
“Additional Information” field associated with alarms and notifications.

8.2.6 SaSmfCallbackScopeIdT

typedef SaUint32T SaSmfCallbackScopeIdT;

The SaSmfCallbackScopeIdT type represents the type of an identifier for an
scopeId used by a process on a particular handle (obtained during the initialization
of an instance of the Software Management Framework library) to register a particu-
lar scope of interest for callbacks. This identifier is used to associate the callbacks to
the process for the scope of interest scopeId. The name space of the scopeId is
limited to that particular handle, and the process may reuse it with another handle
obtained by another initialization of the Software Management Framework library.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.2.5.4 133

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.7 SaSmfCallbackLabelT

typedef struct {

SaSizeT labelSize;

SaUint8T *label;

} SaSmfCallbackLabelT;

In the upgrade campaign specification, each callback is identified by a label of type
xs:string, which is converted by the Software Management Framework into a label
of type SaSmfCallbackLabelT. These labels are used to identify the stage of the
campaign; thus, an upgrade-aware entity can use them to identify the appropriate
reaction to the callback identified by the label.

A process registering on behalf of an upgrade-aware entity specifies at registration
the set of labels in which it is interested (that is, the upgrade-aware entity is capable
of interpreting them) by specifying a set of filters. Any callback that has a label match-
ing any of these filters is within the scope of interest of the registered process and
results in a callback to the process.

8.2.8 Label Filters

The Software Management Framework supports several different types of filters and
pattern matching algorithms, as defined by the following enumeration type.

8.2.8.1 SaSmfLabelFilterTypeT

typedef enum {

SA_SMF_PREFIX_FILTER = 1,

SA_SMF_SUFFIX_FILTER = 2,

SA_SMF_EXACT_FILTER = 3,

SA_SMF_PASS_ALL_FILTER = 4

} SaSmfLabelFilterTypeT;

This enum represents the values of a filter type. The corresponding pattern matching
algorithms are explained later in Table 12.
134 SAI-AIS-SMF-A.01.02 Section 8.2.7 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.2.8.2 SaSmfLabelFilterT

typedef struct {

SaSmfLabelFilterTypeT filterType;

SaSmfCallbackLabelT filter;

} SaSmfLabelFilterT;

The label filter structure defines the filter type and the filter pattern to be applied on a
callback label to determine whether there is a need to callback a given user process
for the callback specified in the upgrade campaign.

8.2.8.3 SaSmfLabelFilterArrayT

typedef struct {

SaSizeT filtersNumber;

SaSmfLabelFilterT *filters;

} SaSmfLabelFilterArrayT;

The label filter array structure defines one or more filters. Filters are passed to the
Software Management Framework by a process at registration by invoking the
saSmfCallbackScopeRegister() function. The Software Management Frame-
work does the filtering to decide whether a callback specified in an upgrade campaign
is issued to the registered process for a given registration by matching the filters (con-
tents and type) against the label of a specific callback. If the callback label matches
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.2.8.2 135

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
any of the filters specified by a process at registration, the Software Management
Framework invokes the specified callback of that registered process.

8.2.9 SaSmfCallbacksT

typedef struct {

SaSmfCampaignCallbackT saSmfCampaignCallback;

} SaSmfCallbacksT;

The SaSmfCallbacksT structure defines the various callback functions that the
Software Management Framework may invoke on a process.

Table 12 Matching Algorithm for Each Filter Type

Filter Type Matching Algorithm

SA_SMF_PREFIX_FILTER The entire filter must match the first labelSize characters
of the callback label.
Match example: Filter=”abcd”, Callback label=”abcdxyz”
Match example: Filter=”abcd”, Callback label=”abcd”
Match example: Filter=”XYz”, Callback label=”XYzaB”
Non-Match example: Filter=”xyz”, Callback label=”abcdxyz”
Non-Match example: Filter=”Xyz”, Callback label=”xyzab”
Non-Match example: Filter=”xyz”, Callback label=”xy” (The
entire filter does not match the first part of the label; only the
first two characters match.)

SA_SMF_SUFFIX_FILTER The entire filter must match the last labelSize characters
of the callback label.
Match example: Filter=”xyz”, Callback label=”abcdxyz”
Match example: Filter=”abCd”, Callback label=”abCd”
Non-Match example: Filter=”abcd”, Callback
label=”abcdxyz”
Non-Match example: Filter=”xyz”, Callback label=”yz” (The
entire filter does not match the last part of the callback label;
only the last two characters match.)

SA_SMF_EXACT_FILTER The entire filter must exactly match the entire callback label.
Match example: Filter=”abc”, Callback label=”abc”
Non-Match example: Filter=”ab”, Callback label=”abc” (The
entire filter does not match the entire event pattern.)

SA_SMF_PASS_ALL_FILTER Always matches, regardless of the filter or the callback
label. It can be used with the empty string as a filter.
136 SAI-AIS-SMF-A.01.02 Section 8.2.9 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.3 Library Life Cycle

8.3.1 saSmfInitialize()

Prototype

SaAisErrorT saSmfInitialize(

SaSmfHandleT *smfHandle,

const SaSmfCallbacksT *smfCallbacks,

SaVersionT *version

);

Parameters

smfHandle - [out] A pointer to the handle which identifies this particular initialization
of the Software Management Framework, and which is to be returned by the Software
Management Framework. The SaSmfHandleT type is defined in Section 8.2.1.

smfCallbacks - [in] If smfCallbacks is set to NULL, no callbacks are registered;
If smfCallbacks is not set to NULL, it is a pointer to an SaSmfCallbacksT struc-
ture which contains the callback functions of the process that the Software Manage-
ment Framework may invoke. Only non-NULL callback functions in this structure will
be registered. The SaSmfCallbacksT type is defined in Section 8.2.9.

version - [in/out] As an input parameter, version is a pointer to a structure con-
taining the required Software Management Framework version. In this case,
minorVersion is ignored and should be set to 0x00.
As an output parameter, version is a pointer to a structure containing the version
actually supported by the Software Management Framework. The SaVersionT type
is defined in [1].

Description

This function initializes the Software Management Framework for the invoking pro-
cess and registers the various callback functions. This function must be invoked prior
to the invocation of any other Software Management Framework API function. The
handle pointed to by smfHandle is returned as the reference to this association
between the process and the Software Management Framework. The process uses
this handle in subsequent communication with the Software Management Frame-
work.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.3 137

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
The smfCallbacks parameter points to a structure containing the callbacks that the
Software Management Framework can invoke.

If the implementation supports the version of the Software Management Framework
API specified by the releaseCode and majorVersion fields of the structure
pointed to by the version parameter, SA_AIS_OK is returned. In this case, the
structure pointed to by the version parameter is set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation

can support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation

can support for the required value of releaseCode and the returned value of
majorVersion

If the preceding condition cannot be met, SA_AIS_ERR_VERSION is returned, and
the structure pointed to by the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the lowest value of the supported release codes that
is higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that
is lower than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
138 SAI-AIS-SMF-A.01.02 Section 8.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Software Management Framework library or
a process that is providing the service is out of memory and cannot provide the ser-
vice.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other than
memory).

SA_AIS_ERR_VERSION - The version provided in the structure to which the
version parameter points is not compatible with the version of the Software Man-
agement Framework implementation.

See Also

saSmfFinalize()

8.3.2 saSmfSelectionObjectGet()

Prototype

SaAisErrorT saSmfSelectionObjectGet(

SaSmfHandleT smfHandle,

SaSelectionObjectT *selectionObject

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saAmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

selectionObject - [out] A pointer to the operating system handle that the invok-
ing process can use to detect pending callbacks. The SaSelectionObjectT type is
defined in [1].
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.3.2 139

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
Description

This function returns the operating system handle associated with the handle
smfHandle. The invoking process can use this operating system handle to detect
pending callbacks, instead of repeatedly invoking the saSmfDispatch() function
for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The operating system handle returned by saSmfSelectionObjectGet() is valid
until saSmfFinalize() is invoked on the same handle smfHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Software Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other than
memory).

See Also

saSmfInitialize(), saSmfDispatch(), saSmfFinalize()
140 SAI-AIS-SMF-A.01.02 Section 8.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
8.3.3 saSmfDispatch()

Prototype

SaAisErrorT saSmfDispatch(

SaSmfHandleT smfHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saSmfDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined for the
SaDispatchFlagsT type in [1].

Description

In the context of the calling thread, this function invokes pending callbacks for the
handle smfHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully. This value is also returned if this
function is being invoked with dispatchFlags set to SA_DISPATCH_ALL or
SA_DISPATCH_BLOCKING, and the handle smfHandle has been finalized.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.3.3 141

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
See Also

saSmfInitialize(), saSmfSelectionObjectGet(), saSmfFinalize()

8.3.4 saSmfFinalize()

Prototype

SaAisErrorT saSmfFinalize(

SaSmfHandleT smfHandle

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

Description

The saSmfFinalize() function closes the association represented by the
smfHandle parameter between the invoking process and the Software Management
Framework. The process must have invoked saSmfInitialize() before it invokes
this function. A process must call this function once for each handle it acquired by
invoking saSmfInitialize().

If the saSmfFinalize() function completes successfully, it releases all resources
acquired when saSmfInitialize() was called. Moreover, it unregisters all entities
registered for the particular handle. Furthermore, it cancels all pending callbacks
related to the particular handle. Note that because the callback invocation is asyn-
chronous, it is still possible that some callback calls are processed after this call
returns successfully.

If a process terminates, the Software Management Framework implicitly finalizes all
instances of the Software Management Framework that are associated with the pro-
cess, as described in the preceding paragraph.

After saSmfFinalize() completes successfully, the handle smfHandle and the
selection object associated with it are no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.
142 SAI-AIS-SMF-A.01.02 Section 8.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saSmfInitialize()

8.4 Registration and Unregistration of the Scope of Interest
A process uses the following functions to register and unregister with the Software
Management Framework its scope of interest for which the process wants to receive
callbacks.

8.4.1 saSmfCallbackScopeRegister()

Prototype

SaAisErrorT saSmfCallbackScopeRegister(

SaSmfHandleT smfHandle,

SaSmfCallbackScopeIdT scopeId,

const SaSmfLabelFilterArrayT *scopeOfInterest

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The Software Management Framework must
maintain the list of entities registered with each such handle. The SaSmfHandleT
type is defined in Section 8.2.1.

scopeId - [in] An identifier that uniquely identifies the scope of interest registered
by a process. The SaSmfCallbackScopeIdT type is defined in Section 8.2.6.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.4 143

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
scopeOfInterest - [in] A pointer to a structure which specifies an array of filters to
be used to select the callbacks in which the process is interested. The
SaSmfLabelFilterArrayT type is defined in Section 8.2.8.3.

Description

The saSmfCallbackScopeRegister() function is used by a process to register
its scope of interest with the Software Management Framework.

A process calls saSmfCallbackScopeRegister() to inform the Software Man-
agement Framework that the process would like to receive callbacks that have labels
matching any of the filters specified by the structure to which the scopeOfInterest
parameter points. The registered process must have supplied in its
saSmfInitialize() call the appropriate set of callback functions (Section 8.2.9).

If a handle smfHandle of a process is finalized, all registrations made using this
smfHandle will become implicitly unregistered, and any resources allocated for the
registrations will be released.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saSmfInitialize() was
incomplete, because the saSmfCallbacks pointer was NULL or the
saSmfCampaignCallback element of the SaSmfCallbacksT structure was
NULL.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Software Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other than
memory).
144 SAI-AIS-SMF-A.01.02 Section 8.4.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
SA_AIS_ERR_EXIST - This value is returned if the scopeId already exists for this
particular handle.

See Also

saSmfCallbackScopeUnregister(), SaSmfCampaignCallbackT,
saSmfInitialize(), saSmfFinalize()

8.4.2 saSmfCallbackScopeUnregister()

Prototype

SaAisErrorT saSmfCallbackScopeUnregister(

SaSmfHandleT smfHandle,

SaSmfCallbackScopeIdT scopeId

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

scopeId - [in] An identifier that uniquely identifies the scope of interest registered
by a process. The SaSmfCallbackScopeIdT type is defined in Section 8.2.6.

Description

The saSmfCallbackScopeUnregister() function can be used by a process to
unregister a previously registered scope of interest. As a consequence, the Software
Management Framework will stop providing callbacks matching that particular scope
of interest. During its life cycle, a process can register or unregister multiple times
multiple scopes of interest.

The handle smfHandle in the saSmfCallbackScopeUnregister() call must be
the same as that used in the corresponding saSmfCallbackScopeRegister()
call.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.4.2 145

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Software Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The scope of interest, identified by scopeId has not
been registered previously for this handle.

See Also

saSmfCallbackScopeRegister(), saSmfInitialize(), saSmfFinalize()

8.5 Upgrade Campaign Progress Signaling and Response

8.5.1 SaSmfCampaignCallbackT

Prototype

typedef void (*SaSmfCampaignCallbackT) (

SaSmfHandleT smfHandle,

SaInvocationT invocation,

SaSmfCallbackScopeIdT scopeId,

const SaNameT *objectName,

SaSmfPhaseT phase,

const SaSmfCallbackLabelT *callbackLabel,

const SaStringT params

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
146 SAI-AIS-SMF-A.01.02 Section 8.5 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

invocation - [in] Used to match this invocation of SaSmfCampaignCallbackT
with the corresponding invocation of saSmfResponse(). The SaInvocationT
type is defined in [1].

scopeId - [in] An identifier that uniquely identifies the scope of interest registered
by a process. The SaSmfCallbackScopeIdT type is defined in Section 8.2.6.

objectName - [in] A pointer to the DN of the object representing the upgrade cam-
paign, procedure, or step within which the callback is initiated. The SaNameT type is
defined in [1].

phase - [in] Indicates whether the given step is being executed as part of the
upgrade phase, or whether the campaign is rolling back. The SaSmfPhaseT type is
defined in Section 8.2.2.

callbackLabel - [in] Points to the structure containing the label specified for the
custom callback in the upgrade campaign specification. The
SaSmfCallbackLabelT type is defined in Section 8.2.7.

params - [in] The upgrade campaign specification may also indicate a formatted
string to be passed to upgrade-aware entities. The SaStringT type is defined in [1].

Description

This callback is invoked when, within the upgrade campaign, a custom action is
reached that specifies a callback operation. The parameter objectName points to
the name of the context (that is, the upgrade campaign, procedure, or step) that best
qualifies the scope within which the custom action was triggered.

Within the preceding context, callbackLabel points to a structure that represents a
label in the upgrade campaign. This label identifies which particular custom action
triggered the callback and shall be specified in such a way that the targeted upgrade-
aware entities can easily recognize and interpret the callback (see Section 7.2.3.1.4).
It is recommended that this label identifies at least the targeted upgrade-aware enti-
ties as well as the operation required from them. Additional parameters may be spec-
ified in the upgrade campaign specification as a formatted string.

The process shall indicate the result of the operation in a call to saSmfResponse().
Those upgrade-aware entities that cannot interpret the callback shall indicate this
with the SA_ERR_NOT_SUPPORTED error code as soon as possible.
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.5.1 147

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
The Software Management Framework waits for all the responses, but not longer
than the callback timeout period indicated in the upgrade campaign specification. If
no waiting period is indicated, the Software Management Framework proceeds with
the campaign immediately after having invoked the callbacks.

If an error is reported by any of the upgrade-aware entities by returning the
SA_AIS_ERR_FAILED_OPERATION error code in a call to saSmfResponse(), the
Software Management Framework shall interpret it as a failure of the custom action.
Any timeout is interpreted as successful completion of the callback.

See Also

saSmfCallbackScopeRegister(), saSmfCallbackScopeUnregister(),
saSmfResponse()

8.5.2 saSmfResponse()

Prototype

SaAisErrorT saSmfResponse(

SaSmfHandleT smfHandle,

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

smfHandle - [in] The handle which was obtained by a previous invocation of the
saSmfInitialize() function and which identifies this particular initialization of the
Software Management Framework. The SaSmfHandleT type is defined in
Section 8.2.1.

invocation - [in] This parameter associates an invocation of this response func-
tion with a particular invocation of a callback function by the Software Management
Framework. The SaInvocationT type is defined in [1].

error - [in] The response of the process to the associated callback. The value
SA_AIS_OK is returned if the associated callback was successfully executed by the
process; otherwise, an appropriate error as described in the corresponding callback
must be returned (see Section 8.5.1). The SaAisErrorT type is defined in [1].
148 SAI-AIS-SMF-A.01.02 Section 8.5.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Software Management Framework API
Description

The process responds to the Software Management Framework with the result of the
execution of an operation that was initiated by the Software Management Framework
when it invoked a callback specifying invocation to identify the initiated operation.
In the saSmfResponse() call, the process gives that value of invocation back to
the Software Management Framework, so that the Software Management Frame-
work can associate this response with the callback request.

The process replies to the Software Management Framework when either (i) it cannot
carry out the operations, or (ii) it has failed to successfully complete the execution of
the operations, or (iii) it has successfully completed the operations.

This function may be called only by a process that registered the related scope of
interest, that is, the smfHandle must be the same that was used when the process
registered the scope of interest by invoking the
saSmfCallbackScopeRegister() call.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before the
call could complete. It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle smfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework library or
the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other than
memory).

See Also

saSmfCallbackScopeRegister(), saSmfCallbackScopeUnregister(),
saSmfInitialize(), saSmfFinalize(), SaSmfCampaignCallbackT
AIS Specification SAI-AIS-SMF-A.01.02 Section 8.5.2 149

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administratve API
9 Administrative API

9.1 Include File and Library Name

The appropriate Information Model Management Service header file and the Soft-
ware Management Framework header file must be included in the source of an appli-
cation using the Software Management Framework administrative API; for the name
of the Information Model Management Service header file, see [4]. To use the Soft-
ware Management Framework administrative API, an application must be bound to
the Information Model Management Service library (for the library name, see [4]).

9.2 Type Definitions

The specification of Software Management Framework Administrative API requires
the following types.

9.2.1 SaSmfAdminOperationIdT
typedef enum {

SA_SMF_ADMIN_EXECUTE = 1,

SA_SMF_ADMIN_ROLLBACK = 2,

SA_SMF_ADMIN_SUSPEND = 3,

SA_SMF_ADMIN_COMMIT = 4

} SaSmfAdminOperationIdT;

9.3 Software Management Framework Administrative API
The Software Management Framework administrative API shall be supported
through the Information Model Management Service OM-API interface. The Informa-
tion Model Management Service API saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() functions (see [4]) shall be invoked
with the appropriate operationId (see Section 9.2.1) and objectName to execute
a particular administrative operation. In the following sections, the administrative API
is described with the assumption that the Software Management Framework is an
object implementer (runtime owner) for the various administrative operations that will
be initiated as a consequence of invoking the
saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() functions with the appropriate
operationId on the upgrade campaign object designated by objectName.
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 9 151

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administrative API
The API syntax for the administrative APIs shall use only the corresponding enumer-
ation value for the operationId as explained in Section 9.2.1.

The return values explained in the sections below for various administrative opera-
tions shall be passed in the operationReturnValue parameter, which is provided
by the invoker of the saImmOmAdminOperationInvoke_2() or
saImmOmAdminOperationInvokeAsync_2() functions to obtain the return code
from the object implementer, the Software Management Framework in this case.

9.3.1 SA_SMF_ADMIN_EXECUTE

Parameters

operationId = SA_SMF_ADMIN_EXECUTE

objectName - [in] pointer to the DN of the upgrade campaign object

params = NULL

Description

This administrative operation is invoked by an administrator to trigger the execution of
an upgrade campaign represented by the object objectName. It can also be invoked
to resume the execution of a upgrade campaign that was suspended in its forward
path. Note that an upgrade campaign can be suspended either due to an invocation
of an SA_SMF_ADMIN_SUSPEND operation, or due to an asynchronous failure
detected by the Software Management Framework, or due to one or more upgrade
steps of a campaign entering the Undone state. When an SA_SMF_ADMIN_EXECUTE
operation is issued by calling saImmOmAdminOperationInvoke_2(), the function
returns when one of the following events occurs:

• the Software Management Framework has successfully executed the upgrade
campaign;

• the execution of the upgrade campaign is suspended through an invocation of
an SA_SMF_ADMIN_SUSPEND operation;

• the upgrade campaign execution fails due to some error.

Similarly, when the operation is invoked by calling
saImmOmAdminOperationInvokeAsync_2(), an
saImmOmAdminOperationCallback() is invoked after one of the above events
occurs.

The SA_SMF_ADMIN_EXECUTE operation can be issued only when the upgrade cam-
paign is in the Initial, Execution Suspended or
152 SAI-AIS-SMF-A.01.02 Section 9.3.1 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administratve API
Suspended by Error Detected states. The operation fails with an
operationReturnValue of SA_AIS_ERR_BAD_OPERATION if the upgrade cam-
paign execution or rollback is already in progress, that is, if the upgrade campaign is
in a state other than Initial, Execution Suspended, or
Suspended by Error Detected.

Software Management Framework implementations may choose to create all the pro-
cedure, step, and the other runtime objects necessary for the execution of the cam-
paign when the execution is triggered. Alternatively, implementations may create the
required runtime objects prior to invocation of the SA_SMF_ADMIN_EXECUTE opera-
tion on a campaign object.

Availability Management Framework configuration changes, such as deletion of exist-
ing nodes or service units, that are performed after an invocation of the
SA_SMF_ADMIN_EXECUTE operation may cause the upgrade campaign to fail.
Therefore, Availability Management Framework configuration changes during the
execution of an upgrade campaign must be avoided.

Return Values

SA_AIS_OK - The execution of the upgrade campaign was performed successfully.
The upgrade campaign is now in the Execution Completed state.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error must be returned in cases when the requested action is
valid but not currently possible.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NO_MEMORY - The Software Management Framework is out of mem-
ory and, therefore, cannot provide service.

SA_AIS_ERR_NOT_EXIST - The upgrade campaign object identified by the name
objectName does not exist.

SA_AIS_ERR_NO_OP - The upgrade campaign is already in the Executing state.

SA_AIS_ERR_BUSY - This error code is returned when a different upgrade campaign
is already in progress, that is, it is in a state other than Initial,
Campaign Committed, or Rollback Committed.

SA_AIS_ERR_BAD_OPERATION - The upgrade campaign is in a state other than
Initial, Executing, Execution Suspended, or
Suspended by Error Detected.
AIS Specification SAI-AIS-SMF-A.01.02 Section 9.3.1 153

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administrative API
SA_AIS_ERR_ADMIN_SUSPENDING - The execution of the upgrade campaign was
suspended through an invocation of an SA_SMF_ADMIN_SUSPEND operation. The
upgrade campaign is now in the Suspending Execution state.

SA_AIS_ERR_ADMIN_ERROR_DETECTED - The upgrade campaign execution failed
due to an upgrade procedure of the upgrade campaign notifying a failure caused by
the step retry counter being exceeded during execution or caused by the detection of
an asynchronous failure of an upgraded entity. The upgrade campaign is now in the
Suspended by Error Detected state.

SA_AIS_ERR_ADMIN_FAILED - The upgrade campaign execution failed due to an
upgrade procedure of the upgrade campaign notifying a failure caused by a reason
other than either the step retry counter being exceeded during execution or the detec-
tion of an asynchronous failure. The upgrade campaign is now in the
Execution Failed state.

9.3.2 SA_SMF_ADMIN_COMMIT

Parameters

operationId = SA_SMF_ADMIN_COMMIT

objectName - [in] pointer to the DN of the upgrade campaign object

params = NULL

Description

This administrative operation is invoked by an administrator to commit an upgrade
campaign identified by objectName. It is also invoked by an administrator to commit
an upgrade campaign rollback operation.

When a campaign execution or a campaign rollback has completed successfully (that
is, it reached the Execution Completed state or the Rollback Completed
state respectively), the administrator is expected to verify the upgrade or the rollback
and commit the upgrade campaign by invoking an SA_SMF_ADMIN_COMMIT opera-
tion. When an upgrade campaign is committed, if any appropriate callback is speci-
fied, the Software Management Framework invokes registered processes to release
resources such as backups and checkpoints associated with the upgrade campaign.

A Software Management Framework implementation may choose to free up any
resources that it may have allocated during the execution of the upgrade campaign,
such as the runtime objects pertaining to the upgrade campaign. For more details,
see Section 6.5.2.
154 SAI-AIS-SMF-A.01.02 Section 9.3.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administratve API
Return Values

SA_AIS_OK - The function completed successfully. If the campaign was in the
Execution Completed state prior to the invocation of the operation, it is now in the
Execution Committed state. If the campaign was in the Rollback Completed
state prior to the invocation of the operation, it is now in the Rollback Committed
state.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error must be returned in cases when the requested action is
valid but not currently possible.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NO_MEMORY - The Software Management Framework is out of mem-
ory and, therefore, cannot provide service.

SA_AIS_ERR_NOT_EXIST - The upgrade campaign object identified by the name
objectName does not exist.

SA_AIS_ERR_BAD_OPERATION - The upgrade campaign is in a state other than
Execution Completed or Rollback Completed.

9.3.3 SA_SMF_ADMIN_SUSPEND

Parameters

operationId = SA_SMF_ADMIN_SUSPEND

objectName - [in] pointer to the DN of the upgrade campaign object

params = NULL

Description

This administrative operation is invoked by an administrator to suspend an upgrade
campaign whose execution or rollback is in progress. When this operation is invoked,
the Software Management Framework completes the upgrade steps (of one or more
upgrade procedures) currently being executed before returning an
operationReturnValue to the invoker. If the operation is invoked by calling
saImmOmAdminOperationInvoke_2(), the function returns with an
operationReturnValue of SA_AIS_OK if the campaign has been successfully
suspended. If invoked by calling saImmOmAdminOperationInvokeAsync_2(),
an saImmOmAdminOperationCallback() is invoked with an
AIS Specification SAI-AIS-SMF-A.01.02 Section 9.3.3 155

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administrative API
operationReturnValue of SA_AIS_OK if the campaign has been successfully
suspended.

Subsequent to the invocation of this operation, the administrator is expected to
invoke either an SA_SMF_ADMIN_EXECUTE or an SA_SMF_ADMIN_ROLLBACK oper-
ation.

This specification does not discuss the consequences when neither of the operations
is invoked.

It is possible that failures are encountered in the steps currently being executed when
this operation is invoked. Appropriate error codes as described below are returned in
such cases to indicate to the administrator that the campaign failed before it could be
suspended.

Return Values

SA_AIS_OK - The function completed successfully. The upgrade campaign will either
be in the Execution Suspended or Rollback Suspended state, depending on
whether the operation was invoked when the campaign was in the Executing or
Rolling Back state.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error must be returned in cases when the requested action is
valid but not currently possible.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).

SA_AIS_ERR_NO_MEMORY - The Software Management Framework is out of mem-
ory and, therefore, cannot provide service.

SA_AIS_ERR_NOT_EXIST - The upgrade campaign object identified by the name
objectName does not exist.

SA_AIS_ERR_NO_OP - The upgrade campaign is already in a suspended state, that
is, it is either in the Execution Suspended or the Rollback Suspended states.

SA_AIS_ERR_BAD_OPERATION - The upgrade campaign is in a state other than
Executing, Rolling Back, Execution Suspended, and
Rollback Suspended.

SA_AIS_ERR_ADMIN_ERROR_DETECTED - This error code is returned if the cam-
paign execution fails after the invocation of the SA_SMF_ADMIN_SUSPEND operation
due to an upgrade procedure notifying a failure caused by the step retry counter
being exceeded during execution or caused by the detection of an asynchronous fail-
ure. The upgrade campaign is now in the Suspended by Error Detected state.
156 SAI-AIS-SMF-A.01.02 Section 9.3.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administratve API
SA_AIS_ERR_ADMIN_FAILED - This error code is returned if the campaign fails after
the invocation of the SA_SMF_ADMIN_SUSPEND operation due to an upgrade proce-
dure of the upgrade campaign notifying a failure caused by a reason other than either
the step retry counter being exceeded during execution or the detection of an asyn-
chronous failure. The campaign will either be in the Execution Failed or in the
Rollback Failed state, depending on whether the operation was invoked when
the campaign was in the Executing or the Rolling Back state.

9.3.4 SA_SMF_ADMIN_ROLLBACK

Parameters

operationId = SA_SMF_ADMIN_ROLLBACK

objectName - [in] pointer to the DN of the upgrade campaign object

params = NULL

Description

This administrative operation is invoked by an administrator to perform a rollback
operation on an upgrade campaign that has either completed or was suspended
either due to an invocation of the SA_SMF_ADMIN_SUSPEND operation or due to a
non-fatal failure (the failure did not lead to the Execution Failed or the
Rollback Failed state). If the operation is invoked by calling
saImmOmAdminOperationInvoke_2(), the function returns with an
operationReturnValue of SA_AIS_OK if the campaign rollback was performed
successfully. If invoked by calling saImmOmAdminOperationInvokeAsync_2(),
an saImmOmAdminOperationCallback() is invoked with an
operationReturnValue of SA_AIS_OK if the campaign rollback was performed
successfully.

Return Values

SA_AIS_OK - Rollback was triggered successfully. The campaign will be in the
Rolling Back state.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error must be returned in cases when the requested action is
valid but not currently possible.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than mem-
ory).
AIS Specification SAI-AIS-SMF-A.01.02 Section 9.3.4 157

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Administrative API
SA_AIS_ERR_NO_MEMORY - The Software Management Framework is out of mem-
ory and, therefore, cannot provide service.

SA_AIS_ERR_NOT_EXIST - The upgrade campaign object identified by the name
objectName does not exist.

SA_AIS_ERR_NO_OP - The upgrade campaign is already in the Rolling Back
state.

SA_AIS_ERR_BAD_OPERATION - The upgrade campaign is in a state other than
Execution Completed, Execution Suspended, Rolling Back,
Rollback Suspended, or Suspended by Error Detected.

SA_AIS_ERR_ADMIN_SUSPENDING - The rollback of the upgrade campaign was
suspended through an invocation of an SA_SMF_ADMIN_SUSPEND operation. The
upgrade campaign is now in the Suspending Rollback state.

SA_AIS_ERR_ADMIN_SUSPENDED - The rollback of the upgrade campaign was sus-
pended due to an AMF asynchronous error notification pertaining to the upgraded
entities. The upgrade campaign is now in the Rollback Suspended state.

SA_AIS_ERR_ADMIN_FAILED - This error code is returned if the campaign rollback
fails due to an upgrade procedure or the upgrade campaign notifying a failure. The
upgrade campaign is now in the Rollback Failed state.
158 SAI-AIS-SMF-A.01.02 Section 9.3.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
10 SMF UML Information Model

10.1 Notes on the Conventions Used in UML Diagrams

General explanation of the conventions used in the UML diagrams, such as the use
of constraints, default values, and the like are presented in [1].

10.2 DN Formats for Software Management Framework UML Classes

Table 13 provides the format of the various DNs used to name Software Management
Framework objects of the SA Forum Information Model. One format is defined for
each object class.

Table 13 DN Formats

Object Class DN Format for Objects of that Class

SaSmfSwBundle “safSmfBundle=...,*,safApp=safSmfService”

SaSmfCampaign “safSmfCampaign=...,safApp=safSmfService”

SaSmfProcedure “safSmfProcedure=...,safSmfCampaign=...,
safApp=safSmfService”

SaSmfStep “safSmfStep=<integer>,
safSmfProcedure=...,safSmfCampaign=...,
safApp=safSmfService”

SaSmfDeactivationUnit “safSmfDu=...,safSmfStep=<integer>,
safSmfProcedure=...,safSmfCampaign=...,
safApp=safSmfService”

SaSmfActivationUnit “safSmfAu=...,safSmfStep=<integer>,
safSmfProcedure=...,safSmfCampaign=...,
safApp=safSmfService”

SaSmfImageNode “safImageNode=...,[safSmfAu=...,|safSmfDu=...,]
safSmfStep=<integer>,safSmfProcedure=...,
safSmfCampaign=...,safApp=safSmfService”
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 10 159

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
10.3 Software Catalog Classes

The following classes are specializations of the SaSmfBaseEntityType,
SaSmfVersionedEntityType, and SaSmfSoftwareEntity object classes of the
software catalog portion of the Software Management Framework Information Model
(see FIGURE 2 in Section 3.2.1):

• SaAmfAppBaseType, SaAmfSGBaseType, SaAmfSUBaseType,
SaAmfSvcBaseType, SaAmfCSBaseType, SaAmfCompBaseType - These
configuration object classes are the specializations of the
SaSmfBaseEntityType object class (presented in Section 3.2.1.2.1) for the
Availability Management Framework, which also becomes the object imple-
menter for objects of these classes. These classes are described in [2].

• SaAmfAppType, SaAmfSGType, SaAmfSUType, SaAmfSvcType,
SaAmfCSType, SaAmfCompType - These configuration object classes are the
specializations of the SaSmfVersionedEntityType object class (presented in
Section 3.2.1.2.2) for the Availability Management Framework, which also
becomes the object implementer for objects of these classes. These classes are
described in [2].

• SaAmfApplication, SaAmfSG, SaAmfSU, SaAmfSI, SaAmfCSI,
SaAmfComp - These configuration object classes are the specializations of the
SaSmfSoftwareEntity object class (presented in Section 3.2.1.2.2) for the
Availability Management Framework, which also becomes the object imple-
menter for objects of these classes. These classes are described in [2].

The remaining object class of the software catalog portion of the Software Manage-
ment Framework Information Model is:

• SaSmfSwBundle—This configuration object class defines the configuration
attributes of a software bundle that has been delivered to the software repository
associated with the SA Forum system. An object of this class can be created
when the relevant software bundle is delivered to the software repository. It can
be created later, but at the latest when an upgrade campaign requires this soft-
ware bundle.
For details, refer to Section 3.2.4 on page 32 and Section 6.3.1 on page 91.
160 SAI-AIS-SMF-A.01.02 Section 10.3 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
FIGURE 8 SMF Bundle Class

<<CONFIG>>
SaSmfSwBundle

safSmfBundle : SaStringT [1]{RDN, CONFIG}
saSmfBundleDefaultCmdTimeout : SaTimeT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleInstallOnlineCmdUri : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleInstallOnlineCmdArgs : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleInstallOfflineCmdUri : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleInstallOfflineCmdArgs : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleInstallOfflineScope : SaSmfOfflineCommandScopeT [0..1] = SA_SMF_CMD_SCOPE_AMF_SU{CONFIG, WRITABLE, SAUINT32T}
saSmfBundleRemoveOnlineCmdUri : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleRemoveOnlineCmdArgs : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleRemoveOfflineCmdUri : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleRemoveOfflineCmdArgs : SaStringT [0..1] = Empty{CONFIG, WRITABLE}
saSmfBundleRemoveOfflineScope : SaSmfOfflineCommandScopeT [0..1] = SA_SMF_CMD_SCOPE_AMF_SU{CONFIG, WRITABLE, SAUINT32T}
AIS Specification SAI-AIS-SMF-A.01.02 Section 10.3 161

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
10.4 Upgrade Campaign Model Classes

10.4.1 Upgrade Campaign Model Overview

FIGURE 9 presents the relationships among the upgrade campaign model classes.
For more details, refer to Section 3.3.1.1 on page 37.

FIGURE 9 SMF Upgrade Campaign Status View

<<RUNTIME>>
SaSmfDeactivationUnit

<<RUNTIME>>
SaSmfActivationUnit

<<RUNTIME>>
SaSmfImageNodes

<<RUNTIME>>
SaSmfProcedure

<<CONFIG>>
SaSmfCampaign

<<RUNTIME>>
SaSmfStep

0..1

1

0..1

1

to uninstall

0..*

1

to install

0..*

1

{xor}

1..*

1

1..*

1

162 SAI-AIS-SMF-A.01.02 Section 10.4 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
10.4.2 Upgrade Campaign, Upgrade Procedure, and Upgrade Step Classes
• SaSmfCampaign—This configuration object class defines the configuration and

runtime attributes of an upgrade campaign and the administrative operations
that can be applied to upgrade campaigns. The saSmfCmpgFileUri attribute
indicates the location of the upgrade campaign specification file. It is the only
attribute that needs to be provided at the creation of an object of this class. The
Software Management Framework shall fetch the campaign from this location,
and based on its contents fill the runtime attributes and create the runtime
objects of the campaign as necessary.
For details, refer to Section 3.3.1.1.1 on page 37.

• SaSmfProcedure—This runtime object class defines the runtime attributes of
an upgrade procedure. For each upgrade procedure specified in the campaign,
an object of this class is created by the Software Management Framework to
reflect the status of the procedure execution during the campaign.
For details, refer to Section 3.3.1.1.2 on page 38.

• SaSmfStep—This runtime object class defines the runtime attributes of an
upgrade step that reflect the status of execution of the upgrade step during the
campaign. For each specified upgrade procedure, the Software Management
Framework calculates the number of upgrade steps required by the SA Forum
system’s current configuration, and for each of them creates a object of this
class as a child of the appropriate procedure object.
For details, refer to Section 3.3.1.1.3 on page 39.
AIS Specification SAI-AIS-SMF-A.01.02 Section 10.4.2 163

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
FIGURE 10 SMF Upgrade Campaign, Upgrade Procedure, and Upgrade Step Classes

<<RUNTIME>>
SaSmfStep

safSmfStep : SaStringT [1]{RDN, RUNTIME, CACHED}
saSmfStepMaxRetry : SaUint32T [1] = 1{RUNTIME, CACHED, SAUINT32T}
saSmfStepRetryCount : SaUint32T [1] = 0{RUNTIME}
saSmfStepRestartOption : SaBoolT [1] = 0{RUNTIME, CACHED, SAUINT32T}
saSmfStepState : SaSmfStepStateT [1]{RUNTIME, CACHED, SAUINT32T}
saSmfStepError : SaStringT [0..*] = Empty{RUNTIME, CACHED}

<<CONFIG>>
SaSmfCampaign

SA_SMF_CAMPAIGN_EXECUTE()
SA_SMF_CAMPAIGN_SUSPEND()
SA_SMF_CAMPAIGN_COMMIT()
SA_SMF_CAMPAIGN_ROLLBACK()

safSmfCampaign : SaStringT [1]{RDN, CONFIG}
saSmfCmpgFileUri : SaStringT [0..1] = Empty{CONFIG}
saSmfCmpgConfigBase : SaTimeT [0..1]{RUNTIME}
saSmfCmpgExpectedTime : SaTimeT [1]{RUNTIME}
saSmfCmpgElapsedTime : SaTimeT [1] = 0{RUNTIME}
saSmfCmpgState : SaSmfCmpgStateT [1]{RUNTIME, CACHED, SAUINT32T}
saSmfCmpgError : SaStringT [0..*] = Empty{RUNTIME, CACHED}

<<RUNTIME>>
SaSmfProcedure

safSmfProcedure : SaStringT [1]{RDN, RUNTIME, CACHED}
saSmfProcExecLevel : SaUint32T [1]{RUNTIME, CACHED}
saSmfProcMustKeepSIs : SaNameT [0..*] = Empty{RUNTIME, CACHED}
saSmfProcAcceptSIOutage : SaNameT [0..*] = Empty{RUNTIME, CACHED}
saSmfProcMaxNumSIsOutage : SaUint32T [0..1] = 0{RUNTIME, CACHED}
saSmfProcUpgrMethod : SaSmfUpgrMethodT [1]{RUNTIME, CACHED, SAUINT32T}
saSmfProcDisableSimultanExec : SaBoolT [0..1] = 1{RUNTIME, CACHED, SAUINT32T}
saSmfProcPeriod : SaTimeT [1]{RUNTIME, CACHED}
saSmfProcState : SaSmfProcStateT [1]{RUNTIME, CACHED, SAUINT32T}
saSmfProcError : SaStringT [0..*] = Empty{RUNTIME, CACHED}
164 SAI-AIS-SMF-A.01.02 Section 10.4.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
SMF UML Information Model
10.4.3 SMF Deactivation Unit, Activation Unit, and Image-Nodes Classes
• SaSmfDeactivationUnit—This runtime object class defines the runtime

attributes of a deactivation unit of an upgrade step. If the upgrade campaign
does not explicitly specify the entities of the deactivation unit, the Software Man-
agement Framework must interpret the provided template and match it with the
current system configuration to identify the list of entities in the deactivation unit
of each step. For details, refer to Section 3.3.2.1 on page 40.

• SaSmfActivationUnit—This runtime object class defines the runtime
attributes of an activation unit of an upgrade step. If the upgrade campaign does
not explicitly specify the entities of the activation unit, the Software Management
Framework must interpret the provided template and match it with the current
system configuration to identify the list of entities in the activation unit of each
step. For details, refer to Section 3.3.2.2 on page 41.

• SaSmfImageNode—This runtime object class defines the runtime attributes of
a software bundle’s association with a set of nodes on which it needs to be
installed or uninstalled as part of an upgrade step.
For details, refer to Section 3.3.2.1 on page 40.

FIGURE 11 SMF Deactivation Unit, Activation Unit, and Image-Nodes Classes

<<RUNTIME>>
SaSmfImageNodes

safImageNode : SaStringT [1]{RDN, RUNTIME, CACHED}
saSmfINSwBundle : SaNameT [1]{RUNTIME, CACHED}
saSmfINNode : SaNameT [1..*]{RUNTIME, CACHED}

<<RUNTIME>>
SaSmfActivationUnit

safSmfAu : SaStringT [1]{RDN, RUNTIME, CACHED}
saSmfAuActedOn : SaNameT [0..*]{RUNTIME, CACHED}
saSmfAuEntityToAdd : SaNameT [0..*]{RUNTIME, CACHED}

<<RUNTIME>>
SaSmfDeactivationUnit

safSmfDu : SaStringT [1]{RDN, RUNTIME, CACHED}
saSmfDuActedOn : SaNameT [0..*]{RUNTIME, CACHED}
saSmfDuEntityToRemove : SaNameT [0..*]{RUNTIME, CACHED}
AIS Specification SAI-AIS-SMF-A.01.02 Section 10.4.3 165

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Notifications and Alarms
11 Alarms and Notifications
The Software Management Framework produces alarms and notifications to convey
important information regarding the operational and functional state of the objects
under its control to an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention, and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The vehicle to be used for producing alarms and notifications is the Notification Ser-
vice of the Service AvailabilityTM Forum (abbreviated as NTF, see [3]). Hence, the var-
ious notifications are partitioned into categories as described in this service.

In some cases, this specification uses the term “Unspecified” for values of attributes
that the vendor is at liberty to set to whatever makes sense in the vendor’s context,
and the SA Forum has no specific recommendation regarding such values. Such val-
ues are generally optional from the CCITT Recommendation X.733 perspective (see
[10]).

11.1 Setting Common Attributes
The following attributes of the notifications presented in Section 11.3 are not shown in
their description, as the generic description presented here applies to all of them:

• Correlated Notifications - Correlation ids are supplied to correlate notifications
that have been generated because of a related cause. By default, they should
include the root and parent notifications to which the new notification relates. In
case of alarms that are generated to clear certain conditions, that is, produced
with a perceived severity of SA_NTF_SEVERITY_CLEARED, the correlation iden-
tifiers shall also include the notification identifier that the Notification Service
assigned to the actual alarm notification when this alarm was generated.

• Event Time—The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value, in which case the timestamp is provided by the Noti-
fication Service.

• Notification Id - Depending on the Notification Service function used to send the
notification, this attribute is either implicitly set by the Notification Service or pro-
vided by the caller.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and must contain at least the
safApp RDN value portion of the DN set to the specified standard RDN value of
AIS Specification SAI-AIS-SMF-A.01.02 Chapter 11 167

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Notifications and Alarms
the SA Forum AIS Service generating the notification, that is, safSmfService.
For details on the AIS naming convention, refer to [1].

The following notes apply to all Software Management Framework notifications pre-
sented in Section 11.3:

• Notification Class Identifier—The vendorId portion of the SaNtfClassIdT
data structure must be set to SA_NTF_VENDOR_ID_SAF always, and the
majorId field must be set to SA_SVC_SMF (as defined in the SaServicesT
enumeration in [1]) for all notifications that follow the standard formats described
in this specification. The minorId field will vary based on the specific notifica-
tion.

11.2 Software Management Framework Alarms

The Software Management Framework does not issue any alarms at the time of pub-
lication of this specification.

11.3 Software Management Framework Notifications
The following sections describe a set of notifications that an Software Management
Framework implementation shall produce.
168 SAI-AIS-SMF-A.01.02 Section 11.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Notifications and Alarms
11.3.1 Software Management Framework State Change Notifications

11.3.1.1 Upgrade Campaign State Change Notify

Description

The state of the upgrade campaign has changed due to administrative intervention or
in the course of the execution of the upgrade campaign.

Table 14 Upgrade Campaign State Change Notify

NTF Attribute Name Mandatory/Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the upgrade campaign
whose state changed

Notification Class Identifier NTF internal minorId = 0x65 for Campaign

Additional Text Optional Unspecified

Additional Information Optional Unspecified

Source Indicator Mandatory SA_NTF_MANAGEMENT_OPERATION
or SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_SMF_CAMPAIGN_STATE

Old Attribute Value Optional Applicable value from enum
SaSmfCmpgStateT

New Attribute Value Mandatory Applicable value from enum
SaSmfCmpgStateT
AIS Specification SAI-AIS-SMF-A.01.02 Section 11.3.1 169

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Notifications and Alarms
11.3.1.2 Upgrade Procedure State Change Notify

Description

The state of an upgrade procedure has changed due to administrative intervention or
in the course of the execution of the upgrade campaign.

Table 15 Upgrade Procedure State Change Notify

NTF Attribute Name Mandatory/Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the upgrade procedure
whose state changed

Notification Class Identifier NTF-Internal minorid = 0x66 for Procedure

Additional Text Optional Unspecified

Additional Information Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_SMF_PROCEDURE_STATE

Old Attribute Value Optional Applicable value from enum
SaSmfProcStateT

New Attribute Value Mandatory Applicable value from enum
SaSmfProcStateT
170 SAI-AIS-SMF-A.01.02 Section 11.3.1.2 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Notifications and Alarms
11.3.1.3 Upgrade Step State Change Notify

Description

The state of an upgrade step has changed in the course of the execution of the
upgrade campaign.

Table 16 Upgrade Step State Change Notify

NTF Attribute Name Mandatory/
Optional Specified Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the upgrade step whose state
changed

Notification Class Identifier NTF-Internal minorid = 0x67 for Step

Additional Text Optional Unspecified

Additional Information Optional infoId = SA_SMF_ENTITY_NAME,
infoType = SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of the entity on
which the upgrade step failed, if applicable

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_SMF_STEP_STATE

Old Attribute Value Optional Applicable value from enum
SaSmfStepStateT

New Attribute Value Mandatory Applicable value from enum
SaSmfStepStateT
AIS Specification SAI-AIS-SMF-A.01.02 Section 11.3.1.3 171

Service AvailabilityTM Application Interface Specification
Index of Definitions

1

5

10

15

20

25

30

35

40
Index of Definitions
A
acceptable service outage 46
activation scope 43
activation units 39

B
base entity types 27

C
campaign builder 49
campaign see upgrade campaign

D
deactivation scope 43
deactivation units 39
deployment configuration 20
deployment phase 24
deployment see software deployment

E
entities

software 27
upgrade-aware 48

entity types file 33
execution level see procedure execution level
expected runtime outage 46

F
fallback 68

M
minimum service outage 46

O
offline installation and uninstallation operations 30
offline operations 30
online installation and uninstallation operations 30
online operations 30

P
procedure execution level 45
prototypes 28

R
registered processes 51
repository see software repository
rollback 65
rollforward 61
rolling upgrade 44

S
scope of disruption 108
scope of interest 127
service degradation 45
service outage 45
single-step upgrade 44
software bundle 28
software catalog 26
software delivery 23

software deployment 23
software entities 27
software entity type see types
software entity types 27
software installation 30
software repository 23
software uninstallation 30
symmetric activation units 42
symmetric upgrade scope 43

T
types

base entity 27
software entity 27
versioned entity 28

U
upgrade campaign 34, 45
upgrade campaign period 47
upgrade method 43

rolling 44
single-step 44

upgrade procedure 43
upgrade procedure period 46
upgrade scope 43
upgrade step 39
upgrade-aware entities 48

V
version 28
versioned entity types 28
AIS Specification SAI-AIS-SMF-A.01.02 173

	Table of Contents
	List of Figures
	List of Tables
	1 Document Introduction
	1.1 Document Purpose
	1.2 Document’s Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Deleted Topics
	1.3.4 Other Changes
	1.3.5 Superseded and Superseding Functions
	1.3.6 Changes in Return Values of API and Administrative Functions

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Overview to the Software Management Framework
	2.1.1 Service Availability Considerations

	2.2 Scope of the Software Management Framework Specification
	2.2.1 Scope of the Current Release

	3 System Description and System Model
	3.1 Software Management in SA Forum Systems
	3.2 Software Delivery
	3.2.1 Software Catalog
	3.2.1.1 Software Entity
	3.2.1.2 Software Entity Type
	3.2.1.2.1 Base Entity Type
	3.2.1.2.2 Versioned Entity Type and Prototype

	3.2.1.3 Software Bundle

	3.2.2 Handling of Software Bundles
	3.2.2.1 Repository Management

	3.2.3 Software Installation and Uninstallation
	3.2.3.1 Ordering of the Operations for Upgrade
	3.2.3.2 Ordering of the Operations for Recovery

	3.2.4 Software Bundle Object Class
	3.2.5 Entity Types File

	3.3 Software Deployment
	3.3.1 Upgrade Campaign
	3.3.1.1 Upgrade Campaign Model
	3.3.1.1.1 Upgrade Campaign Object Class
	3.3.1.1.2 Upgrade Procedure Object Class
	3.3.1.1.3 Upgrade Step Object Class

	3.3.2 Upgrade Step
	3.3.2.1 Deactivation Unit
	3.3.2.2 Activation Unit
	3.3.2.3 Actions of the Upgrade Step

	3.3.3 Upgrade Procedure
	3.3.3.1 Upgrade Scope
	3.3.3.2 Upgrade Method
	3.3.3.2.1 Rolling Upgrade
	3.3.3.2.2 Single-Step Upgrade

	3.3.3.3 Procedure Execution Level

	3.3.4 Service Outage

	3.4 Upgrade Periods
	3.4.1 Upgrade Procedure Period
	3.4.2 Upgrade Campaign Period

	3.5 Upgrade-Aware Entities
	3.6 Typical Software Management Information Flow

	4 Failure Detection and Failure Handling
	4.1 Failure Detection
	4.1.1 Upgrade Prerequisites
	4.1.2 Upgrade Step Verification
	4.1.3 Upgrade Procedure Verification
	4.1.4 Upgrade Campaign Verification
	4.1.5 Exit Status

	4.2 Failure Handling
	4.2.1 Protective Measures
	4.2.1.1 Backup
	4.2.1.2 Upgrade History
	4.2.1.3 Detection of Asynchronous Failures of AMF Entities
	4.2.1.4 Handling Persistent Changes During Upgrade
	4.2.1.4.1 Changes Caused by the Upgrade
	4.2.1.4.2 Changes Caused by Normal Operation

	4.2.2 Recovery Operations
	4.2.2.1 Undoing an Upgrade Step
	4.2.2.2 Retry of an Upgrade Step
	4.2.2.3 Rollback
	4.2.2.3.1 Campaign Rollback
	4.2.2.3.2 Procedure Rollback
	4.2.2.3.3 Step Rollback
	4.2.2.3.4 Failure During Rollback

	4.2.2.4 Fallback
	4.2.2.4.1 Rollforward

	5 State Models
	5.1 Upgrade Step State Model
	5.1.1 Initial State
	5.1.2 Executing State
	5.1.3 Completed State
	5.1.4 Undoing State
	5.1.5 Failed State
	5.1.6 Undone State
	5.1.7 Rolling Back State
	5.1.8 Undoing Rollback State
	5.1.9 Rolled Back, Rollback Undone, and Rollback Failed States

	5.2 Upgrade Procedure State Model
	5.2.1 Initial State
	5.2.2 Executing State
	5.2.3 Suspended and Step Undone States
	5.2.4 Completed State
	5.2.5 Rolling Back State
	5.2.6 Rollback Suspended State
	5.2.7 Rolled Back, Failed, and Rollback Failed States

	5.3 Upgrade Campaign State Model
	5.3.1 Initial State
	5.3.2 Executing State
	5.3.3 Execution Completed State
	5.3.4 Error Detected State
	5.3.5 Suspending Execution State
	5.3.6 Error Detected in Suspending State
	5.3.7 Suspended by Error Detected State
	5.3.8 Execution Suspended State
	5.3.9 Rolling Back State
	5.3.10 Rollback Completed State
	5.3.11 Suspending Rollback State
	5.3.12 Rollback Suspended State
	5.3.13 Execution Failed and Rollback Failed States
	5.3.14 System Backup, Restart, and Fallback Operations

	6 Upgrade Campaign Specification
	6.1 Common Elements
	6.1.1 Action Element
	6.1.1.1 Administrative Operation
	6.1.1.2 Configuration Change Bundle
	6.1.1.3 CLI Command
	6.1.1.4 Customized Callback Action
	6.1.1.4.1 Timing of Customized Callback Actions

	6.2 Campaign Information
	6.2.1 Campaign Period
	6.2.2 Configuration Base

	6.3 Campaign Initialization
	6.3.1 Required Software Bundles
	6.3.2 New AMF Entity Types
	6.3.3 Initialization Actions
	6.3.3.1 Generic Initialization Action
	6.3.3.2 Predefined Conditions for Customized Callback Actions
	6.3.3.2.1 Callback at Campaign Initialization
	6.3.3.2.2 Callback at Campaign Backup Creation
	6.3.3.2.3 Callback at Campaign Rollback

	6.4 Campaign Body
	6.4.1 Outage Information
	6.4.2 Upgrade Method Specification
	6.4.2.1 Specification of Rolling Upgrades
	6.4.2.1.1 Target Node
	6.4.2.1.2 Activation Unit Template
	6.4.2.1.3 Target Entities
	6.4.2.1.4 Update Template
	6.4.2.1.5 Upgrade Step of a Rolling Upgrade
	6.4.2.1.6 Timing of Callback Actions Within the Procedure

	6.4.2.2 Specification of Single-Step Upgrades
	6.4.2.2.1 Deactivation Unit Specification
	6.4.2.2.2 Activation Unit Specification
	6.4.2.2.3 Symmetric Activation Unit Specification
	6.4.2.2.4 Upgrade Step of a Single-Step Upgrade

	6.5 Campaign Wrap-Up
	6.5.1 Completion of the Upgrade Campaign
	6.5.2 Committing the Upgrade Campaign

	7 Entity Types File
	7.1 Software Bundle
	7.1.1 XML Schema for Software Bundles
	7.1.1.1 Bundle Identification
	7.1.1.2 Bundle Handling Operations
	7.1.1.3 Schema Summary

	7.2 AMF Entity Types and their Prototypes
	7.2.1 Naming and Versioning
	7.2.2 Other Attributes
	7.2.3 XML Schema for AMF Entity Prototypes
	7.2.3.1 Component Prototype
	7.2.3.1.1 Provided CS Prototypes
	7.2.3.1.2 Component Category
	7.2.3.1.3 CLC-CLI Commands
	7.2.3.1.4 Upgrade Awareness
	7.2.3.1.5 Software Bundle Reference
	7.2.3.1.6 Schema Summary

	7.2.3.2 Component Service Prototype
	7.2.3.2.1 Schema Summary

	7.2.3.3 Service Unit Prototype
	7.2.3.3.1 Schema Summary

	7.2.3.4 Service Group Prototype
	7.2.3.4.1 Schema Summary

	7.2.3.5 Service Prototype
	7.2.3.5.1 Schema Summary

	7.2.3.6 Application Prototype
	7.2.3.6.1 Schema Summary

	8 Software Management Framework API
	8.1 Include File and Library Name
	8.2 Type Definitions
	8.2.1 Handles Used by the Software Management Framework
	8.2.2 SaSmfPhaseT
	8.2.3 SaSmfUpgrMethodT
	8.2.4 SaSmfOfflineCommandScopeT
	8.2.5 Types for State Management
	8.2.5.1 SaSmfCmpgStateT
	8.2.5.2 SaSmfProcStateT
	8.2.5.3 SaSmfStepStateT
	8.2.5.4 SaSmfStateT
	8.2.5.5 SaSmfEntityInfoT

	8.2.6 SaSmfCallbackScopeIdT
	8.2.7 SaSmfCallbackLabelT
	8.2.8 Label Filters
	8.2.8.1 SaSmfLabelFilterTypeT
	8.2.8.2 SaSmfLabelFilterT
	8.2.8.3 SaSmfLabelFilterArrayT

	8.2.9 SaSmfCallbacksT

	8.3 Library Life Cycle
	8.3.1 saSmfInitialize()
	8.3.2 saSmfSelectionObjectGet()
	8.3.3 saSmfDispatch()
	8.3.4 saSmfFinalize()

	8.4 Registration and Unregistration of the Scope of Interest
	8.4.1 saSmfCallbackScopeRegister()
	8.4.2 saSmfCallbackScopeUnregister()

	8.5 Upgrade Campaign Progress Signaling and Response
	8.5.1 SaSmfCampaignCallbackT
	8.5.2 saSmfResponse()

	9 Administrative API
	9.1 Include File and Library Name
	9.2 Type Definitions
	9.2.1 SaSmfAdminOperationIdT

	9.3 Software Management Framework Administrative API
	9.3.1 SA_SMF_ADMIN_EXECUTE
	9.3.2 SA_SMF_ADMIN_COMMIT
	9.3.3 SA_SMF_ADMIN_SUSPEND
	9.3.4 SA_SMF_ADMIN_ROLLBACK

	10 SMF UML Information Model
	10.1 Notes on the Conventions Used in UML Diagrams
	10.2 DN Formats for Software Management Framework UML Classes
	10.3 Software Catalog Classes
	10.4 Upgrade Campaign Model Classes
	10.4.1 Upgrade Campaign Model Overview
	10.4.2 Upgrade Campaign, Upgrade Procedure, and Upgrade Step Classes
	10.4.3 SMF Deactivation Unit, Activation Unit, and Image-Nodes Classes

	11 Alarms and Notifications
	11.1 Setting Common Attributes
	11.2 Software Management Framework Alarms
	11.3 Software Management Framework Notifications
	11.3.1 Software Management Framework State Change Notifications
	11.3.1.1 Upgrade Campaign State Change Notify
	11.3.1.2 Upgrade Procedure State Change Notify
	11.3.1.3 Upgrade Step State Change Notify

	Index of Definitions

